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ABSTRACT
Real-life problems including transportation, planning and manage-

ment o�en involve several decision makers whose actions depend

on the interaction between each other. When involving two deci-

sion makers, such problems are classi�ed as bi-level optimization

problems. In terms of mathematical programming, a bi-level pro-

gram can be described as two nested problems where the second

decision problem is part of the �rst problem’s constraints. Bi-level

problems are NP-hard even if the two levels are linear. Since each

solution implies the resolution of the second level to optimality,

e�cient algorithms at the �rst level are mandatory. In this work we

propose BOBP, a Bayesian Optimization algorithm to solve Bi-level

Problems, in order to limit the number of evaluations at the �rst

level by extracting knowledge from the solutions which have been

solved at the second level. Bayesian optimization for hyper param-

eter tuning has been intensively used in supervised learning (e.g.,

neural networks). Indeed, hyper parameter tuning problems can be

considered as bi-level optimization problems where two levels of

optimization are involved as well. �e advantage of the bayesian

approach to tackle multi-level problems over the BLEAQ algorithm,

which is a reference in evolutionary bi-level optimization, is empir-

ically demonstrated on a set of bi-level benchmarks.
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1 INTRODUCTION
According to Roger B. Myerson, Game �eory can be described

as “the study of mathematical models of con�ict and cooperation

between intelligent rational decision-makers”. �e outcome of a

competitive game is generally a equilibrium (e.g., Cournot, Nash,

Stackelberg) where none of the decision makers would bene�t by

modifying their decision.

In this work, we focus our a�ention to some particular non-

cooperative games called Stackelberg Games [32] which are se-

quential non-zero sum games involving 2 players. �e �rst player

called “leader” is aware of the problem of the second player called

“follower”. Taking the point of view of the leader, its problem de-

pends on the reaction of the follower. In order to take the right

decision, it has to compute the optimal strategy of the follower

called “ the follower rational decision”.

�ese games can be mathematically modeled as two nested op-

timization problems, also referred to as bi-level problems, where

the inner level is part of the outer problem constraints. �e outer

problem is generally called the “upper level” (UL) while the inner

problem is called the “lower-level” (LL). �e order between levels is

crucial which means that swapping the two levels leads to di�erent

optimal solutions if they exist. �is nested structure implies that a

feasible solution at the UL should be optimal for the LL problem.

�is is the reason why bi-level optimization problems are very dif-

�cult to solve. Even two nested linear continuous levels lead to a

NP-hard single-level problem.

Di�erent approaches have been proposed in the literature to

tackle bi-level problems. However, most of them have been de-

signed to tackle only speci�c versions of bi-level problems. For

instance, a large set of exact methods was introduced to solve small

linear bi-level optimization problems. �e last decade has seen a

renewed interest for bi-level optimization, especially in the �eld of

evolutionary computing. �is is probably due to the new optimiza-

tion needs to solve problems with multiple decision makers.

A very interesting example of bi-level problem is the toll se�ing

problem introduced by Brotcorne in [11]. An authority operates

a network of roads which may have tolls. �is authority would

like to maximize its revenues by �nding the optimal toll prices.

However, tolls are paid by network users who may decide to take

secondary roads in order to minimize their cost. �e authority has

to take into account the network user problem which consists in

minimizing his travel costs. Indeed, the authority only controls a

part of the decision vector, i.e., the prices, while the network users

control the path they take in the network. Generally to solve such

nested optimization problems, the LL problem is replaced by its

Karuhn-Kuhn-Tucker conditions to obtain a single-level problem.

�is kind of transformation cannot be employed in all cases. An
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alternative would be to sequentially solve both levels but this is

not suitable for large instances. In [31], Sinha et al. have approxi-

mated the LL optimal solutions using the UL decision variables to

reduce the number of LL optimizations. Although this approach is

very innovative, a genetic algorithm is employed at the UL which

necessitates a lot of �tness evaluations. In addition, the authors

are required to perform a multi-output approximation. To tackle

this issue, they considerm independent single-output regressions

by building as many approximate functions as LL variables. In

this work, we propose BOBP to tackle these issues by considering

Bayesian optimization. Instead of generating several approximate

functions for each LL variable, we make use of Gaussian processes

not to approximate LL optimal solutions but to estimate directly

their UL �tness value. Bayesian optimization also embeds an ac-

quisition function which permits to determine the most promising

search areas during optimization. �erefore, this approach a�empts

to minimize the number of �tness evaluations. Generally in the

literature, acquisition functions are optimized using local search

approaches, i.e. L-BFGS-B [26] which tend to be trapped in local

optimum. �is is the reason why we propose to use an evolutionary

algorithm and more precisely Di�erential evolution” to detect bet-

ter acquisition points and thus be�er search areas. It is well-suited

for hyper-parameter optimization which requires to discover a set

of optimal parameters for a complex or black-box model.

�e remainder of this article is organized as follows. Section 2

introduces the existing works on bi-level optimization as well as

Bayesian optimization. Section 3 formalizes the problem and then

states explicitly how Bayesian optimization can be adapted to solve

bi-level problems. Section 4 focuses on the experimentation pro-

tocol and provides comparison results with a state-of-the-art al-

gorithm, namely the Bi-level Evolutionary Algorithm based on

�adratic approximations (BLEAQ). Finally, sections 5 concludes

this work and propose future investigations.

2 RELATEDWORK
Multi-level and bi-level optimization stems from the need to tackle

sequential optimization problems in which each level is controlled

by a di�erent decision maker. Connected to Game �eory, bi-level

problems can be seen as the mathematical programming counter-

part of Stackelberg games[32] introduced by H. von Stackelberg

in 1952. �e foundations and formulation of bi-level optimization

problems have been �rst proposed by J. Bracken and J. McGill in[9].

�ey also provide some defense application examples in [10]. At

this time, the de�nition “bi-level” was still not in use and the com-

mon designation of bi-level problems was “mathematical programs

with optimization problems in the constraints”.

Many practical problems involving a bi-level structure have been

studied in the literature. Transportation [23], planning [35] and

management [2] are the main topics modeled as bi-level problems

in practice. Indeed, they are naturally involving several decision

makers. Bi-level problems are intrinsically hard even for convex

levels. �e simplest bi-level linear programs have been proven to

be strongly NP-hard [3]. Exact approaches are thus not e�cient but

have been mainly investigated. �e �rst one is based on a reformu-

lation of the bi-level model into a single-level model by replacing

the follower problem by its Karush Kuhn Tucker conditions [4].

�e second uses vertex enumeration with the aid of a modi�ed ver-

sion of the well-know simplex method [7]. �e third one extracts

gradient information of the LL problem and generates directional

derivatives using by the UL objective function[30]. �e last cate-

gory introduces penalty functions which compute stationary points

and local optimum [6].

Concerning integer and mixed integer bi-level problems, three

main categories can be identi�ed in the literature. In the �rst case,

reformulation methods have been employed like decomposition

methods [14]. �e second category is based on Branch and Bound

[5] while the last one includes parametric programming approaches

[24].

Most of the studies published so far focus on special cases.

Concerning multi-objective exact approaches where each decision

maker wants to optimize a set of objectives, the LL problem is o�en

replaced in order not to be treated as a bi-level problem [8]. �e

complexity induced by multiple levels and/or multiple objectives

makes exact approaches non-e�cient even though very important

results have been discovered. For that reason, researchers turned

towards metaheuristics.

Metaheuristics have been successfully and widely used in single-

level optimization cases to tackle NP-hard problems. Indeed for

those problems and under the assumption that P , NP [15], it

does not exist algorithms with polynomial complexity solving each

instance to optimality. �e optimality condition is relaxed to keep

fast resolution procedures. Since convex bi-level problems are NP-

hard contrary to their single-level convex problems, the scope of

metaheuristics has been extended. According to the taxonomy

provided in [33], four existing categories have been considered in

the literature:

(1) Nested sequential (NSQ)

• Repairing approach (REP)

• Constructive approach (CST)

(2) Single-level transformation (STA)

(3) Co-evolutionary (COE)

(4) Multi-objective (MOA)

Two kinds of NSQ categories have been reported. �e �rst one

(REP) considers the LL problem as a constraint and applies a repair-

ing procedure to be sure that it is satis�ed [17]. �e second one is

more trivial and consists in solving sequentially the two levels [20].

�e STA category aims at transforming a bi-level problem into a

general single-level problem [29] while the COE category focuses

on decentralized algorithms trying to decouple both levels [19]. �e

MOA category relies on the transformation of bi-level problems

into equivalent multi-objective problems. �ese transformations

are not trivial since a Pareto optimal solution is not necessarily

bi-level optimal. In [13], the authors introduced a new methodol-

ogy ensuring the equivalence between the original problem and

its multi-objective version. Recently, Deb and Sinha proposed the

Bi-level Evolutionary Algorithm based on �adratic approxima-

tions (BLEAQ), which could be part of a new ��h class. Indeed, this

algorithm a�empts to approximate the inducible region which is

basically the resulting feasible region of a bi-level problem. �is

strategy reduces the number of LL optimizations. Nevertheless, it

has some drawbacks, like the use of a population-based metaheuris-

tic at the UL which tends to increase the number of evaluations.
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Another weakness is the fact that BLEAQ has to build as many

approximate functions as LL decision variables. In this paper, we

present an alternative approach which does not try to approxi-

mate the LL decision variables but directly the objective value of

solutions located in the inducible region.

Figure 1 summarizes the existing categories [33] and the new one,

i.e., APP, which a�empts to approximate either solutions (IRS) or the

objective values (IRF) in the inducible region using surrogate models.

IRF stands for approximation of Inducible Region Fitness and IRS for

Metaheuristic strategies

NSQ STA

[29]

COE

[19]

MOA

[13]

APP

REP

[17]

CST

[20]

IRS

[31]

IRF

[this work]

Figure 1: Extension of the Bi-levelmetaheuristics taxonomy

approximation of Inducible Region Solutions. In this work, bi-level

optimization problems are solved with a Bayesian Optimization

algorithm which uses Gaussian processes to approximate complex

objective functions. Since discovering IR could be a hard task,

it is therefore complex to evaluate the UL objective function on

it. Bayesian optimization has been mostly employed in machine

learning [12, 27] as an alternative to the Grid Search and Random

Search algorithms. �ey are well-suited for multi-level optimization

problems as they take into account the evaluation cost. �e next

section will introduce Bayesian optimization as well as the way to

adapt it for general bi-level optimization.

3 DESCRIPTION OF THE BOBP APPROACH
�is paper is a two-fold contribution. It �rst explains how Bayesian

optimization can be applied on bi-level optimization problems. Sec-

ondly, we propose to employ global optimization algorithms to op-

timize acquisition functions generally solved with gradient-based

algorithms. Di�erential evolution has been selected to perform this

task. Herea�er we introduce formally bi-level problems and provide

some de�nitions. �en, we describe the general mechanism behind

Bayesian optimization. Finally, we show how to adapt classical

Bayesian optimization to bi-level problems.

3.1 Introduction to bi-level problems
As described in section 1, bi-level problems have a nested structure.

�e LL problem is part of UL constraints.

min F (x ,y)
s.t. G(x ,y) ≤ 0

min f (x ,y)
s.t. д(x ,y) ≤ 0

x ,y ≥ 0

where F, f : Rn ×Rm → R,G : Rn ×Rm → Rp and Rn ×Rm → Rq .

Let us introduce some de�nitions and properties:

• �e constraint region of the general bi-level problem:

S = {(x ,y) : x ∈ X ,y ∈ Y ,G(x ,y) ≤ 0,д(x ,y) ≤ 0}
• �e feasible set for the LL problem parametrized by x ∈ X :

SL(x) = {y ∈ Y : д(x ,y) ≤ 0}.
• �e projection of S onto the UL decision space:

ProjS (X ) = {x ∈ X : ∃y ∈ Y ,G(x ,y) ≤ 0,д(x ,y) ≤ 0}
• �e LL rational decision set for x ∈ S(X ):

P(x) = {ŷ ∈ Y : ŷ ∈ arg min[f (x ,y) : y ∈ SL(x)]}
• �e Inducible Region: IR = {(x , ŷ) ∈ S, ŷ ∈ P(x)}

�e LL problem is a parametric optimization problem which

depends on the UL decision variable x . With no control on y, the

UL decision maker has to determine P(x) in order to compute its

objective value. For every x , an optimal solution ŷ ∈ P(x) for the

LL problem has to be computed in order to observe the rational

reaction. As aforementioned, the UL feasibility is determined by LL

optimality. �is is the reason why IR is the resulting feasible region

of the general bi-level problem. Figure 3 is an example provided

by Mersha and Dempe in [22] which depicts a very interesting

example of discontinuous IR. Although this example is a linear

bi-level problem, it re�ects the inherent di�culties to cope with

multiple levels.

First let us notice that a LL solutiony may not belong to S . Indeed

the LL problem is indi�erent to UL constraints which explains why

the order between the two decision makers is so important. �e

feasible set for the LL problem may be outside the UL feasible region

de�ned by G(x ,y) ≤ 0. �is situation can be observed in Figure

3. �e optimal reaction P(x = 5) = {ŷ ∈ Y : ŷ ∈ arg min[f (5,y) :

y ∈ SL(5)]} = {12} is clearly non-feasible for the UL problem. �is

could only be determined a�er LL optimization. Hence, there is a

risk for the UL problem to be non-feasible if the LL decision maker

provides a rational reaction outside UL feasible area. In the context

of a Chess game, we could say that the LL player checkmate the

UL player.

It is very time consuming to adopt a nested strategy approach

which sequentially solves both levels. In [31], the authors focused

on localization of IR. Under the assumption that P(x) = {ŷ} is

a singleton for each x , they tried to establish a relation between

x and ŷ to avoid repetitive LL optimizations. �ey assume that

under Lipschian continuity 2 close solutions x and x ′ will lead

to close rational solutions ŷ and ŷ′. It means that approximate

functions could be considered to estimate ŷ from x . Nevertheless,

to generate these approximate functions, they have to deal with

multi-output regression to determine m functions such that the

approximation error is minimal. In addition, these approximate

functions are restricted to be quadratic functions. In this work, we

do not a�empt to approximate ŷ but F (x , ŷ) directly. Under the
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same assumption that P(x) is a singleton, the optimal solution ŷ is

unique and we can conclude that it may exist a surrogate function

F ′ : Rn 7→ R with F ′(x) = F (x , ŷ). Notice that if P(x) is not a

singleton, two alternatives exist:

• �e optimist case: we choose ŷ = arg min{F (x ,y) : y ∈
P(x)}.

• �e pessimist case: we choose ŷ = arg max{F (x ,y) : y ∈
P(x)}.

According to this new representation, we only focus on x . By doing

so, we obtain some kind of black-box function and we do not need to

deal explicitly with the LL decision variables y at the UL. �erefore,

it allows us to decouple x and y. In this case, a very promising

approach for black-box optimization is Bayesian optimization. A

complex model is replaced by a function modelling its e�ects. Based

on Gaussian processes, no assumption are needed to approximate

the function contrary to the work proposed in [31] which only uses

quadratic approximations. �e next section introduces formally

the notion of Bayesian optimization.

3.2 Bayesian optimization
Bayesian optimization is a model-based approach which aims at

solving very costly problems. It can be assimilated as a black-box

optimization algorithm where the formal expression of the ob-

jective function may be unknown or very di�cult to obtain. To

overcome this issue and reduce computation cost, Bayesian opti-

mization generates a surrogate model of the unknown function

using Gaussian processes[25]. It samples promising zones in the

feasible region by computing a distribution of the objective func-

tion. �is distribution give us a prior knowledge on location of the

optimal solution. Bayesian optimization is thus characterized by

two important mechanisms:

• A probability measure on F describing our prior beliefs on F ;

• �e acquisition function which allows to gain information on

the location of the minimum value of the objective function.

Considering a cost function F (x), Gaussian processes determine

the probability distribution of the function F (x) at each x . �ese

distribution are Gaussian and thus characterized by a mean value

µ(x) and a variance σ 2(x). Hence a probability distribution over

functions can be de�ned as follows:

P(F (x)|x) ∼ N(µ(x),σ 2(x)) (1)

Obviously, the parameters µ(x) and σ 2(x) have to be estimated.

�is is done by ��ing the Gaussian processes to the data. Using

several observations, we obtain a sample of a multivariate Gaussian

distribution [28], determined by a mean vector and a covariance

matrix. In fact, Gaussian processes generalize the notion of multi-

variate Gaussian distribution. For complex non-linear functions, the

covariance matrix can be de�ned using a kernel function k(x ,x ′).
�is covariance matrix de�nes the correlation between data. Two

distant data x and x ′ should not in�uence each other while two

close data are strongly correlated.

F (x) ∼ GP(µ(x),k(x ,x ′)) (2)

where GP stands for Gaussian process. �e squared exponential

kernel is o�en used and de�ned as follows:

k(x ,x ′) = l · exp

(
− ‖x − x

′‖2
2σ 2

)
with parameters l andσ 2

(3)

To �t the Gaussian process to the data, the likelihood is op-

timized from the evaluations of each observations. Each time a

new point is added to the model, a re-optimization is performed

to maximize the likelihood. �e question is now :’How should

we determine a new point ?’. �is is achieved by optimizing an

acquisition function which statistically models our con�dence to

�nd the location of the optimal value. Several acquisition functions

exist such as the Maximum Probability of Improvement (MPI), the

Expected Improvement (EI), or the Lower-Con�dence Bounds (LCB)

are computed as follows:

• acqMPI (x) = Φ(γ (x)).
• acqEI (x) = σx(γ (x)Φ(γ (x)) + ϕ(γ (x))).
• acqLCB (x) = µ(x) − kσ (x).

where γ (x) = F (xbest−µ(x ))
σ (x ) , ϕ is the standard cumulative distribu-

tion function, ϕ the standard normal probability density function

and k is a parameter allowing to balance exploration-exploitation.

Finally, Algorithm 1 depicts the di�erent steps of the standard

bayesian optimization algorithm.

Algorithm 1 Bayesian Optimization

1: function Solve(problem,n,k)

2: X =initRandom(n);

3: Y =problem.evaluate(X )

4: model=GP(X ,Y )
5: model.update()

6: while not has converged() do
7: acq = getAcquisition(k);

8: xnew =acq.optimize();

9: ynew =problem.evaluate(xnew );

10: model.update(xnew ,ynew );

11: end while
12: return model.best;

13: end function

In the case of bi-level optimization, the UL �tness is complex

to determine since it depends on the rational reaction of the LL

decision maker. �erefore, even if F (x ,y) is a convex function, we

can only consider all F (x , ŷ) with ŷ ∈ P(x). In the case of two

linear levels, IR is piecewise-linear and potentially discontinuous

(see Figure 3). In this work, the LCB acquisition function will be

preferred which allows to detect the most promising solutions in

terms of mean and deviation. Large k values put the emphasis

on exploration while small k values focus on the best expected

performance.

3.3 Bayesian Optimization for Bi-level
Problems (BOBP)

�e contribution of this work is two-fold. First, we adapt the

Bayesian algorithm (see algorithm 1 to bi-level problems). And

�nally, we improve the optimization of the acquisition function by

considering a di�erential evolution algorithm.
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3.3.1 Adaptation to Bi-level problems. Bi-level problems are

evaluated in two-steps in order to compute UL function F (x ,y).
Indeed, the UL decision maker has no control on y. He can only

observe the LL rational decision ŷ ∈ P(x) which strongly depends

on x . In some ways, F (x ,y) can be rewri�en by F (x , ŷ). �e UL

�tness function F is thus a function which only dependents on x . So

we will now consider F ′(x) = F (x , ŷ = arg min{F (x ,y) : y ∈ P(x)}
in the singleton or the optimistic case while the pessimistic case

would be F ′(x) = F (x , ŷ = arg max{F (x ,y) : y ∈ P(x)}. Figure 2

depicts a surrogate function obtained from the example described

in Figure 3. �e updated GP model allows us to plot at each UL

decision x , the mean �tness value and a con�dence interval around

the mean value . We can distinguishes two types of UL solutions x :

• �e �rst one represents the UL solutions which have been evalu-

ated to compute F ′(x) according to the LL problem. �is is the

reason why the variance at these points is null. �ey have already

been selected by the acquisition solver during the optimization.

• �e second one represents the UL solutions which have not been

explicitly evaluated. �is is the reason why we only have a

con�dence interval around F ′(x). �ey are potential points to

be selected by the acquisition solver.

0 2 4 6 8 10

x

−40

−20

0

20

40

F
’(
x
)

Acquisition (arbitrary units)

F ′(x ) = F (x, ŷ = SLSQP (x ))

µ(x ) − 1.96σ (x ) ≤ F ′(x ) ≤ µ(x ) + 1.96σ (x )

Figure 2: Surrogate function

In order to evaluate UL solution x and obtain F ′(x), we have

to perform a LL optimization to determine ŷ. �is optimization is

realized using the Sequential Least Squares Programming (SLSQP)

algorithm developed by Kra� [18]. SLSQP is a gradient-based pro-

cedure for non-linear optimization problems supporting inequality

and equality constraints. �is algorithm requires a initial guess

to start the optimization. Instead of using a random initial guess,

we select as starting point the LL optimal solution obtained by

the closest UL solution x ′. Figure 3 depicts this situation where

we wish to optimize the LL problem according to the UL decision

x = 3. �e UL decision x ′ = 2 is the closest UL decision variables

which has been explicitly evaluated so far. �e rational decision

set according to x ′ is P(2) = {3}. �is strategy is based on the idea

that two close UL decision variables should have closed optimal LL

solutions. In this case, the number of evaluations required by the

SLSQP algorithm is dramatically reduced.

SL (2)

SL (3)

SL (9)

3

SL (9)

P = min

x≥0

F (x, y) = −x − 2y

s.t. 2x − 3y ≥ −12

x + y ≤ 14

min

y≥0

f (y) = −y

s.t. − 3x + y ≤ −3

3x + y ≤ 30

−2. 2. 4. 6. 8. 10. 12.

−2.

2.

4.

6.

8.

10.

12.

0
x

y

Figure 3: Select initial guess to solve P(3) = {ŷ ∈ Y : ŷ ∈
arg min[f (3,y) : y ∈ SL(3)]}

3.3.2 Improving the acquisition function using di�erential evolu-
tion. As described in the previous section, Bayesian optimization is

well-adapted to problem with time-consuming function evaluations.

For instance, it has been used with success to optimize machine

learning algorithms[16]. �e main advantage is a clever search in

order to limit the number of evaluations contrary to some other

metaheuristics. As its name suggests it, the acquisition function

allows to �nd the next point to evaluate according to some infor-

mation gain obtained from the previous iterations. �is is clearly

a very e�cient way of learning promising areas of the objective

function. �e acquisition function should be globally optimized

since it is generally a function with possible several local maxima

as depicted in Figure 4. �erefore and contrary to most of the

Bayesian optimization implementation we have seen so far, we con-

sidered a di�erential evolutionary algorithm to search the global

optimal solution becoming the next acquisition point. Such global

algorithms have been successfully applied inside Bayesian opti-

mization algorithms in [21] . Since we need to spare a maximum

number of function evaluations, it is really important to �nd the

most promising areas. Di�erent strategies can be considered:

• Select the best acquisition point

• Select a set of promising acquisition point

In the second case, the number of function evaluations will in-

crease but we are more likely to escape local optimal solutions. In

this work, we only test the �rst case where only a single acquisi-

tion point is selected. Future investigations will focus on di�erent

strategies of optimizing the acquisition function.

4 NUMERICAL EXPERIMENTS
4.1 Comparison with BLEAQ on Bi-level

Benchmarks
In this work, the 10 bi-levels problems proposed in [31] have been

selected to evaluate the potential of Bayesian optimization to solve

bi-level problems. Table 1 describes the best known �tnesses for
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Figure 4: Acquisition landscape of twoUL decision variables

these benchmarks at both levels. �is set of benchmarks including

linear and non-linear levels will a�ord us to compare the Bayesian

approach with the BLEAQ algorithm. �e la�er is an evolutionary

algorithm in which the LL decision variable are approximated by

quadratic functions. �e authors applied this strategy to minimize

the number of LL optimization. To the best of our knowledge, the LL

problem is optimized only when the approximation error exceeds a

certain threshold.

Best known �tnesses UL �tnesses LL �tnesses

TP1 225.0 100.0

TP2 0.0 100.0

TP3 -18.6787 -1.0156

TP4 -29.2 3.2

TP5 -3.6 -2.0

TP6 -1.2091 7.6145

TP7 -1.96 1.96

TP8 0.0 100.0

TP9 0.0 1.0

TP10 0.0 1.0

Table 1: Benchmarks

4.2 Experimental protocol and parameters
For both approaches, experiments have been conducted on the

High Performance Computing (HPC) platform of the university of

Luxembourg[34]. Each run was completed on a single core of an

Intel Xeon E3-1284L v3 @ 1,8 GHz, 32Gb of RAM server, which was

dedicated to this task. �e GPyOpt python library [1] has been se-

lected to apply Bayesian optimization. �e LCB acquisition function

has been considered to determine the next promising point with pa-

rameter k = 2. �e di�erential algorithm implemented to optimize

the acquisition function is the one proposed by the python scipy

library with default parameters: strategy=’best1bin’, maxiter=1000,

popsize=15,mutation=(0.5, 1), recombination=0.7. �e scipy library

implements SLSQP as well. Concerning the BLEAQ algorithm, the

authors provide a MATLAB code located at h�p://www.bilevel.org

in the resources section. Unfortunately, the core of this MATLAB

code has been obfuscated and we do not know what kind of local

search algorithm is used in addition with their genetic algorithm.

We kept the same parameters described in [31]. In addition, the stop-

ping criteria for both algorithms is the convergence. �e Bayesian

algorithm proposed in this work uses the same criteria as BLEAQ

except that the criteria is not applied on a population but on the

last acquired points.

4.3 Experimental results
Numerical results have been summarized in Tables 2,4,3 and 5. �e

results for the BLEAQ algorithm for the 10 instances are the one

reported in [31]. Tables 2 and 4 represent respectively the average

and best �tnesses obtained over all runs. A Wilcoxon rank-sum

test [36] has been realized to determine if the �tness di�erences are

statistically signi�cant for both levels. P-values have been provided

in Table 3. In addition, Table 5 illustrates the average number of

evaluations for both levels over all runs. �e ”ULcalls” column

represents the average number of objective function calls at Upper-

Level while the ”LLcalls” column indicates the average aggregated

number of objective function calls at Lower-Level. We can easily

observe that the number of evaluations obtained with the Bayesian

algorithm is much lower than for BLEAQ. �is is the reason why no

statistical tests have been computed in this case. For some bench-

marks, BLEAQ achieves be�er accuracy. Indeed, BLEAQ makes

use of an evolutionary algorithm to perform LL optimization while

the Bayesian algorithm implemented to tackle these bi-level bench-

marks only invokes a local search, i.e SLSQP. Nevertheless on TP9

benchmark, the best �tness at UL is be�er than the best known

solution. For TP9 and TP10, the average �tnesses are be�er for the

Bayesian algorithm despite the fact that these both benchmarks

have been generated from complex single-level benchmarks with

multiple local optimal solutions (see h�p://www.bilevel.org). We

also noticed the ability of the Bayesian algorithm to face multi-

modal problems. Indeed, the Bayesian algorithm provides two so-

lutions with �tnesses (F , f ) = (0, 100) and (F , f ) = (0, 200) which

both are UL optimal solutions. �e same observation has been made

for the TP8 benchmark. On the contrary, BLEAQ never detects the

solution providing the �tness values (0, 200). In a competitive and

real-life application, such solution could be preferred by the UL

decision maker since the �tness associated to the LL problem is def-

initely higher while still optimal for the UL decision maker. �ese
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promising results show the advantage of such surrogate optimiza-

tion algorithms over traditional evolutionary computing techniques

when function evaluations are complex and time-consuming.

Bayesian BLEAQ

Average ULf itness LLf itness ULf itness LLf itness

TP1 253.6155 70.3817 224.9989 99.9994

TP2 0.0007 183.871 2.4352 93.5484

TP3 −18.5579 −0.9493 −18.6787 −1.0156

TP4 −27.6225 3.3012 −29.2 3.2

TP5 −3.8516 −2.2314 −3.4861 −2.569

TP6 −1.2097 7.6168 −1.2099 7.6173

TP7 −1.6747 1.6747 −1.9538 1.9538

TP8 0.0008 180.6452 1.1463 132.5594

TP9 0.0012 1.0 1.2642 1.0

TP10 0.0049 1.0 0.0001 1.0

Table 2: Average �tnesses for both levels

p-values UL �tnesses LL �tnesses

TP1 5.09354939843e-08 6.62154466203e-08

TP2 1.99180208303e-05 0.000455639542651

TP3 1.33535344389e-11 1.33535344389e-11

TP4 1.33535344389e-11 0.827259346563

TP5 4.88497305946e-08 9.352489315e-05

TP6 1.33535344389e-11 3.21862967172e-09

TP7 1.06973503522e-10 1.06973503522e-10

TP8 1.91908665211e-09 0.00204782236

TP9 2.58028430416e-08 7.11788655392e-06

TP10 1.97034447118e-11 1.97034447118e-11

Table 3: Wilcoxon Rank-Sum Test for both levels

Bayesian BLEAQ

Best values ULf itness LLf itness ULf itness LLf itness

TP1 225.0011 99.9984 225.0 100.0

TP2 0.0 200.0 5.4204 0.0

TP3 −18.6786 −1.0156 −18.6787 −1.0156

TP4 −29.1991 3.2001 −29.2 3.2

TP5 −3.8998 −2.0039 −2.4828 −7.705

TP6 −1.2099 7.6173 −1.2099 7.6173

TP7 −1.6833 1.6833 −1.8913 1.8913

TP8 0.0 200.0 12.2529 0.0007

TP9 0.0007 1.0 3.5373 1.0

TP10 0.0011 1.0 0.001 1.0

Table 4: Best obtained �tnesses for both levels

Figure 5 depicts the posterior mean, the standard deviation and

the current acquisition function when TP5 optimization ended. �e

posterior mean shows that a large number of points concentrate

around the best solution. Furthermore, the standard deviation

is also very low in this area indicating a strong con�dence on

the location of the optimal solution. Finally, the landscape of the

acquisition function suggests that the next acquired point would

be probably in this area con�rming the convergence.

Bayesian BLEAQ

Average ULcalls LLcalls ULcalls LLcalls

TP1 211.1333 1558.8667 588.6129 1543.6129

TP2 35.2581 383.0645 366.8387 1396.1935

TP3 89.6774 1128.7097 290.6452 973.0

TP4 16.9677 334.6774 560.6452 2937.3871

TP5 57.2258 319.7742 403.6452 1605.9355

TP6 12.1935 182.3871 555.3226 1689.5484

TP7 72.9615 320.2308 494.6129 26 682.4194

TP8 37.7097 413.7742 372.3226 1418.1935

TP9 16.6875 396.3125 1512.5161 141 303.7097

TP10 21.3226 974.0 1847.1 245 157.9

Table 5: Average number of function evaluations for
both levels

5 CONCLUSION AND FUTUREWORKS
Bi-level optimization problems are special kind of optimization

problems involving two decisions makers. Closely related to Game

theory, they are the mathematical representation of so called “Stack-

elberg games”. �ese hierarchical problems require to optimize it-

eratively two problems called the Upper-Level and the Lower-Level

because the decision variables are partially controlled by each of

them. �is nested optimization scheme is time-consuming. Di�er-

ent approaches have been proposed in the literature and are more

and less e�cient. Generally, they replace the LL problem with its

KKT conditions to obtain a single-level problems which can be

solved with traditional techniques. In this work, a surrogate-based

algorithm, i.e. BOBP has been proposed to tackle this complex

problems. Based on Gaussian processes, Bayesian optimization is a

Black-box algorithm which has been intensively employed to opti-

mize machine learning model (e.g. neural network, support vector

machine) by creating a surrogate model which is �ne-tune until

the convergence occurs. Bayesian optimization makes no assump-

tion on the characteristic of the optimized function to approximate

it. It also embeds a mechanism to detect new promising points

a�er re�nement of the model at each iteration. �ese properties

make Bayesian optimization a very good candidate algorithm to

tackle hierarchical problems such as bi-level problems. Numerical

experiments on 10 bi-level benchmarks con�rmed that Bayesian

optimization can dramatically reduce the number of evaluations

and thus the number of LL optimizations while guaranteeing very

good and accurate results. Future works will consider di�erent al-

gorithm to perform LL optimizations other than SLSQP. In fact, the

combination of multiple an di�erent LL optimization solver could

be the best approach to do such optimizations. In addition, new

optimization techniques could be proposed to solve the acquisition

function. For example,multi-objective optimization could use to

consider several acquisition functions instead of optimizing only

one at time.
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