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ABSTRACT
Recent research in small populations of �ymio II robots illustrated
the relative bene�ts of populations distinguishing heritable and
learning features in robots for a simple obstacle avoidance task.
Here we scienti�cally validate these results by repeating them us-
ing a simulation. An additional bene�t of this work is to provide
con�dence in the simulation model. �is is important because evo-
lutionary swarm robotics experiments can be very time consuming
to run in real robots. Having a reliable simulation allows many
more experiments to be run in simulation with only the most inter-
esting results needing to be veri�ed with real robots. We describe
the development of a simulation using RoboRobo that’s using the
same three-tier learning framework that was demonstrated in the
real-world. �e simulation is shown to replicate the real-world
results in terms of illustrating the relative bene�ts of each type of
learning, and if anything, indicates that social learning can be more
powerful than originally thought.
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1 INTRODUCTION
Heinerman et al. proposed a three-tiered adaptation engine for a
swarm of physical robots (�ymio II), that distinguished between
heritable and learnable features in the robots. An evolutionary
mechanism evolved a genome that controlled which of the prox-
imity sensors of the robot were switched on in a given generation.
�is information is heritable from robot to robot. An individual
learning mechanism was used to learn the weights of a feed for-
ward neural network controller, using active sensors as input and
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outputs the speed of each of the two motors. �e weights are en-
coded by a memome and an Evolution Strategy is used to adapt
weights during a generation. Finally, social learning is implemented
by a robot broadcasting its memome to other robots, who store
collected memomes and use this information in conjunction with
their current memome to produce an adapted controller. �e frame-
work was evaluation using a population of 6 �ymio II robots and
demonstrated in particular the bene�ts of social learning.

Our work repeats these experiments using a simulation rather
than real robots. �e purpose of this is to provide scienti�c valida-
tion of the previous work by approaching the same research ques-
tion using a di�erent experimental technique and a more generic
robot model.

In addition to this we were motivated by a desire to have further
con�dence in the simulator to accurately model behaviours which
encompassed complex interactions of learning types. When investi-
gating questions in environments that model complex interactions
with both other group members and the environment, simulations
can provide a straightforward means of testing many hypotheses
[2] in a manner that uses far less elapsed time. �is allows for
extensive experimentation to be performed, with only the most
interesting results tested in real robots.

We describe the development of a simple simulation that loosely
models the �ymio II robots and repeats the experiments described
in [4]. Although commercial simulations over �ymios are available
(e.g in Webots1) we felt it was important to use a simple model
of a generic robot in order to demonstrate that the results are not
speci�c to �ymio hardware or precise morphology. �e goal was
to demonstrate that the three-tiered architecture provided results
with the same features as those shown by Heinerman et al, i.e.
that social learning increases learning speeds and results in be�er
controllers, before moving on to a deeper investigation of factors
in�uencing social learning, informed from biological systems. �e
intention is not to demonstrate that controllers learnt in simulation
can successfully cross the reality-gap [6].

2 METHOD
�e setup described in [3], [5] was implemented into Roborobo [1].
�is included a virtual replica of the environment shown in [4] and
a robot sensor con�guration that approximates physical layout of
the �ymio II robot, i.e 5 sensors are used, 3 in the front and 2 at the
back. Unlike the �ymio II, a circular robot was used, which had
diameter 55 pixels, in order to scale them to the same relative size
as the �ymio’s in the physical environment (1cm=5pixels). Each
sensor had a cone-shaped layout - where each cone had a range of
77 pixels, with a cone diameter ranging between 8 and 21 pixels.

1h�ps://www.cyberbotics.com/overview
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�e same obstacle avoidance task as described in [3] is used; the
same �tness function was adopted as shown in 1.

f =
T∑
t=0

strans ∗ (1 − srot ) ∗ (1 −vsens ) (1)

Here the strans is the combined speed of the two motors. srot is
the rotational speed of the robot normalized between 0 and 1 and
vsens is the normalized distance between 0 and 1 of the sensor that
is closest to an object.

To simulate the simultaneous nature of multiple robots being
evolved in parallel, a multi-threaded evaluator was implemented
in which each robot had a dedicated evaluator for determining
�tness. �e evolutionary, individual learning and social learning
algorithms were implemented exactly as described in [4] — the
reader is referred to this publication for the details.

3 EXPERIMENTS & RESULTS
To evaluate the contribution of social learning to the quality and
speed of learning we perform two experiments, as described by [4]:

• Fixed sensor layout and individual learning of controller
• As above, with added social learning —- broadcasting of

memomes by robots.

Experiments were repeated 20 times. Figure 2 shows the mean
�tness for each setup per generation, and table 1 gives the mean and
standard deviation at the �nal generation, the distribution of which
can be seen in Figure 1. At t-test shows the di�erence between
means is statistically signi�cant (p-value = 1.522e-05) at the 1%
level. Figure 2 shows similar trends to that found in using physical
robots; the gap between social learning and individual learning
only appears enhanced in the simulated system. �is is most likely
explained by the lack of noise in the system, with perfect reception
of broadcast memomes, and a more accurate translation of motor
speeds to movement.

4 CONCLUSION
We have described a simulated version of the three-tier framework
proposed in [4] which replicates the general trends of the results
to a degree that is su�cient to scienti�cally validate those results.
�is also enables us to con�dently use the simulation to investigate
in depth further aspects of socially-related learning. For example,
instead of indiscriminate broadcasting of memomes we might share
only between related-kin. As with any simulation, the most in-
teresting results will still have to be ver�ed using real robots and
further adaptation made to the simulator as appropriate.

We have already identi�ed that the simulation could be further
improved by use of an alternative �tness function: the blind-spots
introduced by the sensor models in the simulator enable a high-
�tness to be obtained when the motors are running at full-speed
(strans and the robot is in fact colliding with an obstacle, due to the
sensor failing to detect an obstacle, i.e. vsens is incorrectly reading
0.

Figure 1: Final Generation Population Fitness

Figure 2: Population Mean Fitness

Table 1: Mean �tness at �nal generation

Experiment Mean Fitness SD
Individual+Social Learning 0.5152 0.2474

Individual Learning 0.3764 0.2388
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