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ABSTRACT

We investigate the possibilities of incorporating user feedback at

run-time in an embodied evolution se�ing. User feedback in this

case consists of a user ranking a small sample from the population

in an ongoing evolutionary process according to some criterion.

We describe an approach to develop a surrogate model, dissemi-

nate that model across the evolving robot collective and incorpo-

rate it as an additional objective during the evolutionary run. We

evaluate themethod in a number of scenarios, showing that this ap-

proach does to some extent cause the collective to absorb new ob-

jectives, including objectives to refrain from particular behaviour,

but not to the level that is achieved by explicitly adding the true

objective function.
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1 INTRODUCTION

Embodied Evolution was introduced by Ficici et al. [4] in pursuit

of a vision of robot collectives that autonomously adapt to their

tasks and environment by means of evolution. In embodied evo-

lution, the evolutionary process is distributed over the robots: in

contrast to regular evolutionary algorithms, there is no central au-

thority that regulates parent and survivor selection. Instead, the

robots interact locally and autonomously to assess behaviour and

to exchange and select genetic material. An important considera-

tion in this context is that the robot collective requires no (human)

oversight. Once the objectives for evolution and mechanisms for
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interaction have been implemented, the system is supposed to take

care of itself: “the robot population evolves in a completely hands-

free and autonomous manner” [7].

In this paper, we investigate the possibility of sparse user inter-

action (user-on-the-loop) to de�ne new objectives at runtime in

an embodied evolution implementation. �e aim is to enable a sce-

nario where a user, while the robots are performing their tasks and

their controllers evolve, can point out (un)desirable behaviour in

a few robots. �e robots then process this feedback and insert it

into the distributed evolutionary process as a new objective.

Particularly in design applications, interactive evolutionary com-

putation has been successfully employed. Interactive evolution is

associated with increased search ability, increased exploration and

diversity [2, Ch. 1]. In such cases, there is no explicit model for

�tness computation, and the evaluation of the �tness depends on

the human user [e.g., 3]. �is amounts to a user-in-the-loop para-

digm where users act as a �tness function and interactively labels

or ranks each individual. It was soon realised that integrating user

feedback in this manner implies, in the words of Biles [3], a “�t-

ness bo�leneck,” and work by e.g., Johanson and Poli [6] explored

the use of arti�cial neural networks (ANNs) to serve as a surro-

gate model of user preferences. Johanson and Poli used hundreds

of user-supplied ratings to train an ANNs that then served as au-

tomated raters. �ese “proved somewhat successful, but were not

able to generate nice sequences with the reliability of human rated

runs.”

In reinforcement learning, Akrour et al. [1] have shown that it is

possible to learn a ranking function to re�ect a user’s preferences

in an iterative process where the reinforcement learning process

pro�ers candidate solutions for a user to rank.

User interaction to de�ne additional objectives in an ongoing

evolutionary process has not been investigated to date, and it is

also unclear whether it is feasible to develop surrogate models

from infrequent, even one-o�, user feedback. Distributed evolu-

tionary systems such as embodied evolution pose a further chal-

lenge because the robots are physically distributed without any

central entity, so it is improbable that a user could provide feed-

back encompassing all the robots in the collective.

We investigate whether it is possible to incorporate feedback

in an ongoing embodied evolution process, seeking to answer the

research question is it possible to guide the evolutionary process by

indicating (un)desirable behaviour in a subset of the population?

We consider the following set-up: during a run, a subset of the

robot collective is ranked according to a new objective (this can

relate to desired as well as to undesired behaviour). A surrogate

model is then built on the basis of this ranking, and the ranked
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Figure 1: Mediannumber of type 3 pucks collected a�er user

feedback compared to runs without user feedback. �e feed-

back indicates to start collecting these pucks that played no

role previously.

robots start using this as a new objective in addition to any ob-

jectives that were already de�ned. �e robots distribute the new

objective across the collective by means of gossiping.

�e experiments extend those reported by Haasdijk et al. [5]

where robots move around an arena with distinct types of puck

that the robots can sense and pick up. �e baseline set-up (i.e.,

without any user guidance) de�nes the task to pick up pucks of

types 1 and 2 (there are 4 types in total), other puck types are ig-

nored. A�er 500 000 iterations, we simulate user interaction to

add an objective: 15 robots are ranked according to the new ob-

jective, and a linear regression model is created to map a robot’s

self-metrics (nr. of pucks collected per type, distance travelled, ob-

stacles hit, and position) to a ranking. �is model is then used as

an additional objective and disseminated across the robot collec-

tive through a gossiping approach. We conduct two sets of experi-

ments: in the �rst set, the additional objective is to collect pucks of

type 3. �e second set adds the objective to stop collecting pucks

of type 2.

2 RESULTS AND DISCUSSION

�e plots in �g. 1 and 2 show how the robot population reacts to

the user intervention; they show the ratio of the number of pucks

(of type 3, resp. type 2) collected between the baseline runs and the

runs where the new objectives are added. �e plots show median

results over 50 replicate runs. �e increase in collections of puck

type 3 (�g. 1) is low; the robots eventually pick up between 10

and 15% more pucks compared to the baseline without the new

objective. �e decrease in number of pucks of type 2 (�g. 2) is

much more substantial: the robots pick upto 20% fewer pucks than

they do without feedback.

�ese results shows that it is possible to add objectives to an

embodied evolution process as the run progresses. �e change

in behaviour is modest but signi�cant, even with a simple linear

surrogate model, and dissemination through a gossiping protocol

su�ces. It seems to be somewhat easier to reduce undesirable be-

haviour than to promote new behaviour, but further analysis will

have to con�rm this.
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Figure 2: Mediannumber of type 2 pucks collected a�er user

feedback compared to runs without user feedback. �e feed-

back indicates to stop collecting these pucks.

It remains to be investigated whether the modest level of be-

havioural change is due to the limitations of surrogate modelling

(although initial experiments with more complex neural net-based

models) or to the sparsity of feedback in this set-up. Another in-

triguing possibility is that the addition of new objectives during an

evolutionary run necessitates an increase in controller complexity

or partial re-initialisation to escape from achieved convergence.

�ese results are encouraging, even though there is obvious

room for improvement. Extending embodied evolution to incor-

porate user-on-the-loop feedback enables a responsive adaptivity,

where the user can easily intervene to guide adaptation as (s)he

sees �t.
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