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ABSTRACT
We present a Genetic Improvement (GI) experiment on ProbAbel,
a piece of bioinformatics software for Genome Wide Association
(GWA) studies. The GI framework used here has previously been
successfully used on Python programs and can, with minimal adap-
tation, be used on source code written in other languages. We
achieve improvements in execution time without the loss of ac-
curacy in output while also exploring the vast �tness landscape
that the GI framework has to search. The runtime improvements
achieved on smaller data set scale up for larger data sets. Our �nd-
ings are that for ProbAbel, the GI’s execution time landscape is
noisy but �at. We also con�rm that human written code is robust
with respect to small edits to the source code.
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1 INTRODUCTION
In recent years GI has been gaining attention [5, 20]. With every GI
publication we are presented with successful applications of search
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techniques on various programs for functional or non-functional
improvements. Non-functional properties have been of particular
interest [30], mainly due to the popularity in mobile computations
and the need to save resources [2, 3, 6].

Execution time has been a popular GI target, speci�cally for
computationally expensive programs for bioinformatics. Target
software have included Bowtie 2 [12] which is used to align genome
sequences and the sequence mapping software BarraCUDA [14].
The traditional programs targeted by GI are relatively large (>10K
lines of code), with a few exceptions [21, 29].

In our previous work we presented a GI framework that targeted
Python programs. We successfully integrated it into a live system [7,
9] and gave examples of the �tness landscape for three Python
programs [8]. The landscape with “number of test cases passed”
as �tness was shown to be largely �at and often dropping from
passing all tests to zero with a single edit. In this paper we analyse
our GI’s capabilities to improve the execution time of ProbAbel [1],
a bioinformatics program written in C1. We brie�y analyse the
landscape of the non-functional property improvement which is
measured with a continuous variable from R. Out intentions are to
informally compare it with the �tness function landscape of bug
�xing which is represented with a discreet variable from Z.

GI work on landscape analysis in general is sparse and even
more so when considering non-functional properties. Speci�cally,
we want to see if a GI framework that has initially been applied to
Python code can also operate on C code and answer two questions:

(1) Can GI, within reasonable time, �nd improvements to ProbAbel
that decrease its execution time?

(2) What does the landscape for the execution time improvements
look like?

The term: “reasonable time” as stated in question 1, is subjective
and therefore we have to de�ne it in this context. Let us start
by imagining a program that executes in X time units. The GI’s
improvements decrease the execution to X ′ time units and it took
the GI, Y time units to �nd them. If said program is only supposed
to be used once, then the overall gain would be ∆ = X − X ′ + Y .
However if the program is going to be used on n occasions, then

1ProbAbel’s source can be found on http://www.genabel.org/packages/ProbABEL
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the overall gain is accumulated for every execution (eq. 1).

∆ = Y +
n∑
i=1

(X − X ′) (1)

So we de�ne the limit for the GI’s reasonable time to be when
∆ < 0. More informally: the time it takes GI to decrease execution
time is reasonable if the improved version can be found in less
time than the accumulated saved time. The overhead of running
GI will pay o� even if the improvement is small if the resulting
program is executed many times. In other words, the trade-o�
between investing in GI and running the improved version of the
code multiple times is less than running the original code multiple
times.

The name, GI, has a historical origin in the �eld of “Genetic Pro-
gramming”, a machine learning technique. The GI technique should
not be confused with genetics in the biological �eld of genome anal-
ysis. The remainder of this paper is as follows: Section 2 lists some
related work and inspirations. Section 3 gives a short explanation of
ProbAbel’s functionality. Section 4 describes the data set that was
used for the experimentation and how it was generated. Section 5
lays out the experimental procedure. Section 6 details our results.
Lastly, Section 7 summarizes and concludes the paper.

2 RELATEDWORK
GI has been used to optimise various properties of software [4,
5, 11, 13], both non-functional and functional. Of the functional
properties, the most studied improvement is bug �xing [8, 17, 27,
28]. Execution time is however the most explored non-functional
property [5]. We believe this might be because implementing a time
measurement is relatively easy compared to other non-functional
properties such as memory use or energy consumption [6].

Some of the metrics used in the literature to quantify execution
time include the elapsed time from invocation until termination, the
CPU time, or number of lines of code executed. The elapsed time
from program invocation to termination is dependent on multiple
outside factors and is therefore an inaccurate measurement, unless
it is made in the exact, unchanging environment the program will
always be running in. That is however nearly never the case and the
CPU time is a much more accurate and reliable measurement of the
program’s performance. The CPU time only counts the time it takes
the computer to process the program in question so environmental
variable interference is kept lower than with elapsed time but not
entirely eliminated. Counting the lines of code that are executed
has been argued to be the least biased with respect to the execution
environment [21]. Nevertheless, the implementation would rely
on instrumentation of the code or some kind of pro�ling tool and
therefore is not as portable between programming languages.

This paper adds to an already extensive list of GI work on optimis-
ing execution time. Successes range from subtle [22] and moderate
gain [21] to extraordinary [12, 14]. Much of it based on Harman’s
and Langdon’s work [10] which also inspired the work presented
in this paper.

Other examples of execution time improvements also include
the early example of automatic parallelisation [26] and a multi-
objective optimisation of embedded systems [29, 31].

Table 1: The 16 targeted �les from ProbAbel’s source code

File name Size (LOC) Number of
mutable points

reg1.cpp 879 1236
main.cpp 619 284
coxph_data.cpp 556 201
cox�t2.c 465 696
main_functions_dump.cpp 448 159
eigen_mematrix.cpp 433 348
gendata.cpp 276 218
phedata.cpp 275 217
data.cpp 273 152
regdata.cpp 270 261
cholesky.cpp 154 216
maskedmatrix.cpp 154 105
chinv2.c 64 71
cholesky2.c 60 68
chsolve2.c 46 43
dmatrix.c 19 22
Total 4991 4297

Although GI has been used to improve execution time there is
limited number of publication on the analysis of the search land-
scape. Our previous work examined the landscape for three small
Python programs [9], while other recent papers look at the ro-
bustness of software [15] and bug �xing landscape of the triangle
program [16].

3 GENOME-WIDE ASSOCIATION
A genome-wide association (GWA) study is the analysis of genetic
variants in groups of people to identify which variations, if any, are
associated with a certain trait or disease [24]. Generalised Linear
Models (GLM) are typically used to approximate the e�ect size of
a genetic variation by calculating the odds ratio (logistic models
only) and a signi�cance (p-value). There are multiple di�erent
methods and programs available to perform the computation of a
GLM [19, 25]. The data input to a GWA study is a record of multiple
single-nucleotide polymorphisms (SNPs) for a population of people
and the trait or disease of interest. An SNP is a variations of a
nucleotide in a speci�c location of a genome. Most GWA studies
gather DNA samples from multiple people and consider millions of
SNPs from each person [18]. Given that the studies are analysing
correlation between millions of data points and perhaps multiple
traits in hundreds or thousands of people the computation is often
expensive.

3.1 ProbAbel
ProbAbel is widely used in bioinformatics for GWA studies. It is a
collection of programs for regression models; linear, logistic and
Cox proportional hazard. The software is versatile and relatively
fast because it uses estimations and �oating point types instead of
double precision numbers. The Icelandic Heart Association is one
of ProbAbel’s users. They conduct GWA studies on a regular basis,
trying to identify an underlying genome variation associated with
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Table 2: Sampled distributions for the generating larger data
set

Trait Data type Distribution Parameters
Sex Categorical Discrete Uniform {0, 1}
Height Continuous Truncated Normal µ = 172

σ = 8
a = 150,b = 200

Age Continuous Truncated Normal µ = 55
σ = 15

a = 10,b = 99

increased risk of many diseases or conditions. Typically the data
consists of approximately 30 million SNPs from 10-20 thousand
people and each run of the software can take up to 12 hours.

ProbAbel is written in C and C++ and utilises the R project’s [23]
GLM functionality for the bulk of the computations. The source
code is approximately 8k lines of code, including comments, divided
between 31 source �les in total.

ProbAbel was pro�led before any modi�cations were made to it.
The pro�ling revealed that the majority of the execution time was
spent in 16 �les which the GI was set to target. Table 1 lists these
�les their sizes and the number of operators that were marked as
being changeable given the mutation operators in Table 5. The
program can be changed in multiple ways but assuming we only
consider the sets of operators from Table 5 there are 18993 �rst
order mutants and over 360 million second order mutants for the
total 4297 locations of mutable points. The GI’s search space for
ProbAbel is vast since the number of all possible variations of the
program is over 2.5 × 102683, without counting variations that can
be made by also moving around lines.

4 TEST DATA
ProbAbel ships with a small set of example data for testing purposes
and to enable potential users to become familiar with its use. The
example data only has 5 SNPs for 200 people and the recorded
trait is height in centimetres. It also has a record of age and sex
of each person because GWA studies often have to account for
such confounding variables. The data has intentionally missing
values and marks them as NA value to test the imputation ability
of ProbAbel. Running the program with the example data takes a
fraction of a second which is largely due to overhead like initiation
and reading the data into memory. To successfully measure the
impact of the GI’s improvements on execution time we generated a
larger set of data from the example set.

Statistical sampling was used to increase the data set’s size, both
generating samples of more people and SNPs. To avoid too much
homogeneity in the generated data set each trait (height, age and
sex) was sampled independently. Table 2 lists the estimated distribu-
tions from the example data set used to generate each trait. Gender
has equal likelihood of being male or female, height is drawn from
a truncated normal distribution, as is the age.

The SNP data was expanded using bootstrapping with replace-
ment for allele, frequency and dosage. An allele is a variation of
the gene expression and can be multiple combinations of GACT. Fre-
quency is the frequency of each allele and is a real number in the

open interval (0, 1) and dosage is the number of copies of the SNP,
measured as a real number. For more detailed description of these
variables we suggest any book on genetic biology.

Table 3 lists 7 generated data sets; their size and average exe-
cution time for the original program and two best GI variants as
trained on D3. We assume that the random sampling of the traits
from continuous distributions ensures that training on D3 will not
over�t for the other datasets. As seen in Figure 1 the relation-
ship between both the number of people and SNPs, and execution
time is linear. Additionally the computational cost of the GWA is
more a�ected by the number of SNPs than the number of people
as demonstrated by the much higher gradient on the axis with the
number of SNPs.

Figure 1: Execution time of the original program with re-
spect to data set size; number of people, and SNPs.

5 EXPERIMENTAL SETUP
The experiments were conducted to answer the two questions from
Section 1:

(1) Can GI, within reasonable time, �nd improvements to ProbAbel
that decrease its execution time?

(2) What does the landscape for the execution time improvements
look like?

To answer both we focused on the execution time of linear mod-
elling with ProbAbel. We focused only on one model in order to
reduce the amount of code modi�ed and thereby ensuring that we
only had to compile part of the software and decreasing the over-
head time for every evaluation considerably, from approximately
50 seconds down to 12. For both questions we utilise data set D3 be-
cause it is the smallest of the datasets such that the measurements’
variations are guaranteed to be less than the average execution
time. The timing mechanism we used measures in milliseconds and
executing ProbAbel on D3 takes more than a second. However, we
do test the original and two of the best performing variants on all
seven sets (see Table 3).

Statistical tests were run to determine whether the variants per-
formed better than the original. We pairwise test the two programs
against the original with a two-sided Student t-test where the null
hypothesis is H0: The means are equal.
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Table 3: Seven di�erent data sets of di�erent sizes; population and SNPs. Execution time is measured in seconds and averaged
over 20 test runs for each, data set and program variant. For the program variants the p-value of the Student t-test for two
independent variables is also listed. Each variant is tested against the original.

Data set People SNPs Original Variant 1 (p-value) Variant 2 (p-value)
D1 200 5 0.0050 0.005 (0.81) 0.005 (0.70)
D2 5,000 100 0.1600 0.158 (0.25) 0.158 (0.10)
D3 10,000 1000 2.9625 2.957 (0.36) 2.959 (0.46)
D4 20,000 1000 6.0020 5.985 (0.42) 5.998 (0.84)
D5 20,000 5000 29.895 29.781 (< 0.01) 29.782 (0.01)
D6 20,000 10000 60.020 59.722 (< 0.001) 59.708 (< 0.001)
D7 30,000 20000 182.000 182.110 (0.84) 181.920 (0.46)

5.1 GI Parameters
The �rst part of the experiment is set up as a population based
evolutionary algorithm with the search parameters listed in Table 4.
The improvement process iterates over 50 generations with pop-
ulation size 40. The entities being evolved are edit lists as seen in
Figure 2. Edits are of two types: Macro (moving whole lines) and
micro (changing a sub-string of a line). Macro edits consist of an
operation (delete, replace, copy or swap) and line numbers, one or
two depending on the operation. The micro edits have a location
(line number and column number), the sub-string to replace, and
the replacement. The sub-strings can be any de�ned token, such
as variable names but in this work only operators from Table 5 are
considered.

The �rst generation is a set of edit lists of length one. There is
no elitism and half of each generation is selected as parents to the
next generation. Selection is made by weighing each program with
normalised �tness, so even those with poor performance have a
chance of being picked. Every parent undergoes a single mutation
to make a single child for the next generation. That makes half of
the generation and the remainder of the 40 edit lists are randomly
generated with single-edits. So the search e�ectively has a soft
restart implementation which should prevent early convergence or
too much homogeneity in the population.

A single mutation to an edit list can be made with any of the
examples in Figure 2. The options for mutations are:

Grow is where a randomly generated edit is appended to the edit
list. The edit is generated by a stochastic selection from all possible
locations in the source with a equal probability. The location can
be a line and a column or just a line. If the case is the former,
then another uniform random selection is made from possible sub-
string replacements (see Table 5) or another location is selected
to which the content at the �rst location is to be copied. For the
latter case, either one or two more selections are made. First a
selection of what operation will be applied to the selected line;
delete, replace, copy or swap. The random edit build stops here if
delete is selected. For replace and swap another line of same type
is randomly selected with equal probability to be the replacement
or the line that swaps places. For copy a random line number in
the source is selected to be the location above which the selected
line is copied to.

Prune is when an edit in the list is selected with uniform random
distribution and every subsequent edit in the list is removed.

Single edit change is perhaps the least disruptive mutation. A
single edit is selected and one of its features is randomly changed,
such as the replacement code is re-selected or the copy location is
altered.

Every time a selection has to be made, while either constructing or
modifying an edit, the probabilities are always uniform.

Table 4: GI parameters.

Number of generations 50
Population size 40
Initial edit list size 1
Survival rate 0

Table 5: Sets of single operators available to the GI. Any
member of a given set can be changed to another member
of the same set, ensuring syntactically valid modi�cation.

Description Operations
Numerical constants Can increment by ±1
Arithmetic operators +,−, ∗, /,%
Arithmetic assignments + =,− =, ∗ =, / =,

Incremental operators ++,−−

Relational operators <, >, <=, >=,==, ! =
Bit assignments & =, | =
Bit operators &, |

5.2 Fitness evaluation
Fitness is the accumulated time in seconds the CPU is occupied by
the program. The objective is to minimise this value. Each variant’s
�tness was the mean execution time for 20 runs to even out the
e�ect of outside processes. Additionally, every program variant
is �rst tested by compiling, then running the test suite to con�rm
if the output is as required. A part of the test suite compares the
actual output values with known correct values. If a program does
not compile it is not completely discarded but given a �tness of
approximately twice the original execution time. The test suite
counts 52 tests and for each failed test case a proportion of the
original execution time is added to the �tness evaluation. So for 1
failed test case 1/52 of the original execution time is added to the
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Figure 2: An example of an edit list and how it can evolve
with Grow, Prune or Single edit change.

measured cpu time. This translates to roughly twice the original
execution time for most variants that compile but fail all test cases.
The penalty scheme ranks the following sub-performing programs
in this order of preference:
(1) Variants that compile, fail all test cases but run faster than the

original
(2) Uncompilable variants
(3) Compilable, fail all test cases, and run slower than the original.
This penalty scheme encourages shorter execution time.

The experiments were conducted on Ubuntu 14.04, with Intel
i7-3820 and 16GiB RAM. Each program’s execution time evaluation
was measured with the Linux command time that returns the total
number of seconds a process spends in user mode. To decrease the
likelihood of dynamic overclocking from the base frequency of 3.60
GHz to 3.80 GHz, and to address the inherent noisy environment of
a running machine we have done three things: 1) Ensured a single
run of ProbAbel at a time, with no other intensive tasks running,
2) used the same speci�c machine for all experiments, and 3) we
show the variation as box plots in Figure 3.

5.3 Exploring the landscape
To explore the landscape of ProbAbel’s mutants we consider only
micro edits, as adding the macro edits would expand the search
space too much. The second part of the experiment is a random
walk away from the original, that is repeated 100 times. For every
walk we modify the original program in ten steps, with a single
randomly generated edit in each step and measure the execution
time. E�ectively taking ten random steps into the landscape from
the original. In addition, we evaluate a sample of �rst order mutants
of the program by sampling the neighbourhood with uniform ran-
dom selection with replacement from all 18993 possible �rst order
mutants. We opt to have replacement to minimise memory usage
that would have been used to keep record of previously evaluated

program variants. The sample size is limited to what can be run in
under ten hours which is approximately 2400 programs.

The setup for the second part of the experiment is similar to that
in our previous work [9]. However, as the evaluation of ProbAbel’s
execution time is computationally more expensive than any �tness
evaluation of a simple calculator or K-means initiation it is not
feasible to do as thorough an analysis here. We nevertheless explore
the landscape in the same manner, only with a few limitations.
Apart from the �tness measurements the analyses di�er in two ways.
In our previous work the maximum edit list size we considered was
50 edits and we exhaustively searched the neighbourhood.

6 RESULTS
When the GI �nished, it had evaluated 1760 unique edit lists, 240
were duplicates. The overall runtime of the GI was eight hours
and �fteen minutes. The CPU time was consistently stable with
maximum variation from the mean less than 25% for all data sets
and each program variant. The overall best mean execution time
was 2.957 seconds (Variant 1) on data set D3 and the next best
executed on average in 2.959 seconds (Variant 2). Variant 1 was
only a single edit:
<<< MacroEdit: Delete,[reg1.cpp, 321],

chi2 = chi2 * (1. / sigma2_internal);
//chi2 = chi2 * (1. / sigma2_internal); >>>

and was found in generation 10, after approximately an hour and
a half. It deletes line 321 in reg1.cpp which has some e�ect on
execution time but not on the output of the linear model of ProbAbel.
The second best was found in generation 5, after 45 minutes, and
was 4 edits long:
<<< MicroEdit: Copy,[reg1.cpp:153,40->153,33]

"col_new++;", "++col_new;">>>
<<< MacroEdit: Delete, [main.cpp,169],

coxph_reg nrd = coxph_reg(nrgd);
//coxph_reg nrd = coxph_reg(nrgd);>>>

<<< MacroEdit: Delete, [main\_functions\_dump.cpp,73],
std::cout.flush();
//std::cout.flush();>>>

<<< MicroEdit: Copy,[reg1.cpp:791,14->791,9]
"niter++;", "++niter;">>>

Manual inspection revealed that both macro edits delete lines
that have no e�ect on the linear modelling functionality of Prob-
Abel and do not contribute to improved execution time. The two
micro edits improve by changing a post-increment to pre-increment
by copying the ++ in front of the variable. There is a slight per-
formance improvement in using pre-increment in C because post-
increment stores the old value after the increment. For a single exe-
cution of the statement, the di�erence is minimal but it accumulates
when it is revisited for every column and row in a 10, 000 × 1, 000
matrix.

However, as seen in Table 3 neither of these variants’ mean
execution time is signi�cantly di�erent from the original on D3.
They did signi�cantly better onD4 andD5 only and the di�erence is
quite small, less than 0.5%. As we further con�rm in Figure 4 where
we see that the di�erence is small but the con�dence intervals of
the medians do not overlap. Looking at Figure 3 we see that there
is minuscule variation in the distribution of mean execution time
over the whole evolution and we can also note that the number of
variants that compiled without errors ranges from 23 (generation
46) to 34 (generations 21, 25 and 36).
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Figure 3: Distribution of ProbAbel’s �tness and the number of compiled variants for each generation. Le� axis: The execution
time and the boxes are the distributions ofmean execution times for each generation. Right axis: Number of program variants
and the stars are the number of compiled variants.

Figure 4: Distribution comparison of the execution time of the original and the two best variants onD5. Each box is constructed
from 20 runs. The notches in the boxes are the 95% con�dence interval for the median of each.

On two occasions the GI found loopholes, e.g. change an if state-
ment such that the program read in much less data than was given to
it. This results in a signi�cant reduction in execution time, approxi-
mately 97%, but the results for the linear model were completely
wrong. These two “cheats” the GI found were not included in any
�gures or tables because they would have skewed the scales and
obscured the improvements of the two “good” variants.

6.1 Tracing from the original
Figure 5 shows the 15 levels of execution time ProbAbel variants
exhibited. The graph demonstrates frequency of transitions from
one execution time performance to another by adding a single
random edit to an edit list. The execution time of 5 seconds denotes
that a program variant was unable to compile and is an arbitrary
number that is at least higher than the worst execution time of a
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Figure 5: Frequency chart of execution time changes after
a single edit is appended to the edit list and evaluated on
D3. Each square is a count of how often the execution time
changed from before to after. Row and columnmarkedwith
red is equal to the original execution time. Execution time
of 5 seconds denotes an uncompilable program variant and
X is the omitted count of 748.

compiled variant. As seen in the Figure 5 most often a single edit
caused a compilation error but otherwise the spread is relatively
uniform from the original (bottom left). Furthermore we omitted the
most frequent transition (marked with an X), which was essentially
a non-transition; a neutral edit to an already uncompilable program
variant. The number of such transitions was 748 or about 83% out
of the 900, not counting the �rst order mutants.

By inspecting Figure 6 we see that the execution time itself does
not get worse as we travel further away from the original. However,
the proportion of program variants that do compile without errors
decreases signi�cantly until it reaches zero after 9 steps.

6.2 Neighbourhood exploration
After an overnight sampling of �rst order mutants we ended with
2265 unique variants out of 2400. Of those, 1622 compiled without
errors but 643 failed to compile. The distribution of the execution
time for those that compiled can be seen in Figure 7. It is interesting
to see that, although the execution time does not improve with �rst
order mutants, it does not increase considerably.

7 CONCLUSION
In this paper we describe a successful application of a GI framework
to improving C/C++ source code, following previous success with
improving Python source code. The adaptation to operate on C
included only small changes to the class of operators in Table 5.
Therefore, in theory, we can apply this same approach on many
other programming language.

Figure 6: Le� axis: The change in execution time as the pro-
gram variants move away from the original. Mean, maxi-
mum and minimum execution time for 100 traces. Right
axis: Proportion of program variants that compiled without
errors.

Figure 7: Distribution of the execution time within a single
edit from the original program.

Our intentions with this paper were to answer the two questions
in Section 1.
(1) GI can �nd improvements to ProbAbel that decrease its execu-

tion time. However, we have yet to con�rm if the improvements
were found within reasonable time.

(2) The execution time landscape is much like the bug �xing land-
scape. It is noisy as can be seen in Figure 3 but largely �at
with the occasional drops and peaks. Additionally, our �nd-
ings are complementary to the statement that “Software is Not
Fragile” [15]. The majority of the �rst order mutants (1622)
compiled and executed without an error.

The GI framework introduced in our previous work [8, 9] was
able to improve the execution time of a C program. We were only
able to �nd marginally better variants of ProbAbel as seen in Sec-
tion 5. However, the 0.5% execution time decrease can translate
into hours of saved time in the long term, which is a consideration
for future work. GI is a one o�, up front cost and considering that
the improved version did better on a larger data set than it was
trained on means that this cost does not need to be large.

Given the size of the search space, we also �nd it impressive
that the GI found improvements at all. The size of the search
space limited to only changing numbers and operators from Table 5
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exceeds 102683. In our experiment we explored so little of it that
the percentage is close to zero, about 4 × 10−2680.

This presents us with one of the threats to the validity of our
experiments: How can we be sure that what we explored is repre-
sentative of the majority of the landscape? The short answer is that
we cannot be sure. However, it can be argued that the explored
landscape is representative of a trajectory from the original towards
an improved version. This is, at least, an area of the landscape that
is useful to explore.

A consideration for future work is to evaluate the penalty for
failed test cases. Was the proportional increase to the execution
time evaluation too harsh? That might have been restricting the
search by not giving enough access to solutions that need to break
the program before they improve it. Both variants that were con-
sidered overall best contained only edits that could be considered
bene�cial or neutral on their own and no edit that made ProbA-
bel uncompilable. Another item on the agenda for future work
is to investigate the �tness landscape of larger modi�cations to
the source code. Will it be similar to the one presented here with
smaller changes?
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