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ABSTRACT
Evaluation of real-world black-box objective functions is in many
optimization problems very time-consuming or expensive. �ere-
fore, surrogate regression models, used instead of the expensive
objective function and in that way decreasing the number of its
evaluations, have received a lot of a�ention. Here, we brie�y sur-
vey surrogate-assisted versions of the state-of-the-art algorithm
for continuous black-box optimization — the CMA-ES (Covariance
Matrix Adaptation Evolution Strategy). We compare �ve of them,
together with the original CMA-ES, on the noiseless benchmarks of
the Comparing-Continuous-Optimisers platform in the expensive
scenario, where only a small budget of evaluations is available.
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1 INTRODUCTION
A principal challenge in many research and engineering tasks is
the optimization of problems with no information about its mathe-
matical description. Functions describing such problems are called
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black-box functions, i. e., functions for which we are only able to
obtain values at speci�ed points of the input space. Black-box op-
timization problems regularly appear in applications where the
values of a �tness or an objective function can be obtained only
empirically through measurements, expensive experiments, or via
time-consuming computer simulations. �e absence of derivatives
turns the application of traditional methods of smooth optimiza-
tion di�cult. On the other hand, stochastic optimization methods
such as evolutionary algorithms appear to be quite successful for
continuous black-box optimization.

If the evaluation of the objective function is expensive, evolu-
tionary optimization becomes less useful due to a large amount
of evaluations necessary to achieve the optimal value. Surrogate
modelling, originally from the �eld of smooth optimization, is an
approach to reduce the number of evaluations of the expensive
function through using its regression model [29]. �is model, a. k. a.
surrogate model, is trained on the already available input–output
value pairs (xi ,yi ), i = 1, . . . ,N , and is used instead of the original
expensive �tness to evaluate some of the points needed by the
optimization algorithm. To our knowledge, the following types of
regression models have been employed so far in single-objective
continuous black-box optimization:

• low degree polynomials [4, 21], which are models in the
spirit of traditional response surface models [28];

• arti�cial neural networks, in particular multilayer percep-
trons and radial basis function networks [36];

• support vector machine (SVM) regression [23, 25];
• Gaussian processes (GPs), a. k. a. kriging [5, 9, 22, 30, 38];
• random forests (RFs), i. e., ensembles of decision trees [5].

�e Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
proposed by Hansen and Ostermeier [17] is considered as one of
the most successful continuous black-box optimization algorithms.
It will be described in some detail at the beginning of Section 2.
�e investigation of combining surrogate models with the CMA-ES
resulted in various algorithms, several of which we will describe in
more detail in the following text.

In 2001, Jin et al. [19] proposed the following two evolution
control strategies for the utilization of surrogate models in the CMA-
ES: individual-based strategy evaluates λ points using the original
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�tness function selected out of a larger set of points evaluated by the
surrogate model. In generation-based strategy, the entire population
is evaluated on the original �tness function for η generations and
on the model for the subsequent κ > η generations.

�e individual evolution control was employed in 2002 by Em-
merich et al. proposing the �rst GP based pre-selection strategy
for the CMA-ES in Metamodel-Assisted Evolution Strategy (MA-ES)
[11] (see Section 2.2 for more information).

In 2004, Least-Square minimization has been used in LS-CMA-ES
[4] to train a quadratic model of the �tness function for covariance
matrix adaptation in the CMA-ES. �is surrogate model employed
automatic detection of the model inaccuracy allowing to switch
between the original CMA-ES and the surrogate model.

One year later, Gaussian Process Optimization Procedure (GPOP)
[9] suggests a di�erent approach to surrogate modelling: in each
GPOP generation, a local GP model is constructed around the so-
far-best solution and then the model is directly optimized by the
CMA-ES to �nd its optimum which is subsequently evaluated using
the original �tness function.

An e�ective combination of building local surrogate models and
controlling changes in population ranking a�er �tness function
evaluation is incorporated in the local meta-model CMA-ES (lmm-
CMA-ES) proposed in 2006 by Kern et al. [21] and later improved
by Auger et al. in 2013 [2] (see Section 2.3).

In 2010, GPs were combined with the CMA-ES in order to �nd
robust solutions on noisy functions in Kriging metamodelling based
CMA-ES [22]. �e algorithm builds a local GP model for each o�-
spring using the points from the archive evaluated with the original
noisy �tness function and subsequently estimates the function val-
ues without noise. �e original �tness evaluation is performed
only if the archive does not contain a representative sample set for
the surrogate model construction. �e covariance matrix of the
CMA-ES is also employed to transform the input space.

�e s∗ACM-ES proposed in 2012 by Loshchilov et al. [23] em-
ploys SVM ordinal regression to estimate the ordering of the �tness
function values. �e algorithm will be described in some detail in
Section 2.4.

Another surrogate-assisted approach using an ensemble of local
GP models sharing the same parameters has been proposed in 2013
by Lu et al. [26]. �e algorithm selects the best points out of a
larger population evaluated using the model according to one of
several implemented strategies.

In 2015, the combination of the E�cient Global Optimization
algorithm [20] using GP for direct optimization and the CMA-ES
resulted in the EGO-CMA algorithm [27]. �e algorithm runs EGO
for a few iterations; subsequently, it estimates the core CMA-ES
initial variables such as the covariance matrix and the step-size
from the EGO Gaussian process model, and �nally starts CMA-ES
with the computed initial values.

In the same year, the Surrogate CMA-ES (S-CMA-ES) algorithm
employing GPs and RFs in generation-based evolution control was
introduced in [5]. It will be presented below in 2.5, and its extension
proposed in [30], called Doubly Trained Surrogate CMA-ES (DTS-
CMA-ES), in 2.6.

�is paper gives an overview of several previously mentioned
surrogate-assisted versions of the CMA-ES and provides a compari-
son among them and with the original CMA-ES. �e comparison

is performed on the COCO/BBOB testbed [15, 16]. Our selection
of those algorithms is based primarily on their properties and pub-
lished results, but partially also on the availability or at least repro-
ducibility of their implementation.

�e remainder of the paper is organized as follows. Section 2
describes the tested algorithms. Section 3 contains experimental
setup and results. Section 4 summarizes the results and draws
conclusions.

2 SELECTED SURROGATE MODELLING
ALGORITHMS IN THE CMA-ES CONTEXT

In this section, we give some details about the CMA-ES and 5 out
of the above mentioned surrogate-model versions of it that we
consider the most important.

2.1 CMA-ES
�e base of all considered algorithms in this article is the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [13]. In each
generation д, the CMA-ES generates λ new candidate solutions
xk ∈ RD , k = 1, . . . , λ, from a multivariate normal distribution
N (m,σ 2C) where m is the mean of the current estimate of the
probability distribution and σ 2C its covariance matrix, decomposed
in such a way that the scalar σ is used as the current step-size. A�er
a new o�spring is evaluated with the �tness function f , the algo-
rithm selects the ordering of µ best points with the lowest function
value to improve distribution parameters for the next generation.

�e fact that the CMA-ES uses only the ranking of function
values for the adaptation of σ and C makes it invariant to order-
preserving transformations of the �tness function and to general
linear transformations of the search space.

To be more robust on multimodal functions and to avoid prema-
ture convergence to local optima, the CMA-ES utilizes restart strate-
gies. A multi-start strategy where the population size is doubled
in each restart is referred to as IPOP-CMA-ES [3]. A BIPOP-CMA-
ES [14] switches between IPOP-CMA-ES strategy and a strategy
where the population size and the step-size of the restarted algo-
rithm are rather smaller than their previous values. Each time the
algorithm restarts, the strategy with the smaller number of already
used function evaluations is applied.

2.2 MA-ES
In the Metamodel-Assisted Evolution Strategy (MA-ES), a Gaussian
process-based surrogate model guides an evolution strategy by a
mechanism of pre-selection [11], whereby λ most promising indi-
viduals are pre-selected from an extended population of λPre > λ
points according to the GP predicted mean. In [38], the Probability
of Improvement, i. e., the probability that the point’s function value
will be lower than the so far achieved minimum of the original
�tness function, was examined as the pre-selection criterion. �e
surrogate model in the MA-ES is trained on a number of most
recently evaluated points.

A Gaussian process [34] is a collection of random variables
( f (x))x∈RD , such that each �nite subcollection ( f (x1), . . . , f (xN ))
has an N -dimensional normal, i. e., Gaussian distribution. More-
over, the means of those distributions have to be de�ned by a mean
functionm : RD → R and their covariances by a covariance function
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k : RD × RD → R. �e values of the covariance function on all the
pairs (xi , xj ) of some N training data form the matrix KN ∈ R

N×N ,
{KN }i, j = k(xi , xj ). If an additive i. i. d. noise is considered, the
covariance matrix of ( f (x1), . . . , f (xN )) is KN + σ

2
n IN , where σ 2

n
is the variance of the noise.

2.3 lmm-CMA-ES
�e local meta-model CMA-ES (lmm-CMA-ES), proposed in [21]
and later improved in [2, 6] to be numerically more stable, em-
ploys locally weighted regression [1] to build an individual quadratic
surrogate model for every o�spring x1, . . . , xn ∈ RD using a set
of knn previously evaluated points nearest to xi according to the
Mahalanobis distance. Each quadratic model is trained through
minimizing the weighted least square error.

�e original �tness evaluation phase of the CMA-ES is replaced
by the following cycle. Using an approximate ranking procedure [35],
the cycle is repeated, until the ranking di�erence of a prescribed
fraction of the o�spring in two consecutive iterations is lower then
a de�ned threshold or the entire o�spring has been evaluated using
the original function:

(1) build models for the entire o�spring;
(2) rank the o�spring according to their model values;
(3) evaluate the nb best ranked points, where an initial value

ninit is used instead of nb in the �rst iteration of the cycle;
(4) rank the o�spring again and calculate the ranking di�er-

ence.
A�er the cycle, adjust ninit according to the number of originally
evaluated points from the o�spring.

In a later version nlmm-CMA-ES [6], the condition used to stop
evaluating new points using original �tness was improved to keep
the speed-up for larger populations than the CMA-ES default.

2.4 s∗ACM-ES-k
Loshchilov et al. combined the ability of Ranking SVM [18] to
preserve the CMA-ES invariance properties with an adaptation
of surrogate-model hyperparameter values during the search in
their s∗ACM-ES [23]. An extension of that algorithm using a more
intensive exploitation is called s∗ACM-ES-k [25].

Ranking SVM [18] is a variant of SVM for ordinal regression
based on maximizing the margins between individual rank bound-
aries.

�e s∗ACM-ES-k starts with evaluating дstart generations using
the original �tness. �en it iterates through the following steps:

(1) train a surrogate model with parameters θ using the points
evaluated with the original �tness function;

(2) optimize the surrogate model by the CMA-ES for дm gener-
ations with population size λ = kλλdefault and the number
of parents µ = kµ µdefault, where kλ ,kµ ≥ 1;

(3) evaluate the original function f on the CMA-ES generated
o�spring using λ = λdefault and µ = µdefault;

(4) calculate the model error and subsequently the new дm
using ranks of the original and model evaluations of the
last generation;

(5) search the parameter space of the surrogate model by the
CMA-ES to �nd the most convenient se�ings θnew for the

next-generation model, using the model error as a �tness
function.

In [24], the s∗ACM-ES-k version using BIPOP-CMA-ES, called
BIPOP-s∗ACM-ES-k, and a hybrid of BIPOP-s∗ACM-ES-k, the STEP
method [37] and the NEWUOA algorithm [33], called HCMA, were
proposed.

2.5 S-CMA-ES
In the S-CMA-ES, introduced in [5], the generation-based evolution
control [19] is employed to evaluate points sampled by the CMA-ES.
At �rst, the population of one generation is evaluated using the
original �tness. A�er that, a surrogate model is built using the
original-evaluated data if the model has enough training points.
Otherwise, the next generations are sampled and evaluated with
the original �tness until the number of training points is su�cient.
In a prescribed number of subsequent generations, the surrogate
model is utilized to obtain function values of sampled points. �e
model employs GP, described in Section 2.2, or RF, described below.

Random forest is an ensemble of decision trees, in the particular
case of the S-CMA-ES binary regression trees [7], where each obser-
vation x = (x1,x2, . . . ,xD ) ∈ RD passes through a series of binary
decisions (for example xi

?
< c ∈ R) associated with internal nodes

and arrives in one of the leaf nodes containing real values utilized
as the prediction of function values y. �e forest gains randomness
during training by bagging [8]. �e overall forest prediction is
obtained through averaging all tree predictions.

2.6 DTS-CMA-ES
�e Doubly Trained S-CMA-ES [30] is the S-CMA-ES successor
replacing the generation evolution control by the doubly trained
evolution control, which utilizes the ability of Gaussian processes to
provide the distribution of predicted points.

�e doubly trained evolution control proceeds in the following
steps:

(1) predict the means and variances of the λ o�spring by the
GP model trained using originally-evaluated points from
antecedent generations;

(2) evaluate the o�spring using an uncertainty criterion C;
(3) evaluate the norig points most promising according to C

using the original �tness;
(4) retrain the GP model including the points evaluated in (3);
(5) evaluate the remaining λ −norig points using the retrained

model from (4).

In [32], the DTS-CMA-ES using an ordinal-regression GP model
was tested showing lower performance than the original DTS-CMA-
ES using a metric-regression GP.

3 EXPERIMENTAL RESULTS
In this section, the above surveyed 5 surrogate-model versions are
compared with the original CMA-ES. Because the S-CMA-ES is
used both with GPs and with RFs, the comparison �nally includes
7 algorithms.
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3.1 Experimental Setup
�e considered algorithms were compared on the set of all 24 noise-
less functions from the COCO/BBOB framework [15, 16] in dimen-
sions D = 2, 5, 10, and 20 on 15 di�erent instances per function.
Each algorithm had a budget of 250D function evaluations to reach
the target distance ∆fT = 10−8 from the function optimum. �e pa-
rameters of the tested algorithms are summarized in the following
paragraphs.

�e original CMA-ES was employed in its IPOP-CMA-ES ver-
sion1 (Matlab code v. 3.61) with the following se�ings: the number
of restarts = 4, IncPopSize = 2, σstart = 8

3 , λ = 4 + b3 logDc. �e
remaining se�ings were le� default.

�e MA-ES was used with parent number µ = 2 and population
size λ = 10. �e number of training points was set to 2λ = 20 and
the size of extended population λPre was 3λ = 30. �e mean of GP
model prediction was used as the pre-selection criterion.

�e lmm-CMA-ES was used in its improved version published
in [2]. �e results have been downloaded from the BBOB results
data archive2 in its GECCO 2013 se�ings.

We have used the bipopulation version of the s∗ACM-ES-k, the
BIPOP-s∗ACM-ES-k [24]. Similarly to the lmm-CMA-ES, the algo-
rithm results have also been downloaded from the BBOB results
data archive3 in its GECCO 2013 se�ings.

In connection with the S-CMA-ES, GPs were used as a surrogate
model for 5 generations evaluated with the model and RFs for one
generation only. �e GP and RF model parameters have been taken
from [31]. Similarly to [30], all the function values were normalized
to zero mean and unit variance before surrogate model training.
Also the remaining S-CMA-ES parameters were le� the same as in
[30] and the CMA-ES parameters were set identically to the original
CMA-ES.

�e DTS-CMA-ES was tested using the overall best se�ings
from [30]: the GP prediction variance as the uncertainty criterion,
the population size λ = 8 + b6 logDc, and the number of originally-
evaluated points norig = d0.05λe.

3.2 Results
Results from experiments are presented in Figures 1, 2, and 3 and
also in Tables 1 and 2. �e graphs in Figures 1 and 2 depict the
scaled logarithm ∆

log
f of the median ∆med

f of minimal distance
from the function optimum over runs on 15 independent instances
dependent on function evaluations divided by dimension (FE/D)
(see [30] for details). �e values are scaled to the [−8, 0] interval,
where −8 corresponds to the minimal and 0 to the maximal distance.
�is visualization was chosen due to be�er ability to distinguish
the di�erences in the convergence of tested algorithms more than
the default visualization used by the COCO/BBOB platform. �e
results averaged through the full set of all 24 benchmark functions
are shown in Figure 3. More detailed results can be found on an
authors’ webpage4.

1�e results in [31] show that the performances of the IPOP- and the BIPOP-CMA-ES
are almost similar in the experimental setup identical to the setup tested in this paper.
2h�p://coco.gforge.inria.fr/data-archive/2013/lmm-CMA-ES auger noiseless.tgz
3h�p://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k loshchilov noiseless.
tgz
4h�p://uivty.cs.cas.cz/∼cma/gecco2017/

Dim 5D 20D
#FEs⁄#FET

1⁄3 1 1⁄3 1
CMA-ES 6.58 5.29 6.46 4.83
MA-ES 3.25 3.40 3.71 4.08
lmm-CMA-ES 2.54 2.50 3.33 2.58
s∗ACM-ES-k 3.88 3.33 3.17 2.54
S-CMA-ES GP 3.62 4.56 3.75 5.17
S-CMA-ES RF 5.04 5.83 4.67 5.25
DTS-CMA-ES 3.08 3.08 2.92 3.54
FF 15.90 11.34 10.80 9.15

Table 1: Mean rank of each algorithmover the BBOB and the
Iman-Davenport statistic for the 4 considered combinations
of dimensionalities and evaluation budgets.

We compare all algorithms on the BBOB noiseless benchmarks
using the non-parametric Friedman test [10]. To take into account
di�erent se�ings for the comparison, the test is conducted sepa-
rately for two dimensionalities of the input space, 5D and 20D, and
two function evaluation budgets, a higher and a lower one. Let #FET
be the smallest number of function evaluations on which at least
one algorithm reached the target, i. e., satis�ed ∆med

f ≤ ∆fT , or
#FET = 250D if no algorithm reached the target within 250D evalu-
ations. We set the higher budget for the tests to #FET and the lower
budget to #FET

3 . �e algorithms are ranked on each BBOB function
with respect to ∆med

f at a given budget of function evaluations.
Table 1 reports the mean ranks over all the BBOB functions

and the Iman-Davenport statistic FF . If the null hypothesis of
equally distributed performance of all algorithms is valid, then
FF follows the FK−1, (K−1) (N−1) distribution with K the number
of tested algorithms and N the number of benchmark functions.
In our case, FK−1, (K−1) (N−1) = F6,138 and its critical value for the
signi�cance level α = 0.05 is 2.16. In each test scenario, FF exceeds
the critical value, thus, we reject the null hypothesis.

We proceed to a pairwise K × K comparison of the algorithms’
mean ranks by the post-hoc Friedman test with the Bergmann-
Hommel correction of the family-wise error [12]. To be�er illustrate
the algorithms’ di�erences, we also count the number of bench-
mark functions at which one algorithm was ranked higher than the
other. �e test is again performed separately for each considered
combination of dimensionalities and function evaluation budgets.
�e pairwise score and the statistical signi�cance of the pairwise
rank di�erences are reported in Table 2.

�e MA-ES has clearly the best performance out of compared
algorithms on f6, which is generally very hard to regress. It also
achieves very good results on multi-modal functions (f15−19). �e
reason for the MA-ES behavior might be in the fact that the indi-
vidual strategy does not mislead the CMA-ES by imprecise model
evaluations. On the other hand, this strategy probably leads to
saving fewer evaluations on the remaining functions.

�e lmm-CMA-ES presents very balanced performance on all
benchmarks (apart from the results on f19, which could be erro-
neous). �e s∗ACM-ES-k usually provides one of the best perfor-
mances on unimodal functions, especially in 20D. �e speed-up of
the s∗ACM-ES-k is not a�ected by the growing dimension so much
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as the speed-up of other algorithms, which can be caused also by
the potentially lower sensitivity of the Ranking SVM model to the
curse of dimensionality.

�e only surrogate-assisted algorithm with signi�cantly lower
performance than the remainder was the S-CMA-ES. �e results
of RFs were generally worse than GPs results in combination with
the S-CMA-ES. However, the RF models can be considered more
robust in 20D than the GP models, which are known to su�er from
higher dimensionalities.

�e DTS-CMA-ES o�en converges within the budget of 100 FE/D;
then it sometimes gets stuck in a local optimum, which can be ob-
served more o�en in 20D. �e best results from the compared
algorithms are achieved on smooth unimodal functions in 5D (f2,
f8−11, and f14). �is success is probably caused by the constant low
number of original-evaluated points per generation regardless of
the model error.

4 CONCLUSIONS
In this paper, we have presented an overview of several algorithms
using surrogate models to speed up the state-of-the-art black-box
optimization algorithm CMA-ES. Five surrogate-model versions of
the CMA-ES using four di�erent surrogate models were compared
with the original CMA-ES on the noiseless benchmarks from the
COCO/BBOB framework.

We have found that all surrogate models signi�cantly improve
the CMA-ES convergence on most of the noiseless functions from
the COCO/BBOB testbed. On the other hand, there is no surrogate
model or algorithm using the model to improve the CMA-ES sig-
ni�cantly be�er than the remaining algorithms in the expensive
scenario.

Both the s∗ACM-ES-k and the lmm-CMA-ES follow the CMA-
ES invariance to monotonous transformations via intrinsic usage
of f -values ranking instead of their values which is probably the
main reason of their success on a broad spectrum of COCO/BBOB
functions. �is fact suggests a possible direction of research into
GP-based surrogate-assisted CMA-ES algorithms. On the other
hand, on multi-modal functions, the algorithms using GPs as a
surrogate model become competitively successful, because such
functions are di�cult to approximate by simpler models such as
quadratic regression or Ranking SVM. Another possible direction
of development can be increasing the level of model-parameter
optimization such as the online choice of the GP model’s covariance
function.
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Figure 1: Algorithm comparison on 24 BBOB noiseless functions in 5D
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Figure 2: Algorithm comparison on 24 BBOB noiseless functions in 20D
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Figure 3: Algorithm comparison using averaged ∆
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f values in 5D and 20D

5D CMA-ES MA-ES lmm-CMA-ES s∗ACM-ES-k S-CMA-ES GP S-CMA-ES RF DTS-CMA-ES
#FEs⁄#FET

1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1

CMA-ES — — 1 3 1 4 1 5 1 8 4 14 2 7
MA-ES 23∗ 21∗ — — 8 8 15 10 12 15 20∗ 21∗ 12 11
lmm-CMA-ES 23∗ 20∗ 16 16 — — 17 16 17 21∗ 22∗ 22∗ 12 13
s∗ACM-ES-k 23∗ 19∗ 9 14 7 8 — — 11 17 15 21∗ 10 9
S-CMA-ES GP 23∗ 16 12 9 7 3 13 7 — — 18 18 8 6
S-CMA-ES RF 20 10 4 3 2 2 9 3 6 6 — — 6 4
DTS-CMA-ES 22∗ 17∗ 12 13 12 11 14 15 16 18 18∗ 20∗ — —

20D CMA-ES MA-ES lmm-CMA-ES s∗ACM-ES-k S-CMA-ES GP S-CMA-ES RF DTS-CMA-ES
#FEs⁄#FET

1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1

CMA-ES — — 3 7 3 7 3 6 1 12 2 11 1 9
MA-ES 21∗ 17 — — 11 5 10 7 11 16 18 18 8 7
lmm-CMA-ES 21∗ 17∗ 13 19 — — 13 10 13 21∗ 17 20∗ 11 19
s∗ACM-ES-k 21∗ 18∗ 14 17 11 14 — — 13 20∗ 18 20∗ 15 18
S-CMA-ES GP 23∗ 12 13 8 11 3 11 4 — — 13 12 7 5
S-CMA-ES RF 22∗ 13 6 6 7 4 6 4 11 12 — — 4 3
DTS-CMA-ES 23∗ 15 16 17 13 5 9 6 17 19 20 21 — —
Table 2: A pairwise comparison of the algorithms in 5D and 20D on the BBOB noiseless functions for di�erent evaluation
budgets. �e number of wins of i-th algorithm against j-th algorithm over all benchmark functions is given in i-th row and
j-th column. �e asterisk marks the row algorithm achieving a signi�cantly lower value of the objective function than the
column algorithm (on medians over 15 instances taken from all 24 functions) according to the Friedman post-hoc test with
the Bergmann-Hommel correction at the family-wise signi�cance level α = 0.05.
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