
From Problem Landscapes to Language Landscapes:
�estions in Genetic Improvement
Brendan Cody-Kenny, Michael Fenton, Michael O’Neill.

ABSTRACT
Managing and curating software is a time consuming process par-
ticularly as programming languages, libraries, and execution en-
vironments change. To support the engineering of software, we
propose applying a GP-based continuous learning system to all
“useful” software. We take the position that search-based itemiza-
tion and analysis of all commonly used software is feasible, in large
part, because the requirements that people place on software can
be used to bound the search space to software which is of high
practical use. By repeatedly reusing the information generated
during the search process we hope to attain a higher-level, but also
more rigorous, understanding of our engineering material - source
code.

KEYWORDS
Software Engineering, Search, Learning
ACM Reference format:
Brendan Cody-Kenny, Michael Fenton, Michael O’Neill.. 2017. From Prob-
lem Landscapes to Language Landscapes:
Questions in Genetic Improvement. In Proceedings of the Genetic and Evo-
lutionary Computation Conference 2017, Berlin, Germany, July 15–19, 2017
(GECCO ’17), 2 pages.
DOI: http://dx.doi.org/10.1145/3067695.3082522

1 UNDERSTANDING SOFTWARE
While software encapsulation, structure, and adherence to coding
standards are recommended to make software more navigable and
easier to understand, software development remains time consum-
ing. Even simple programs in modern languages rely on many lay-
ers of software which may vary in di�erent environments. Larger
programs are even less likely to be fully understood by any single
person or even team of people. Further complexity from frequently
changing and sometimes con�icting requirements makes it di�cult
to quickly gain and maintain a dependable high-level understanding
of software.

Any program functionality deemed “important” should warrant
performing a rigorous analysis to broadly aid understanding. De�-
nitions [10] and reference implementations [1] do exist for software
but much detail is missing in comparison to the wealth of opera-
tional information available for materials in traditional engineering
disciplines [3]. What is important here is the process of deriving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3082522

these standards, which for more established engineering domains
have been derived manually through centuries of deployment and
testing experience. We ask why a similarly rigorous and broad anal-
ysis of software can not also be used to aid software development?

In response, we propose a learning system which uses search
techniques to explore and curate a continuously expanding library
of useful programs (and sub-programs), and that by automatically
reusing this knowledge we may more e�ectively treat source code
as an engineering material. What we aim to do by building such a
learning system is to teach a computer to recognize requirements
and �nd best matches from existing software based on code previ-
ously seen. With such a system, people may describe what they
want by either specifying, or even selecting existing, test cases.
Alternatively people can make an initial attempt at writing a basic
working prototype, with a computer recommending directions in
which the program might evolve, either towards more speci�c func-
tionality or some improvement in non-functional characteristics.
As a result, humans can be chie�y concerned with experimenting,
prototyping and creating software concepts and architectures in
a “grow” phase while an automated support system checks for
similarities, merges & simpli�es software in a “prune” phase [4].

2 ALWAYS-ON GP
Our proposal is to use Genetic Programming (GP) techniques as
part of a continuous learning system1. We break this idea into
3 areas - a knowledge base, ways to draw inferences from this
knowledge base, and knowledge acquisition. Generally, we feel
there is an opportunity to “close the loop” in further automating and
integrating many concepts from the extensive existing research for
each area to create next generation tooling for software engineering
tasks.

2.1 Knowledge Base
Software is complex and ever-evolving but has a number of charac-
teristics that make broad analysis more feasible. Given the seeming
repetition and overlap in software implementations, portions of the
search space may prove to subsume others, and be more itemisable
as a result. While the set of programs which do not exist is in�nite,
the set of programs which do exist is �nite, and within this, the
set of programs which are repeatedly considered useful is smaller
still. We may ask what is it about the software which does exist,
in comparison to the software which does not? Unlike engineer-
ing of physical things, source code as an engineering material is
directly executable, making it self-labeling and widely amenable to
automated testing.

As such, we feel that human written programs, their test cases,
and test results can (and should) be stored for reuse in a knowledge

1This idea harks back to work on expert systems, where a knowledge base is (usually
manually) curated and used via an inference engine. A major issue in making these
systems usable is knowledge acquisition.

1509

GECCO ’17, July 15–19, 2017, Berlin, Germany Brendan Cody-Kenny, Michael Fenton, Michael O’Neill.

base. By using a shared continuous cache, a vast library of software
knowledge could be curated over time including detailed informa-
tion about multiple operational aspects of executed software, such
as test cases passed, execution time, and memory usage. Although
testing is computationally expensive, it is already widely used in
industry to add rigor to software development, however results
do not appear to be curated or broadly shared. While test data
can be generated inde�nitely, some test cases are more important
than others. We can consider the question: How many tests are
required?2 As a result, gathering, storing and analysing extensive
test information may be within reach.

2.2 Making Inferences
By comparing program variants and their operational character-
istics, we can extract code snippets which are found to improve
programs [9]. Further to this, structure and linkages can be found
between software artifacts with the aim of allowing for automated
inferences to be made. We argue that there is overlap in the search
space as certain functionality is shared among programs. This
should allow us to build a functionality map of frequently required
software, navigable by linking multiple software implementations
which measurably ful�ll the same or similar requirements. Problem
landscape analysis is widely used by the Evolutionary Computa-
tion (EC) community to understand speci�c problems and solution
structures [8]. Similar analysis in a Software Engineering context
could also provide high level understanding of what trade-o�s are
possible from an existing program [6]. If we are already performing
the expensive process of mutation and testing across many pro-
grams anyway, there is potential to analyse this information to
provide a view across the landscape of all useful programs in a, or
even across more than one, language.

Since there may be pre-existing solutions which meet the same
requirements (and pass the same test cases [2]), a simple look-up of
the cache could return a range of existing alternative implementa-
tions which hopefully includes an improvement. For more complex
functionality where test cases can not be directly comparable, more
advanced techniques such as neural networks could be used to
recognise when the input-output values of a program represent
similar functionality as an input-output pair containing di�erent
values. In e�ect, this could be treated as a “Big Data” mining issue
across semantic information [7].

We see boundary value testing as potentially useful in capturing
program equivalence. Boundary testing involves making incremen-
tal modi�cations to input data until a test case no longer passes.
When a small change to a program causes a previously passing test
to fail, we can say we have found the boundary point of correctness.
We can pair these test cases which mark the edge of correctness.
By collecting many input data pairs, (or “boundary value pairs”),
we can build up a set which may capture the “contours” of program
functionality. With a large and well connect graph of previously
seen code, new code presented to the system can be analysed for
similarities, alternative implementations and potential improve-
ments.

2This question is paraphrased from one asked by Mark Harman during the 50th Crest
Open Workshop at UCL

2.3 Knowledge Acquisition
While data mining existing software modi�cations can instruct GP
search [9], detailed knowledge can also be acquired from the GP
process itself and added to the library. Where and unseen program
is not well placed within the existing corpus of information, we may
use GP to �nd a lineage of program transformations which better
connects an unseen program to the body of knowledge that has
already been built up. If GP is not tackling some unseen problem
it can still run to generate useful improvement. GP modi�cations
which degrade existing programs can be instructive for what not
to do. The most deleterious program transforms can be applied in
reverse to unseen programs, in the hope of improvement. While
the idea of automatically reusing human-written code through
automated decomposition and recomposition is not new [5], we
feel it is becoming more feasible.

3 WHERE TO BEGIN
For an initial experiment, ideally we would like a language which is
simple, well de�ned, easy to test but is also in widespread industry
use. Fortunately Regular Expressions (regexes) �t this description.
There is good evidence that in a large sample of regexes there is
considerable semantic similarity and that linkages can be drawn
between them [2]. We are interested here to map out the relation be-
tween existing regexes and their test cases, as opposed to “evolving”
or “growing” regexes.

Other problems, particularly those that are well studied in the GP
literature, could also be reconsidered in terms of reuse. Making the
results of a GP run as reusable as possible for subsequent GP runs
may make interesting future work on benchmark GP problems.

ACKNOWLEDGMENTS
This research is based on works supported by Science Foundation Ireland
under grant 13/IA/1850 and 13/RC/2094 which is co-funded by Lero - the
Irish Software Research Centre (www.lero.ie).

REFERENCES
[1] 2017. World Wide Web Consortium. https://www.w3c.com. (2017). Accessed:

28th March.
[2] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage

and context in Python. In Proceedings of the 25th International Symposium on
Software Testing and Analysis. ACM, 282–293.

[3] EN 1990 2001. Eurocode - Basis of Structural Design. Standard. European Com-
mittee for Standardization.

[4] David Faust and Chris Verhoef. 2003. Software product line migration and
deployment. Software: Practice and Experience 33, 10 (2003), 933–955.

[5] Keith Gallagher and David Binkley. 2008. Program slicing. In Frontiers of Software
Maintenance, 2008. FoSM 2008. IEEE, 58–67.

[6] Mark Harman, William B Langdon, Yue Jia, David R White, Andrea Arcuri, and
John A Clark. 2012. The GISMOE challenge: Constructing the Pareto Program
Surface Using Genetic Programming to Find Better Programs (keynote paper).
In Automated Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on. IEEE, 1–14.

[7] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
programs with semantic code search. In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 295–306.

[8] William B Langdon, Nadarajen Veerapen, and Gabriela Ochoa. 2017. Visualising
the Search Landscape of the Triangle Program. In European Conference on Genetic
Programming. Springer, 96–113.

[9] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program
repair. In Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, Vol. 1. IEEE, 213–224.

[10] James W Moore. 1999. An integrated collection of software engineering standards.
IEEE software 16, 6 (1999), 51–57.

1510

https://www.w3c.com

	Abstract
	1 Understanding Software
	2 Always-On GP
	2.1 Knowledge Base
	2.2 Making Inferences
	2.3 Knowledge Acquisition

	3 Where To Begin
	References

