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ABSTRACT

This paper presents a distributed implementation for a genetic
algorithm, using Apache Spark, a fast and popular data processing
framework. Our approach is rather general, but in this paper the
parallelized genetic algorithm is used for test data generation for
executable programs. The viability of the approach is demonstrated
on two examples.
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1 INTRODUCTION

The importance of cybersecurity has increased year over year re-
cently, given the wide interconnectivity between various software
systems. Both academia and industry are investing many resources
to find ways to detect critical security bugs in software components.
An efficient technique for that is fuzz testing [8], which is a type
of testing where many random input data are generated and the
program under test is executing them with the goal of exhibiting
security bugs or abnormal behaviour.

Since random testing may need too much time to find interest-
ing paths in the program, several methods have been proposed to
better guide the test data generation towards uncovered area of the
program using, e.g., genetic algorithms or search-based techniques
[11] or symbolic execution [4].

In this paper, we will investigate the use of genetic algorithms
for test data generation, making use of the recent advancements
in the distributed computing area. In particular, we implemented
a parallel version of a genetic algorithm in Apache Spark [20].
We then applied this to the area of test data generation for x86
binary/executable programs.
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The main contributions of the paper are the following:

o the parallel implementation of a genetic algorithm in Apache
Spark. To the best of our knowledge this is the first investi-
gation of this type. The majority of the existing approaches
for parallelizing genetic algorithms use a master-slave ar-
chitecture [12] and not the map-reduce paradigm underly-
ing Apache Spark. We also provide some valuable lessons
learned while optimizing our solution on Spark.

our approach is rather generic, so it has potential to be
adapted to other types of genetic algorithms.

we propose a fitness function based on some “probabilities”
that certain branch conditions occur in some order and
use them to guide the tests towards areas not yet explored.
This is different from existing goal-oriented” approaches,
which attempt to find test data for a given path in the
control-flow graph.

The paper is structured as follows. Next section presents the prob-
lem we want to solve and a solution based on genetic algorithms.
Section 3 provides details about the parallel implementation of our
approach. Section 4 offers an evaluation on a couple of examples,
while the last section is reserved to future work.

2 USE CASE: A GENETIC ALGORITHM FOR
TEST DATA GENERATION

The main motivation for our research stems from some concrete
problems in security testing. To provide some context, we are part
of an international industrial research project on software metrics
called MEASURE!, within which we have a close collaboration
with a big software company providing security solutions called
Bitdefender. They want to improve their security testing techniques
and tools using state-of-the-art research. As mentioned in the
previous section, fuzz testing is a popular technique which can
be improved in several ways [4, 11]. We chose to investigate the
use of genetic algorithms with a slightly different type of a fitness
function (see Subsection 2.3). Moreover, since we have experience
with Apache Spark we wanted to check the suitability of a map-
reduce architecture for parallelism.

We tried to keep the implementation as generic as possible, such
that if a user would like to adapt it to its problem, s/he would only
have to fill the custom functionality for initialisation, selection,
fitness, and genetic operations, leaving the entire parallelisation
duty to the framework. In our opinion, the map-reduce pattern
used by Apache Spark fits very well as a generalized pattern for
the evaluation of genetic algorithms on a distributed system.

Uhttp://measure.softeam-rd.eu
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2.1 The problem: test data generation for
executable (x86) programs

Since the above mentioned software security company must analyze
various types of files for which there is no source code available,
a requirement of our use case is that the system under test is an
x86 binary program. This complicates various aspects due to the
lower level of assembly code. We have started to collaborate to
develop an in-house framework for dynamic analysis of binary
files, which involves several methods including fuzz testing and
symbolic execution.

Our use case of genetic algorithms addressed in this paper is
to automatically create testing data for checking binary programs.
The program is then executed against these data and monitored
for issues such as crashes, assertions, or memory leaks. Such an
approach for testing software programs is fuzz testing, which gen-
erates the test data more or less randomly. The most used metric
for the quality of the testing data set is to have as many executed
instructions of the program as possible. We recently started in-
vestigating genetic algorithms in order to improve the quality of
the automated test data generation by guiding the search towards
paths that are less probable than others using a dynamic fitness
evaluation.

Our implementation uses a tool, called Tracer that can run a
program P against the input test data and produce a trace, i.e., an or-
dered list of branch instructions By, . . ., B, that a program encoun-
tered while executing with the given input test: Tracer(P, test) =
BB . ..By. Because a program can make calls to other libraries or
system executables, each branch is a pair of the module name and
offset where the branch instruction occurred: B; = (module, offset).
Note that we divide our program in basic blocks, which are se-
quences of x86 instructions that contain exactly one branch instruc-
tion at its end. As a tracer, we used an internal tool developed by
the Bitdefender company, but with minor modifications we may
use also an open-source tracer such as Bintrace?.

2.2 Genetic representation

At the core of our approach we keep a population of individuals,
where each one represents an input test data for the evaluated
program P. Using the classical genetic algorithms parlance, each
individual is identified by its “chromosome” which is a sequence
of “genes”. In our case, a gene is represented in memory as 1 byte
and therefore an individual is an ordered list of bytes which will
be the input for P. For instance, if P needs an input composed of
a character variable, an integer, and a string, a possible individual
could be a list of bytes [Co, Iy, ..., I3, S0,...,SN], with variable
lengths for N. The user can also specify ranges for variables (e.g.,
integers such as Iy, . . ., I3 can have values in range [1..1000] or N,
the size of the string could be between [0..128]). The input data
associated to an individual can even represent complex data such as
a file uploaded by a user or online data that a software application
has to process.

Zhttps://bitbucket.org/mihaila/bintrace
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2.3 Fitness function

The main objective of our test data is to execute instructions of the
program being evaluated that are difficult to reach using common
input. To guide the individuals toward inputs that lead to rare
paths of a program, the fitness function associates higher scores to
individuals that take uncommon paths when the program is tested
against them.

Assume we have an initial set of test inputs TestDataSet that
produces (using the Tracer module) a set of traces Traces of the
program P. Then we can evaluate the probability of one branch-
ing instruction B; to occur immediately after another given B; as
follows. Informally, this probability, denoted by Prob(B;, Bj) is
the number of all occurrences of sequence (B;, B;) in traces in the
set Traces divided by the number of all occurrences in Traces of
sequences (B;, B) for any branching B. Formally, we distinguish
two cases:

(1) If there exists at least one occurrence of (B;, Bj) in Traces,
then

no_of_occurrences(B;, Bj, Traces)

Prob(B;, B)) := no_of_occurrences(B;, B, Traces)

where no_of_occurrences(B;, Bj, Traces) is the number of
distinct occurrences of (Bj, Bj) in the set of traces:
2tracec Traces Catd({ k | (T, Tr41) = (B, Bj) in trace}),
and no_of_occurrences(Bj, B, Traces) is the number of dis-
tinct occurrences of (B;, B) for any B in the set of traces:

2 tracee Traces Catd({ k | (T, Ty11) in trace and Ty = B;}).

If there is no occurrence of (B;, Bj) in Traces, we want to
avoid probabilities with value 0, by using a value smaller
than the minimum of the probabilities for pairs that appear
in Traces:

Prob(Bj, Bj) = min({Prob(Bx, By) | (Bx, By) in Traces}) = F

where F is a factor between [0.1,0.5] (we used F = 0.2 in
our experiments). This trick helps us differentiate between
the fitness of two different traces that both contain an edge
with no occurrence in Traces.

Now we can use Prob(B;, Bj) to define the fitness of a trace
trace := ByBj . ..By, n > 0 produced by an individual as follows:

Fitness(trace) := 1 — Prob(B;, Bi+1)
(B;, Biy1)€Distinct(trace)

where Distinct(BgB1 ... B;) := {(Bi,Bi+1) | 0 < i < n}, i.e., the set
of pairs from the trace with no repeated elements.

Note that the fitness function does not consider the same pair
(Bj, Bi+1) twice in a trace. The reason is that we do not want that the
fitness value is artificially increased by the program loops (which
may generate several equal sequences in a trace).

2.4 Initialization, selection and genetic
operations

The initialization module generates a configurable number N of
initial individuals in a genetic population G. The initial generation
of individuals (input data) is obtained using a uniform random
distribution for each gene (considering also the hints given by the
user for different ranges of input variables). The initial population
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of individuals is then improved over a configurable number of
generations using the usual genetic algorithm operators: selection,
mutation and crossover.

Selection is based on the fitness function presented in the pre-
vious subsection. The selection method in our implementation is
a mix between Elitism [16], Rank-based Roulette Wheel Selection
[14] and random selection, each one with a given percentage. One
of the input parameters of our test data generation is the number of
individuals to preserve between population, which will be denoted
by K. Then, EL will represent the percentage of individuals selected
with Elitism, RW using the Rank-based Roulette Wheel Selection
and RR using random selection such that EL + RW + RR = 1.

The idea behind elitism is to keep between consecutive genera-
tions a given percentage of individuals that have the highest fitness
values (candidates known as elite). The advantage of this in our
approach is that rare branches inside a program (i.e., with higher
fitness than common branches) are difficult to find and we want to
preserve them across generations. The Rank-based Roulette Wheel
Selection can add some variety by selecting probabilistically the in-
dividuals according to their rank in fitness value, while the random
selection just adds some more variety of individuals by performing
selection ignoring their fitness.

After the selection phase, mutation and crossover operations are
applied to the NL = N — K individuals left out of selection. Because
at each new generation we keep the same number of individuals
N, we create NL new individuals, which are created using the
ones unselected. The mutation operation implies selecting a set of
individuals to be mutated, each with a chosen probability Py, then
changing in each individual/chromosome one or more genes (bytes)
to a new random value. The crossover operation selects pairs of
individuals, with probability P.. For each pair of individuals (A, B),
a random number k for the "cut-point” for crossover is generated.
The initial individuals A and B are replaced by the individuals
[Ag...Ap_1Bi...Bs]and [By...Bj_1{Ak ...As], where S is the
size of the input length used (and 0 < k < S).

The number of generations has an upper bound given as a param-
eter maxNumberOfGenerations, but, before this limit is reached,
a plateau effect is likely to be observed, i.e., when the individuals
over a couple of generations do not improve significantly their
fitness functions. More precisely, for two consecutive generations
the change is checked as follows:

Z [Fitness(Gi [x]) - Fitness(Gi_l[x]) ]2 <e.

xeN

One way to overcome this effect is to increase the parameters Py,
and P, temporarily until more diversity is added to the population
of individuals [3]. In our implementation, if the average fitness
is not improved in the last NG generations, then Py, and P, are
gradually increased until they get to Pparqx and Pepray after a
specified number of generations. If the plateau still occurs, the
algorithm is restarted because there is a low probability that it can
find any better tests from this point.

Figure 1 shows the pseudocode of the entire genetic algorithm
described in this subsection.

In our experiments, we used Py, = 0.2, P. = 0.2, Ppyafax =
P + 0.3, Poprax = Pe + 0.3, & = 0.0001, K = N x 0.2, EL = 0.8,
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Gy := random population of N individuals
for i from 0 to maxNumberOfGenerations do
S;i := select K individuals from G;_; with probab. EL, RW, RR
Others; := generate N — K individuals from G;_1\S;
using mutations and crossover products
G; := S; U Others;
Check for plateau and increase Py, and P, if needed
If plateau still occurs after a number of generations then STOP

Figure 1: The genetic algorithm

Create first generation of tests
(TestSet,) using fuzz testing

Y

For i from 0 to maxNumberOfIterations do

Update the probabilities map (Prob) using
the latest test set available (TestSet;)

v

Map several populations on a set of
workers and process them by genetic alg.

Worker x T Worker y

All populations finished
(by hitting their maximum
number of generations or
the plateau)

h 4

Reduce all populations into a single
population with the best fitted individuals
and write them in (TestSet;,4).

Figure 2: The workflow for computing the generations

RW = 0.1, RR = 0.1. Also, the maximum number of genera-
tions produced by the genetic algorithm from the initial population
maxNumberOfGenerations was set to 50.

2.5 The automated test data generation

The first generation of tests and traces mentioned in Subsection 2.2
is obtained using fuzz testing, i.e., random tests. The automated test
data generation process runs continuously, and at each iteration,
it produces a pair containing a set of test data and a set of traces
obtained by executing these: (TestSet;, TraceSet;). The probabilities
map is dynamically updated, i.e., at each new iteration it is updated
with the latest traces obtained in the set TraceSet;. This is an
important optimization, since paths that are uncommon at some
point during the process may become common later with the new
tests obtained. The overall process is depicted in Figure 2.
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The user running the process has access to all the test data gen-
erated at any point during its execution: TestSet := U;{TestSet;},
which can be valuable for regression testing.

The maximum number of iterations, maxNumberOfIterations,
was set to 100 in our simulations.

3 THE DISTRIBUTED IMPLEMENTATION
USING APACHE SPARK

3.1 Apache Spark

Apache Spark? is an open-source framework for big data processing
that allows parallelization of applications in cluster or cloud archi-
tecture. It is built around ease of use and it allows programmers to
transparently use the advantage of data locality when performing
computations, in a fault-tolerant manner. Apache Spark is currently
one of the most popular and fastest distributed computing frame-
work being also the largest open-source project in data processing?.

The core data structure of Spark is the Resilient Distributed
Datasets (RDDs) concept [20], which is shown to improve the dis-
tributed computation of iterative algorithms and interactive data
mining tools by an order of magnitude over other map-reduce tech-
nologies. The RDDs are parallel data structures created initially
from user data and code, and which can be transformed by apply-
ing different operations (e.g., map, filter, join etc.) on the same
data multiple times. A program can be viewed then as a graph of
transformations that operate on user’s data.

The Spark scheduler can execute operations specified by RDDs
in an efficient manner, exploiting data locality (i.e., avoiding data
copies between nodes). Another optimization is that RDDs are lazy
evaluated, which means that the work specified by the operations is
performed only when the result is requested. This allows for higher
parallelism and for low-level optimizations (e.g., Spark’s built-in
constraint solver may cut certain operations in the transformation
graph). RDDs’ structure also allows Spark to provide efficient fault-
tolerance, since instead of doing backups of data between nodes, it
just needs to know the history of RDDs transformations.

The traditional approaches of parallelizing the genetic algorithms
use master-slave paradigms and libraries such as MPI or PVM
[12]. One could think, at the first look, that they may achieve a
slightly better performance than Spark because of less overhead
in scheduling and lower level control. However, Spark presents
several advantages when parallelizing genetic algorithms:

o It allows an easy setup for parallelization of genetic algo-
rithms since the map-reduce pattern is very common in
this approach, i.e., you create various tasks (see the list
of Worker objects mentioned in Figure 3), you let them
optimize internally their population, then reduce to get
the best population from all the tasks. The code in Figure
3 depicts the entire code used for parallelization. Also, the
overhead of Spark’s scheduling is much smaller compared
to the resources needed by the genetic algorithm execution
for both map and reduce parts.

It has automatic fault-tolerance and supports very well the
heterogeneity of distributed systems, which is usually not

3https://spark.apache.org
“https://databricks.com/spark/about
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workersRDD = sc.parallelize(Workers)
result = workersRDD.map(lambda w: w.init(N) ; w.solve())
.reduce(lambda w1, w2: Worker.reduce(wl, w2))

Figure 3: Code snippet from the Spark implementation

the case with MPI, which must by adapted by hand for
that.

It can transparently traverse the barriers of local machine
to a cluster, grid and cloud computing, without affecting
user code. This would be much difficult to configure and
use with MPL

3.2 Our distributed implementation

The solution described in Section 2 is easy to parallelize at multiple
levels. In our implementation, we used Apache Spark and its map-
reduce pattern [20] to take advantage of the computational power
available in a (local) cluster and improve the quality of the test data
over the serial version.

Our solution is to create an object Worker that has the following
operations:

e Init(N): generates a population of N random individuals.

e Solve(M): iterates over the population of test data over
(maximum) M generations, trying to improve their fitness
using the genetic algorithm described above.

e Merge(Worker other): merges the most promising individ-
uals (with the highest fitness) from this worker and the
worker sent as a parameter, generating the same number
of N individuals.

A dynamic load balancing is needed to use the available com-
putational power properly since the Solve operation in different
workers can stop after a different number of generations computed
internally by the genetic algorithm, due to the plateau effect (this
cannot be always avoided by increasing the probabilities for muta-
tion or crossover, as mentioned in Subsection 2.4). To deal with this
aspect, and also to take into account the heterogeneity of the used
systems, if the number of physical processes in our cluster is PY,
then the number of Worker objects created is NW = PY %R, with R
being a factor configured to minimize the overall idle time. In our
experiments, a good value of R was 5, which minimised the overall
idle time and at the same time kept the overhead of splitting the
problem into many tasks that are small enough.

The list of workers is then split among physical cores using
Spark’s parallelize function, as seen in the Python code from
Figure 3.

We provide a comparison between the time complexity for the
serial vs the parallel implementation. Suppose that Costg,j,,, and
Costpferge denote the time complexities for Solve and Merge opera-
tions. Then, the time complexities of executing a single test data
generation for the process described in Subsection 2.5 for a number
of NW Worker objects, are:

e in serial case: O(NW s Costsyjye)

e in parallel case, using Spark over PY physical processes:
O(((NW * Costsye)/PY) + (log NW) * Costpferge). The
first term is the cost needed to compute the solve task
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operations and the second one is for merging the results
into a single worker.

Then Speedup = O(NW * Costsoe)/ (NW * Costsope) /PY) +

(NW/PY+log NW)=Costpferge), while the Efficiency = Speedup/PY.

The Costpferge in our implementation is O(N), where N is the num-
ber of individuals in the population.

3.3 Lessons learned

We believe that our distributed implementation described above is
general enough that can be reused for other types of applications of
genetic algorithms. However, it is important to mention the various
performance problems that we encountered and solved during the
development from the initial version of the implementation to the
current one. This may be of help to other researchers planning to
use the same approaches.

One of the first optimizations done in the first phase of develop-
ment was to use fitness caching as much as possible. For instance,
in Figure 1, if the fitness of the individuals from the previous gener-
ation is already computed, then the selection phase can be ideally
done in O(Nlog N) (needed by the sort method). Many of the
best individuals from one generation will move through many con-
secutive generations so their fitness value does not need to be
recomputed. In the backend, we use a “red” flag to signal whether
an individual has been modified and consequently needs fitness
re-computation. Thus the fitness function was only called when the
algorithm needed an individual fitness (i.e., lazy evaluation) and its
flag is red.

An exception from the lazy-evaluation rule was the optimiza-
tion made in particular for the Spark’s map-reduce pattern. The
Worker objects created and evaluated in the map phase, needed
to be reduced into a single Worker containing the best N merged
population of individuals. The strategy used was to evaluate all red-
flagged individuals and sort them according to their fitness value at
the end of the Worker. Solve operation, which happens in the map
phase. If we denote by F the average cost of computing a fitness
value for a given test, the overall complexity for the additional step
needed at the end of the Solve operation plus the Merge operation
is: Topt = O(N+F+N log N)*O(NW/PY)+O(N+N)+O(NW/PY +
logNW) = O(NW/PY % (N «F+ Nlog N + N)) + O(N xlog NW).
Without this optimization, the fitness computations and sort would
be needed at each pair of reduce operations, transforming the over-
all complexity in: Tpese = O(N * F + Nlog N) * O(NW/PY +
log NW) = O(NW/PY (N *F+ NlogN)) + O(N *F + Nlog N) =
O(log NW).

Then, Tgifp = Tpase — Topt = O(N * F + Nlog N) * O(log NW) —
O(NW/PY = N). Knowing that NW is a factor for PY, and consid-
ering populations with large number of individuals (N), then the
difference in time complexity represents an important optimization
point.

The fitness evaluation of an individual in a genetic algorithm
could be done in complex applications by an external process or
application. In our use case, the fitness computation was done by
sending the input to a different process that gives the trace of the
execution, by calling a Tracer application. The initial way of getting
the fitness from an individual was to instantiate a tracer process
at each new fitness evaluation, give it the input on an input pipe,
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then the process executed the program under test with that input
and outputted a text file with the trace. Finally, the resulted trace
file was read by the main application and the fitness was computed
using the Prob operation defined in Subsection 2.3.

This system had two severe performance drawbacks:

o The loading time of the fitness evaluation process (i.e., the
execution of the tracer, in our case) can take significant
time due to operating system dependencies and initializa-
tion times.

Reading and writing data to disk can take significant time,
especially in the case of distributed computing when the
same machine can have several physical processes that can
execute parallel tasks but usually share the same disk (i.e.,
writing to disk in parallel is much more expensive than
writing to disk in serial because operating system is not
able to optimize the sequence of read/writes operations).
This is the case in Spark implementation too, since the same
machine can have multiple Spark executors requesting
fitness evaluations at the same time.

The solution we found for these problems was to impose that each
Worker object created its own fitness evaluation process at initializa-
tion time and then used it for its entire lifetime. Moreover, instead
of working with files read/write, we implemented a fully piped
inter-process communication protocol where the fitness process
was waked by a signal of a new task, read the task input (i.e., the
test data to be evaluated in our application), processed it and sent
out the binarized trace result on the pipe back to its owner Worker
object.

This is depicted in Figure 4. Note that the fitness process is
sleeping when he has nothing to do to avoid performance issues.
Furthermore, at any time during execution, only one of the pro-
cesses Worker or Fitness will run at the same time inside a Spark
executor.

Another incremental improvement, specifically more for our
project rather than from a general genetic algorithms framework
(but with applicability in other domains too), was that instead of
working with strings representing the modules names and paths,
we mapped strings to integers to optimize searches and evalua-
tions. The main motivation is that hashing with integers is much
faster compared to hashing with strings. For instance, the prob-
ability computation between two pairs of (module string, offset)
- Prob(B;, Bj) - was actually done using a mapped integer for the
module string. Since this operation was significantly used during
evaluations, mapping once the string to integer then searching
(hashing) for the integer value saved a lot of CPU cycles. The map
data structure was updated at the beginning of each generation
(since new strings associated to modules could appear after each
new generation of tests).

4 EVALUATION
Our work can be evaluated from two points of view:

research question 1 is our genetic algorithm approach in-
deed as parallelizable as announced in Section 3; and also

research question 2 does the genetic algorithm cover more
branching conditions of the evaluated program than fuzz
testing.
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Worker

Figure 4: Sequence diagram for the communication between
a Worker instance and the fitness evaluation process

For both research questions, we used as programs to be tested
two open-source libraries (which were compiled to x86 binaries):
http-parser® (library for parsing HTTP requests/responses) and
1ibxm1® (library for parsing and creating XML files).

For the first research question the usual metric in evaluating
parallel programs is the throughput of the serial versus parallel
implementation. The throughput in our application is the number
of new tests obtained and evaluated per unit of time. The hard-
ware platform used for testing was a cluster of 8 PCs, each one
with 12 physical cores, totaling 96 physical cores of approximately
same performance - the type of processor used was Intel Core
i7-5930K 3.50 Ghz. A total of NumWorkers = 480 workers were
instantiated (a factor of the 96 workers, to create enough tasks
per physical workers as suggested in Subsection 3, avoiding this
way the idle times for physical workers that hit the plateau be-
fore finishing the maximum number of allocated generations). The
population size for each Worker object was PopulationSize = 100
individuals each with a length of 80 genes (bytes). Worker ob-
jects were let to optimize the internal population within a max-
imum of maxNumberOfGenerations = 50 generations, checking
for plateau at each 5 generations. Technically speaking, the max-
imum number of tests expected for evaluation in this configura-
tion is MaxTests = PopulationSize *+ maxNumberOfGenerations s
NumWorkers = 2, 400, 000.

We let the algorithm execute in serial (a single process on one
of the PCs) and in parallel on the configuration mentioned above,
and stopped after 9 hours. The number of tests evaluated is shown
in Table 1. The list of Worker objects was scheduled (on the 96

Shttps://github.com/nodejs/http-parser
®http://xmlsoft.org
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Table 1: Serial vs parallel throughput comparison

Library evaluated Serial Parallel
http-parser 1,593 130,843
libxml 446 34,891

Table 2: Speedup (i.e., parallel over serial throughput) and
efficiency (i.e., speedup over number of physical processes
used) metrics

Library evaluated Speedup Efficiency

82.13
78.23

0.85
0.81

http-parser
libxml

Table 3: Statistical results for the http-parser library

Metric  Fuzz testing Genetic testing

mean 215.27 229.72

median 217 230

variance 75.03 1.03

mean absolute deviation 9.63 1.07
min 201 228

max 228 231

physical cores available) by Spark using its parallelize function,
as shown in Figure 1. This setup with many instances of Workers
did not affect the serial performance at all since the list of instanced
Workers was executed one by one in this approach. Also, the
parallel speedup and efficiency is expected to remain constant in all
types of applications, despite the different costs of computing the
traces. This is indeed the case for both examples as seen in Table 2.
This is because, as mentioned in Section 3, in our framework each
Worker has its own private tracer process spawned and this means
that there is no contention between different physical Workers.

The memory footprint of our application is not a concern, and
should not generally be, unless the fitness computation process
would require significant memory (note that, if the fitness compu-
tation process would take N bytes, then creating PY processes on
the same machine would require a minimum of N * PY bytes of
memory available).

For research question 2, we want to compare our genetic al-
gorithms for automated testing data that finds rare paths inside
programs’ execution. In this case, we would like to see how much
our approach helped us compared to fuzz testing (i.e. generating
random tests). We executed the algorithm for 18 times, and com-
puted different statistical metrics related to the number of different
branch instructions encountered when testing http-parser and
libxml, respectively, in an interval time of 1 hour. The results are
provided in Tables 3 and 4.

Our genetic algorithms performs better in both cases, although
by a small margin. Even if the difference in the number of instruc-
tions found is not big (4% and 6.5%, respectively, more branching
executed, based on the mean metric), but one should take into ac-
count that usually rare paths and instructions are more difficult to
find as the number of paths increases.
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Table 4: Statistical results for the libxml library

Metric  Fuzz testing Genetic testing

mean 1219.94 1270.11

median 1225 1270

variance 118.64 0.81

mean absolute deviation 14.16 1.31
min 1202 1269

max 1231 1272

Although the results of our experiments look positive for both
research questions (especially the first one), there are several threats
to validity. First, we only run the experiments on two programs.
This was due to the fact that our internal tracer module still misses
some functionality and cannot be applied to any x86 program,
but in the next period this will be fixed such that we can run the
experiments on the cybersecurity grand challenge benchmark [6].
Moreover, we have not yet applied a full battery of statistical tests
(including t-test and U-tests) as suggested in [2].

5 FUTURE WORK

We presented a parallel implementation of a genetic algorithm in
Apache Spark using a custom fitness function. We also evaluated
our approach on two open source libraries with promising results,
especially for the parallelization capabilities. Although not ground-
breaking, our approach has a couple of novel aspects mentioned
already in the introduction.

We have several plans for future work:

o First, we would like to improve our approach through the
best practices from the search-based testing literature [9]
and experiment with other fitness functions.

We would like to combine our technique with constraint
solving [10] and dynamic symbolic execution [7]. As men-
tioned in Subsection 2.1, we are collaborating with the
security company Bitdefender and the underlying analysis
framework has already modules for dynamic symbolic ex-
ecution and constraint solving, dedicated to x86 programs.
We will check if we can extend the current performance
through a combination between Spark and GPU for genetic
algorithms: On the one hand, in industry there are already
implementations combining Spark and GPU’, while, on
the other hand, first results of genetic algorithms’ paral-
lelization on GPUs were produced [5]. We will also seek
inspiration from other approaches which parallelize ge-
netic algorithms, such as [13, 15, 17].

Last but not least, we may check which of the most recent
approaches that use genetic methods for test generation
[1, 18, 19] could be improved through parallelization.

We open-sourced our implementation at: https://github.com/
paduraru2009/genetic-algorithm-with-Spark-for-test-generation
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