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ABSTRACT
�is paper presents a distributed implementation for a genetic
algorithm, using Apache Spark, a fast and popular data processing
framework. Our approach is rather general, but in this paper the
parallelized genetic algorithm is used for test data generation for
executable programs. �e viability of the approach is demonstrated
on two examples.
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1 INTRODUCTION
�e importance of cybersecurity has increased year over year re-
cently, given the wide interconnectivity between various so�ware
systems. Both academia and industry are investing many resources
to �nd ways to detect critical security bugs in so�ware components.
An e�cient technique for that is fuzz testing [8], which is a type
of testing where many random input data are generated and the
program under test is executing them with the goal of exhibiting
security bugs or abnormal behaviour.

Since random testing may need too much time to �nd interest-
ing paths in the program, several methods have been proposed to
be�er guide the test data generation towards uncovered area of the
program using, e.g., genetic algorithms or search-based techniques
[11] or symbolic execution [4].

In this paper, we will investigate the use of genetic algorithms
for test data generation, making use of the recent advancements
in the distributed computing area. In particular, we implemented
a parallel version of a genetic algorithm in Apache Spark [20].
We then applied this to the area of test data generation for x86
binary/executable programs.
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�e main contributions of the paper are the following:
• the parallel implementation of a genetic algorithm in Apache

Spark. To the best of our knowledge this is the �rst investi-
gation of this type. �e majority of the existing approaches
for parallelizing genetic algorithms use a master-slave ar-
chitecture [12] and not the map-reduce paradigm underly-
ing Apache Spark. We also provide some valuable lessons
learned while optimizing our solution on Spark.

• our approach is rather generic, so it has potential to be
adapted to other types of genetic algorithms.

• we propose a �tness function based on some ”probabilities”
that certain branch conditions occur in some order and
use them to guide the tests towards areas not yet explored.
�is is di�erent from existing ”goal-oriented” approaches,
which a�empt to �nd test data for a given path in the
control-�ow graph.

�e paper is structured as follows. Next section presents the prob-
lem we want to solve and a solution based on genetic algorithms.
Section 3 provides details about the parallel implementation of our
approach. Section 4 o�ers an evaluation on a couple of examples,
while the last section is reserved to future work.

2 USE CASE: A GENETIC ALGORITHM FOR
TEST DATA GENERATION

�e main motivation for our research stems from some concrete
problems in security testing. To provide some context, we are part
of an international industrial research project on so�ware metrics
called MEASURE1, within which we have a close collaboration
with a big so�ware company providing security solutions called
Bitdefender. �ey want to improve their security testing techniques
and tools using state-of-the-art research. As mentioned in the
previous section, fuzz testing is a popular technique which can
be improved in several ways [4, 11]. We chose to investigate the
use of genetic algorithms with a slightly di�erent type of a �tness
function (see Subsection 2.3). Moreover, since we have experience
with Apache Spark we wanted to check the suitability of a map-
reduce architecture for parallelism.

We tried to keep the implementation as generic as possible, such
that if a user would like to adapt it to its problem, s/he would only
have to �ll the custom functionality for initialisation, selection,
�tness, and genetic operations, leaving the entire parallelisation
duty to the framework. In our opinion, the map-reduce pa�ern
used by Apache Spark �ts very well as a generalized pa�ern for
the evaluation of genetic algorithms on a distributed system.

1h�p://measure.so�eam-rd.eu
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2.1 �e problem: test data generation for
executable (x86) programs

Since the above mentioned so�ware security company must analyze
various types of �les for which there is no source code available,
a requirement of our use case is that the system under test is an
x86 binary program. �is complicates various aspects due to the
lower level of assembly code. We have started to collaborate to
develop an in-house framework for dynamic analysis of binary
�les, which involves several methods including fuzz testing and
symbolic execution.

Our use case of genetic algorithms addressed in this paper is
to automatically create testing data for checking binary programs.
�e program is then executed against these data and monitored
for issues such as crashes, assertions, or memory leaks. Such an
approach for testing so�ware programs is fuzz testing, which gen-
erates the test data more or less randomly. �e most used metric
for the quality of the testing data set is to have as many executed
instructions of the program as possible. We recently started in-
vestigating genetic algorithms in order to improve the quality of
the automated test data generation by guiding the search towards
paths that are less probable than others using a dynamic �tness
evaluation.

Our implementation uses a tool, called Tracer that can run a
program P against the input test data and produce a trace, i.e., an or-
dered list of branch instructions B0, . . . ,Bn that a program encoun-
tered while executing with the given input test: Tracer(P , test) =
B0B1 . . . Bn . Because a program can make calls to other libraries or
system executables, each branch is a pair of the module name and
o�set where the branch instruction occurred: Bi = (module, o�set).
Note that we divide our program in basic blocks, which are se-
quences of x86 instructions that contain exactly one branch instruc-
tion at its end. As a tracer, we used an internal tool developed by
the Bitdefender company, but with minor modi�cations we may
use also an open-source tracer such as Bintrace2.

2.2 Genetic representation
At the core of our approach we keep a population of individuals,
where each one represents an input test data for the evaluated
program P . Using the classical genetic algorithms parlance, each
individual is identi�ed by its ”chromosome” which is a sequence
of ”genes”. In our case, a gene is represented in memory as 1 byte
and therefore an individual is an ordered list of bytes which will
be the input for P . For instance, if P needs an input composed of
a character variable, an integer, and a string, a possible individual
could be a list of bytes [C0, I0, . . . , I3, S0, . . . , SN ], with variable
lengths for N . �e user can also specify ranges for variables (e.g.,
integers such as I0, . . . , I3 can have values in range [1..1000] or N ,
the size of the string could be between [0..128]). �e input data
associated to an individual can even represent complex data such as
a �le uploaded by a user or online data that a so�ware application
has to process.

2h�ps://bitbucket.org/mihaila/bintrace

2.3 Fitness function
�e main objective of our test data is to execute instructions of the
program being evaluated that are di�cult to reach using common
input. To guide the individuals toward inputs that lead to rare
paths of a program, the �tness function associates higher scores to
individuals that take uncommon paths when the program is tested
against them.

Assume we have an initial set of test inputs TestDataSet that
produces (using the Tracer module) a set of traces Traces of the
program P . �en we can evaluate the probability of one branch-
ing instruction Bi to occur immediately a�er another given Bj as
follows. Informally, this probability, denoted by Prob(Bi ,Bj ) is
the number of all occurrences of sequence (Bi ,Bj ) in traces in the
set Traces divided by the number of all occurrences in Traces of
sequences (Bi ,B) for any branching B. Formally, we distinguish
two cases:

(1) If there exists at least one occurrence of (Bi ,Bj ) in Traces,
then

Prob(Bi ,Bj ) :=
no of occurrences(Bi ,Bj , Traces)
no of occurrences(Bi ,B, Traces)

where no of occurrences(Bi ,Bj , Traces) is the number of
distinct occurrences of (Bi ,Bj ) in the set of traces:∑
trace∈Traces card({ k | (Tk ,Tk+1) = (Bi ,Bj ) in trace }),

and no of occurrences(Bi ,B, Traces) is the number of dis-
tinct occurrences of (Bi ,B) for any B in the set of traces:∑
trace∈Traces card({ k | (Tk ,Tk+1) in trace and Tk = Bi }).

(2) If there is no occurrence of (Bi ,Bj ) in Traces, we want to
avoid probabilities with value 0, by using a value smaller
than the minimum of the probabilities for pairs that appear
in Traces:

Prob(Bi ,Bj ) = min({Prob(Bx ,By ) | (Bx ,By ) in Traces}) ∗ F

where F is a factor between [0.1, 0.5] (we used F = 0.2 in
our experiments). �is trick helps us di�erentiate between
the �tness of two di�erent traces that both contain an edge
with no occurrence in Traces.

Now we can use Prob(Bi ,Bj ) to de�ne the �tness of a trace
trace := B0B1 . . . Bn , n > 0 produced by an individual as follows:

Fitness(trace) := 1 −
∏

(Bi ,Bi+1 )∈Distinct(trace)
Prob(Bi ,Bi+1)

where Distinct(B0B1 . . . Bn ) := {(Bi ,Bi+1) | 0 ≤ i < n}, i.e., the set
of pairs from the trace with no repeated elements.

Note that the �tness function does not consider the same pair
(Bi ,Bi+1) twice in a trace. �e reason is that we do not want that the
�tness value is arti�cially increased by the program loops (which
may generate several equal sequences in a trace).

2.4 Initialization, selection and genetic
operations

�e initialization module generates a con�gurable number N of
initial individuals in a genetic population G. �e initial generation
of individuals (input data) is obtained using a uniform random
distribution for each gene (considering also the hints given by the
user for di�erent ranges of input variables). �e initial population
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of individuals is then improved over a con�gurable number of
generations using the usual genetic algorithm operators: selection,
mutation and crossover.

Selection is based on the �tness function presented in the pre-
vious subsection. �e selection method in our implementation is
a mix between Elitism [16], Rank-based Roule�e Wheel Selection
[14] and random selection, each one with a given percentage. One
of the input parameters of our test data generation is the number of
individuals to preserve between population, which will be denoted
by K . �en, EL will represent the percentage of individuals selected
with Elitism, RW using the Rank-based Roule�e Wheel Selection
and RR using random selection such that EL + RW + RR = 1.

�e idea behind elitism is to keep between consecutive genera-
tions a given percentage of individuals that have the highest �tness
values (candidates known as elite). �e advantage of this in our
approach is that rare branches inside a program (i.e., with higher
�tness than common branches) are di�cult to �nd and we want to
preserve them across generations. �e Rank-based Roule�e Wheel
Selection can add some variety by selecting probabilistically the in-
dividuals according to their rank in �tness value, while the random
selection just adds some more variety of individuals by performing
selection ignoring their �tness.

A�er the selection phase, mutation and crossover operations are
applied to the NL = N −K individuals le� out of selection. Because
at each new generation we keep the same number of individuals
N , we create NL new individuals, which are created using the
ones unselected. �e mutation operation implies selecting a set of
individuals to be mutated, each with a chosen probability Pm , then
changing in each individual/chromosome one or more genes (bytes)
to a new random value. �e crossover operation selects pairs of
individuals, with probability Pc . For each pair of individuals (A,B),
a random number k for the ”cut-point” for crossover is generated.
�e initial individuals A and B are replaced by the individuals
[A0 . . .Ak−1Bk . . . BS ] and [B0 . . . Bk−1Ak . . .AS ], where S is the
size of the input length used (and 0 ≤ k ≤ S).

�e number of generations has an upper bound given as a param-
eter maxNumberOfGenerations, but, before this limit is reached,
a plateau e�ect is likely to be observed, i.e., when the individuals
over a couple of generations do not improve signi�cantly their
�tness functions. More precisely, for two consecutive generations
the change is checked as follows:∑

x ∈N

[
Fitness

(
Gi [x]

)
− Fitness

(
Gi−1[x]

) ]2
< ε .

One way to overcome this e�ect is to increase the parameters Pm
and Pc temporarily until more diversity is added to the population
of individuals [3]. In our implementation, if the average �tness
is not improved in the last NG generations, then Pm and Pc are
gradually increased until they get to PmMax and PcMax a�er a
speci�ed number of generations. If the plateau still occurs, the
algorithm is restarted because there is a low probability that it can
�nd any be�er tests from this point.

Figure 1 shows the pseudocode of the entire genetic algorithm
described in this subsection.

In our experiments, we used Pm = 0.2, Pc = 0.2, PmMax =

Pm + 0.3, PcMax = Pc + 0.3, ε = 0.0001, K = N × 0.2, EL = 0.8,

G0 := random population of N individuals
for i from 0 to maxNumberOfGenerations do
Si := select K individuals from Gi−1 with probab. EL, RW , RR
Othersi := generate N − K individuals from Gi−1\Si

using mutations and crossover products
Gi := Si ∪Othersi
Check for plateau and increase Pm and Pc if needed
If plateau still occurs a�er a number of generations then STOP

Figure 1: �e genetic algorithm

Figure 2: �e work�ow for computing the generations

RW = 0.1, RR = 0.1. Also, the maximum number of genera-
tions produced by the genetic algorithm from the initial population
maxNumberOfGenerations was set to 50.

2.5 �e automated test data generation
�e �rst generation of tests and traces mentioned in Subsection 2.2
is obtained using fuzz testing, i.e., random tests. �e automated test
data generation process runs continuously, and at each iteration,
it produces a pair containing a set of test data and a set of traces
obtained by executing these: (TestSeti , TraceSeti ). �e probabilities
map is dynamically updated, i.e., at each new iteration it is updated
with the latest traces obtained in the set TraceSeti . �is is an
important optimization, since paths that are uncommon at some
point during the process may become common later with the new
tests obtained. �e overall process is depicted in Figure 2.
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�e user running the process has access to all the test data gen-
erated at any point during its execution: TestSet := ∪i {TestSeti },
which can be valuable for regression testing.

�e maximum number of iterations, maxNumberOfIterations,
was set to 100 in our simulations.

3 THE DISTRIBUTED IMPLEMENTATION
USING APACHE SPARK

3.1 Apache Spark
Apache Spark3 is an open-source framework for big data processing
that allows parallelization of applications in cluster or cloud archi-
tecture. It is built around ease of use and it allows programmers to
transparently use the advantage of data locality when performing
computations, in a fault-tolerant manner. Apache Spark is currently
one of the most popular and fastest distributed computing frame-
work being also the largest open-source project in data processing4.

�e core data structure of Spark is the Resilient Distributed
Datasets (RDDs) concept [20], which is shown to improve the dis-
tributed computation of iterative algorithms and interactive data
mining tools by an order of magnitude over other map-reduce tech-
nologies. �e RDDs are parallel data structures created initially
from user data and code, and which can be transformed by apply-
ing di�erent operations (e.g., map, �lter, join etc.) on the same
data multiple times. A program can be viewed then as a graph of
transformations that operate on user’s data.

�e Spark scheduler can execute operations speci�ed by RDDs
in an e�cient manner, exploiting data locality (i.e., avoiding data
copies between nodes). Another optimization is that RDDs are lazy
evaluated, which means that the work speci�ed by the operations is
performed only when the result is requested. �is allows for higher
parallelism and for low-level optimizations (e.g., Spark’s built-in
constraint solver may cut certain operations in the transformation
graph). RDDs’ structure also allows Spark to provide e�cient fault-
tolerance, since instead of doing backups of data between nodes, it
just needs to know the history of RDDs transformations.

�e traditional approaches of parallelizing the genetic algorithms
use master-slave paradigms and libraries such as MPI or PVM
[12]. One could think, at the �rst look, that they may achieve a
slightly be�er performance than Spark because of less overhead
in scheduling and lower level control. However, Spark presents
several advantages when parallelizing genetic algorithms:

• It allows an easy setup for parallelization of genetic algo-
rithms since the map-reduce pa�ern is very common in
this approach, i.e., you create various tasks (see the list
of Worker objects mentioned in Figure 3), you let them
optimize internally their population, then reduce to get
the best population from all the tasks. �e code in Figure
3 depicts the entire code used for parallelization. Also, the
overhead of Spark’s scheduling is much smaller compared
to the resources needed by the genetic algorithm execution
for both map and reduce parts.

• It has automatic fault-tolerance and supports very well the
heterogeneity of distributed systems, which is usually not

3h�ps://spark.apache.org
4h�ps://databricks.com/spark/about

workersRDD = sc.parallelize(Workers)
result = workersRDD.map(lambda w: w.init(N) ; w.solve())

.reduce(lambda w1, w2: Worker.reduce(w1, w2))

Figure 3: Code snippet from the Spark implementation

the case with MPI, which must by adapted by hand for
that.

• It can transparently traverse the barriers of local machine
to a cluster, grid and cloud computing, without a�ecting
user code. �is would be much di�cult to con�gure and
use with MPI.

3.2 Our distributed implementation
�e solution described in Section 2 is easy to parallelize at multiple
levels. In our implementation, we used Apache Spark and its map-
reduce pa�ern [20] to take advantage of the computational power
available in a (local) cluster and improve the quality of the test data
over the serial version.

Our solution is to create an object Worker that has the following
operations:

• Init(N ): generates a population of N random individuals.
• Solve(M): iterates over the population of test data over

(maximum) M generations, trying to improve their �tness
using the genetic algorithm described above.

• Merge(Worker other): merges the most promising individ-
uals (with the highest �tness) from this worker and the
worker sent as a parameter, generating the same number
of N individuals.

A dynamic load balancing is needed to use the available com-
putational power properly since the Solve operation in di�erent
workers can stop a�er a di�erent number of generations computed
internally by the genetic algorithm, due to the plateau e�ect (this
cannot be always avoided by increasing the probabilities for muta-
tion or crossover, as mentioned in Subsection 2.4). To deal with this
aspect, and also to take into account the heterogeneity of the used
systems, if the number of physical processes in our cluster is PY ,
then the number of Worker objects created is NW = PY ∗R, with R
being a factor con�gured to minimize the overall idle time. In our
experiments, a good value of R was 5, which minimised the overall
idle time and at the same time kept the overhead of spli�ing the
problem into many tasks that are small enough.

�e list of workers is then split among physical cores using
Spark’s parallelize function, as seen in the Python code from
Figure 3.

We provide a comparison between the time complexity for the
serial vs the parallel implementation. Suppose that CostSolve and
CostMerge denote the time complexities for Solve and Merge opera-
tions. �en, the time complexities of executing a single test data
generation for the process described in Subsection 2.5 for a number
of NW Worker objects, are:

• in serial case: O (NW ∗CostSolve )
• in parallel case, using Spark over PY physical processes:
O (((NW ∗ CostSolve )/PY ) + (logNW ) ∗ CostMerge ). �e
�rst term is the cost needed to compute the solve task
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operations and the second one is for merging the results
into a single worker.

�en Speedup = O (NW ∗CostSolve )/(((NW ∗CostSolve )/PY ) +
(NW /PY+logNW )∗CostMerge ), while the E�ciency = Speedup/PY .
�eCostMerge in our implementation is O (N ), where N is the num-
ber of individuals in the population.

3.3 Lessons learned
We believe that our distributed implementation described above is
general enough that can be reused for other types of applications of
genetic algorithms. However, it is important to mention the various
performance problems that we encountered and solved during the
development from the initial version of the implementation to the
current one. �is may be of help to other researchers planning to
use the same approaches.

One of the �rst optimizations done in the �rst phase of develop-
ment was to use �tness caching as much as possible. For instance,
in Figure 1, if the �tness of the individuals from the previous gener-
ation is already computed, then the selection phase can be ideally
done in O (N logN ) (needed by the sort method). Many of the
best individuals from one generation will move through many con-
secutive generations so their �tness value does not need to be
recomputed. In the backend, we use a ”red” �ag to signal whether
an individual has been modi�ed and consequently needs �tness
re-computation. �us the �tness function was only called when the
algorithm needed an individual �tness (i.e., lazy evaluation) and its
�ag is red.

An exception from the lazy-evaluation rule was the optimiza-
tion made in particular for the Spark’s map-reduce pa�ern. �e
Worker objects created and evaluated in the map phase, needed
to be reduced into a single Worker containing the best N merged
population of individuals. �e strategy used was to evaluate all red-
�agged individuals and sort them according to their �tness value at
the end of the Worker.Solve operation, which happens in the map
phase. If we denote by F the average cost of computing a �tness
value for a given test, the overall complexity for the additional step
needed at the end of the Solve operation plus the Merge operation
is: Topt = O (N ∗F+N logN )∗O (NW /PY )+O (N+N )∗O (NW /PY+
logNW ) = O (NW /PY ∗ (N ∗ F +N logN +N )) +O (N ∗ logNW ).
Without this optimization, the �tness computations and sort would
be needed at each pair of reduce operations, transforming the over-
all complexity in: Tbase = O (N ∗ F + N logN ) ∗ O (NW /PY +
logNW ) = O (NW /PY ∗ (N ∗ F +N logN ))+O (N ∗ F +N logN ) ∗
O (logNW ).

�en, Tdi� = Tbase −Topt = O (N ∗ F + N logN ) ∗ O (logNW ) −
O (NW /PY ∗ N ). Knowing that NW is a factor for PY , and consid-
ering populations with large number of individuals (N ), then the
di�erence in time complexity represents an important optimization
point.

�e �tness evaluation of an individual in a genetic algorithm
could be done in complex applications by an external process or
application. In our use case, the �tness computation was done by
sending the input to a di�erent process that gives the trace of the
execution, by calling a Tracer application. �e initial way of ge�ing
the �tness from an individual was to instantiate a tracer process
at each new �tness evaluation, give it the input on an input pipe,

then the process executed the program under test with that input
and outpu�ed a text �le with the trace. Finally, the resulted trace
�le was read by the main application and the �tness was computed
using the Prob operation de�ned in Subsection 2.3.

�is system had two severe performance drawbacks:
• �e loading time of the �tness evaluation process (i.e., the

execution of the tracer, in our case) can take signi�cant
time due to operating system dependencies and initializa-
tion times.

• Reading and writing data to disk can take signi�cant time,
especially in the case of distributed computing when the
same machine can have several physical processes that can
execute parallel tasks but usually share the same disk (i.e.,
writing to disk in parallel is much more expensive than
writing to disk in serial because operating system is not
able to optimize the sequence of read/writes operations).
�is is the case in Spark implementation too, since the same
machine can have multiple Spark executors requesting
�tness evaluations at the same time.

�e solution we found for these problems was to impose that each
Worker object created its own �tness evaluation process at initializa-
tion time and then used it for its entire lifetime. Moreover, instead
of working with �les read/write, we implemented a fully piped
inter-process communication protocol where the �tness process
was waked by a signal of a new task, read the task input (i.e., the
test data to be evaluated in our application), processed it and sent
out the binarized trace result on the pipe back to its owner Worker
object.

�is is depicted in Figure 4. Note that the �tness process is
sleeping when he has nothing to do to avoid performance issues.
Furthermore, at any time during execution, only one of the pro-
cesses Worker or Fitness will run at the same time inside a Spark
executor.

Another incremental improvement, speci�cally more for our
project rather than from a general genetic algorithms framework
(but with applicability in other domains too), was that instead of
working with strings representing the modules names and paths,
we mapped strings to integers to optimize searches and evalua-
tions. �e main motivation is that hashing with integers is much
faster compared to hashing with strings. For instance, the prob-
ability computation between two pairs of (module string, o�set)
- Prob(Bi ,Bj ) - was actually done using a mapped integer for the
module string. Since this operation was signi�cantly used during
evaluations, mapping once the string to integer then searching
(hashing) for the integer value saved a lot of CPU cycles. �e map
data structure was updated at the beginning of each generation
(since new strings associated to modules could appear a�er each
new generation of tests).

4 EVALUATION
Our work can be evaluated from two points of view:

research question 1 is our genetic algorithm approach in-
deed as parallelizable as announced in Section 3; and also

research question 2 does the genetic algorithm cover more
branching conditions of the evaluated program than fuzz
testing.
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Figure 4: Sequence diagram for the communication between
a Worker instance and the �tness evaluation process

For both research questions, we used as programs to be tested
two open-source libraries (which were compiled to x86 binaries):
http-parser5 (library for parsing HTTP requests/responses) and
libxml6 (library for parsing and creating XML �les).

For the �rst research question the usual metric in evaluating
parallel programs is the throughput of the serial versus parallel
implementation. �e throughput in our application is the number
of new tests obtained and evaluated per unit of time. �e hard-
ware platform used for testing was a cluster of 8 PCs, each one
with 12 physical cores, totaling 96 physical cores of approximately
same performance - the type of processor used was Intel Core
i7-5930K 3.50 Ghz. A total of NumWorkers = 480 workers were
instantiated (a factor of the 96 workers, to create enough tasks
per physical workers as suggested in Subsection 3, avoiding this
way the idle times for physical workers that hit the plateau be-
fore �nishing the maximum number of allocated generations). �e
population size for each Worker object was PopulationSize = 100
individuals each with a length of 80 genes (bytes). Worker ob-
jects were let to optimize the internal population within a max-
imum of maxNumberOfGenerations = 50 generations, checking
for plateau at each 5 generations. Technically speaking, the max-
imum number of tests expected for evaluation in this con�gura-
tion is MaxTests = PopulationSize ∗ maxNumberOfGenerations ∗
NumWorkers = 2, 400, 000.

We let the algorithm execute in serial (a single process on one
of the PCs) and in parallel on the con�guration mentioned above,
and stopped a�er 9 hours. �e number of tests evaluated is shown
in Table 1. �e list of Worker objects was scheduled (on the 96
5h�ps://github.com/nodejs/h�p-parser
6h�p://xmlso�.org

Table 1: Serial vs parallel throughput comparison

Library evaluated Serial Parallel
h�p-parser 1,593 130,843

libxml 446 34,891

Table 2: Speedup (i.e., parallel over serial throughput) and
e�ciency (i.e., speedup over number of physical processes
used) metrics

Library evaluated Speedup E�ciency
h�p-parser 82.13 0.85

libxml 78.23 0.81

Table 3: Statistical results for the http-parser library

Metric Fuzz testing Genetic testing
mean 215.27 229.72

median 217 230
variance 75.03 1.03

mean absolute deviation 9.63 1.07
min 201 228
max 228 231

physical cores available) by Spark using its parallelize function,
as shown in Figure 1. �is setup with many instances of Workers
did not a�ect the serial performance at all since the list of instanced
Workers was executed one by one in this approach. Also, the
parallel speedup and e�ciency is expected to remain constant in all
types of applications, despite the di�erent costs of computing the
traces. �is is indeed the case for both examples as seen in Table 2.
�is is because, as mentioned in Section 3, in our framework each
Worker has its own private tracer process spawned and this means
that there is no contention between di�erent physical Workers.

�e memory footprint of our application is not a concern, and
should not generally be, unless the �tness computation process
would require signi�cant memory (note that, if the �tness compu-
tation process would take N bytes, then creating PY processes on
the same machine would require a minimum of N ∗ PY bytes of
memory available).

For research question 2, we want to compare our genetic al-
gorithms for automated testing data that �nds rare paths inside
programs’ execution. In this case, we would like to see how much
our approach helped us compared to fuzz testing (i.e. generating
random tests). We executed the algorithm for 18 times, and com-
puted di�erent statistical metrics related to the number of di�erent
branch instructions encountered when testing http-parser and
libxml, respectively, in an interval time of 1 hour. �e results are
provided in Tables 3 and 4.

Our genetic algorithms performs be�er in both cases, although
by a small margin. Even if the di�erence in the number of instruc-
tions found is not big (4% and 6.5%, respectively, more branching
executed, based on the mean metric), but one should take into ac-
count that usually rare paths and instructions are more di�cult to
�nd as the number of paths increases.
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Table 4: Statistical results for the libxml library

Metric Fuzz testing Genetic testing
mean 1219.94 1270.11

median 1225 1270
variance 118.64 0.81

mean absolute deviation 14.16 1.31
min 1202 1269
max 1231 1272

Although the results of our experiments look positive for both
research questions (especially the �rst one), there are several threats
to validity. First, we only run the experiments on two programs.
�is was due to the fact that our internal tracer module still misses
some functionality and cannot be applied to any x86 program,
but in the next period this will be �xed such that we can run the
experiments on the cybersecurity grand challenge benchmark [6].
Moreover, we have not yet applied a full ba�ery of statistical tests
(including t-test and U-tests) as suggested in [2].

5 FUTUREWORK
We presented a parallel implementation of a genetic algorithm in
Apache Spark using a custom �tness function. We also evaluated
our approach on two open source libraries with promising results,
especially for the parallelization capabilities. Although not ground-
breaking, our approach has a couple of novel aspects mentioned
already in the introduction.

We have several plans for future work:

• First, we would like to improve our approach through the
best practices from the search-based testing literature [9]
and experiment with other �tness functions.

• We would like to combine our technique with constraint
solving [10] and dynamic symbolic execution [7]. As men-
tioned in Subsection 2.1, we are collaborating with the
security company Bitdefender and the underlying analysis
framework has already modules for dynamic symbolic ex-
ecution and constraint solving, dedicated to x86 programs.

• We will check if we can extend the current performance
through a combination between Spark and GPU for genetic
algorithms: On the one hand, in industry there are already
implementations combining Spark and GPU7, while, on
the other hand, �rst results of genetic algorithms’ paral-
lelization on GPUs were produced [5]. We will also seek
inspiration from other approaches which parallelize ge-
netic algorithms, such as [13, 15, 17].

• Last but not least, we may check which of the most recent
approaches that use genetic methods for test generation
[1, 18, 19] could be improved through parallelization.

We open-sourced our implementation at: h�ps://github.com/
paduraru2009/genetic-algorithm-with-Spark-for-test-generation

7h�ps://www.oreilly.com/learning/accelerating-spark-workloads-using-gpus
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