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ABSTRACT
Bent Boolean functions are cryptographic primitives essential for
the safety of cryptographic algorithms, providing a degree of non-
linearity to otherwise linear systems. The maximum possible non-
linearity of a Boolean function is limited by the number of its inputs,
and as technology advances, functions with higher number of in-
puts are required in order to guarantee a level of security demanded
in many modern applications. Genetic programming has been suc-
cessfully used to discover new larger bent Boolean functions in the
past. This paper proposes the use of linear genetic programming for
this purpose. It shows that this approach is suitable for designing
of bent Boolean functions larger than those designed using other
approaches, and explores the in�uence of multiple evolutionary
parameters on the evolution runtime. Parallelized implementation
of the proposed approach is used to search for new, larger bent
functions, and the results are compared with other related work.
The results show that linear genetic programming copes better with
growing number of function inputs than genetic programming, and
is able to create signi�cantly larger bent functions in comparable
time.
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1 INTRODUCTION
Evolutionary algorithms (EAs) are a nature-inspired method of
computation, which solves problems using a population of candi-
date solutions evolved using evolutionary operators. For over two
decades EAs have been used to provide designs, comparable and
sometimes surpassing those created by human designers. One of the
areas where this can be seen is cryptography, where EAs were used
to design block cyphers, hash functions, S-boxes, pseudo-random
sequences, Boolean functions, and many others [1].

Boolean functions are one of the basic cryptographic primitives.
They posses many interesting attributes, which can provide resis-
tance against various types of attacks [2]. One of the attributes is
nonlinearity, which allows the Boolean functions to provide nonlin-
earity to otherwise linear systems. They are often the only nonlinear
element in stream cyphers [3]. One of the types of functions pos-
sessing extremely high nonlinearity are called bent functions [4].
Because of the enormous size of the space of all possible Boolean
functions, bent functions are extremely rare, and there is no known
way of how to construct them all [4].

Linear genetic programming (LGP) is one of the forms of genetic
programing and broader category of EAs [5]. The program is repre-
sented as a linearly executed list of instructions, operating over a
set of registers [6]. Each instruction takes two registers as inputs,
performs a single operation selected from a predetermined set of
operations, and returns the result into one of the registers. The
inputs of the program determine the initial value of the registers,
while outputs are determined based on the values which are left in
the registers after the execution of the program.

Bent functions have been designed by genetic programming (GP)
or its speci�c variant called Cartesian genetic programming (CGP)
in particular [7]. A trait common to all of these approaches is the
di�culty of designing bent Boolean functions with high number of
inputs.

In this paper we propose to search for bent Boolean functions
using LGP. The new representation of the program brings several
advantages over other approaches. Unlike GP, LGP has the abil-
ity to reuse calculated results, and thus avoid many unnecessary
calculations and create shorter phenotypes. Over CGP, the new
approach limits the number of possible inputs and outputs, making
the evolution more e�ective. In CGP nodes pick their inputs from
any of the previously calculated values, making it less likely that
the input they selected will contain important previously calculated
value, or are strictly limited in what inputs they can choose. In LGP
the number of registers is traditionally signi�cantly smaller than
the number of instructions, making it more likely that a calculated
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Table 1: Frequency of bent Boolean functions.

number of Boolean bent relative
variables outputs functions functions frequency

2 22 24 23 2−1
4 24 216 ≈ 29.8 ≈ 2−6.2
6 26 264 ≈ 232.3 ≈ 2−31.7
8 28 2256 ≈ 2106.3 ≈ 2−149.7

value will be reused as an input for some further calculation, and
that the selected inputs will contain a meaningful value.

For the LGP approach, a parallelization using an island based
model of migration is proposed in this paper. A series of experi-
ments detailing the in�uence of individual evolutionary parameters
has been explored, the e�ciency of parallelization was tested, and
new bent Boolean functions with up to 24 inputs were created,
signi�cantly surpassing other approaches.

The paper is organized in the following way. Section 2 provides
the necessary de�nitions for bent Boolean functions and their pos-
sible representations. Related works, concerned with design of bent
Boolean function using EAs are presented in Section 3. Section 4
proposes a method of parallelization of the LGP approach to de-
signing bent Boolean functions, and describes how the proposed
approach was implemented. Following Section 5 describes the set-
ting and results of conducted experiments. The work is concluded
in Section 6, where the results are summarized and possibilities for
further research are suggested.

2 BENT BOOLEAN FUNCTIONS
A Boolean function f ofn variables is a map from the n-dimensional
vector space V2 = Fn2 to the two-element �eld F2. For a function
f , let f0 = f (0, 0, ..., 0), f1 = f (0, 0, ..., 1), and fnn−1 = f (1, 1, ..., 1).
TT = (f0, f1, ..., fnn−1 ) is the truth table representation of a function
f [8].

Linear Boolean function is either constant 0 function or the
exclusive OR (XOR) of any of its variables. A�ne function is either a
linear function or a complement of a linear function (thus including
both constant 0 and constant 1 functions). The nonlinearity Nf
of a function is the minimum number of truth table entries that
must be changed to convert function f to an a�ne function [4],
a value also known as the Hamming distance. Boolean function
is a function with maximum possible nonlinearity for the given
number of variables, which is equal to [9]:

Nf = 2n−1 − 2n/2−1 (1)

The high nonlinearity of bent Boolean functions makes them ex-
tremely di�cult to approximate with linear functions, providing
resistance to linear cryptanalysis [4]. The di�culty of searching
for bent Boolean functions resides in their scarcity. The relative
frequency of bent Boolean functions with up to 8 inputs is shown
in Table 1 [4]. Because functions with odd number of inputs cannot
satisfy the limit for maximum nonlinearity, all bent functions have
even number of variables.

2.1 Boolean function representations
Boolean functions can be represented in multiple ways. While these
forms are equivalent from the mathematical standpoint, they each
posses their own strengths an weaknesses in terms of their use [10].

Truth table representation stores the function in the form of a
binary vector of length 2n where n is the number of variables. The
values in the vector then de�ne the function outputs for all possible
combinations of inputs, ordered lexicographically. The weakness
of this type of a representation is its exponentially growing size,
making the function hard to store, and even harder to transmit.

Walsh transform representation (Walsh spectrum) uses Walsh
transform to measure the correlation between the function f (®x)
and all linear functions. For ®a ∈ Fn2 the linear function ®a.®x denotes
the dot product of ®a and ®x , which is de�ned as [11]:

®a.®x = x0a0 ⊕ x1a1 ⊕ ... ⊕ xnan (2)

where ⊕ represents addition modulo two (XOR). Walsh transform
of a Boolean function f (®x) is then de�ned as [11]:

Wf (®a) =
∑
®x ∈Fn2

(−1)f ( ®x )⊕( ®x . ®a) (3)

This means the Walsh transform calculates the Hamming distance
between the function f (®x) and a single linear function. Walsh spec-
trum is then obtained by applying Walsh Transform on the function
f (®x) and all linear functions. This allows for an easy computation
of the function’s nonlinearity, as a maximum of absolute values
in the Walsh spectrum. The transform itself can be calculated in
n logn steps using the Fast Walsh Transform algorithm [12]. The
disadvantage of this representation is that, similarly to the truth
table representation, its size grows exponentially with the number
of variables.

Algebraic normal form (ANF) represents a Boolean function f
on Fn2 , as a polynomial in F2[x0, ...,xn−1]/(x20 −x0, ...,x

2
n−1−xn−1).

The algebraic normal form is the multivariate polynomial P de�ned
as [10]:

P(x) = ⊕w ∈Fn2 h(w).x
w (4)

where h(w) is de�ned as the Möbius inversion principle [13]:

h(w) = ⊕x �w f (x), for any w ∈ Fn2 (5)

which means the function is represented as XOR of ANDs of its
variables. The bene�t of this representation is its size, which does
not necessarily grow with the number of variables. The negative
property is that outputs of the equation need to be evaluated every
time an output for given inputs is needed.

All of these methods are relevant for this paper. The truth table
representation is used during the execution of LGP, as vectors of
Boolean inputs are transformed into vector Boolean output. The
Walsh Transform is used to determine the nonlinearity property
of candidate solutions. ANF serves as a basis of our own Boolean
function representation, used to store the candidate solutions in
population and their transmission between computation cores.
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2.2 Boolean functions in cryptography
Boolean functions are most notably used in stream ciphers. These
ciphers use symmetrical cryptography to encrypt (decrypt) mes-
sages by taking their plain (ciphered) text and adding it modulo
two (XOR) with a pseudo-random sequence of equal length. This
sequence is called keystream, and is usually created by a linear
feedback shift register (LFSR). This register is initialized by a rela-
tively short secret key, and implements a polynomial of degree n to
calculate its output. If the polynomial is primitive, the generator
repeats its sequence with a period of 2n − 1, and has good statistical
properties [2].

However, the output of LFSR is not cryptographically secure.
Because LFSR is linear, it is vulnerable to linear attacks, and if the at-
tacker knows the output sequence, they can use Berlekamp-Massey
algorithm [14] to reconstruct both the generating polynomial and
its initial state, thus uncovering the secret key. To create a crypto-
graphically secure keystream, a nonlinear Boolean function takes
outputs of multiple LFSRs (combiner generator) or multiple outputs
from a single larger LFSR (�lter generator), and creates a single
output that is di�cult to approximate. Errors caused by inaccu-
rate approximation are equivalent to transmission noise [15]. The
goal of the Boolean function is to make the keystream so hard to
approximate, that even the best approximation will still contain
irreparable number of errors, thus preventing the linear attack.

There also exist other cryptographic attacks exploiting di�erent
weaknesses, and nonlinearity is not the only property the Boolean
function should posses [16]. These properties are balancedness,
algebraic degree, algebraic immunity, fast algebraic immunity, and
in the case of combiner generators, also resiliency [9]. Aside from
their use in stream ciphers, a version of Boolean functions called
vectorial Boolean functions (S-boxes) are also used in block cyphers,
where high nonlinearity remains one of the desired properties [2].

3 RELATEDWORK
EAs have already been used for designing bent functions in the
past [3, 17–22]. However, neither of these approaches have used
LGP. The search for highly nonlinear Boolean functions has �rst
been performed using genetic algorithms (GA) [17], which have
later been used for this purpose again, combined with hill climb-
ing [18]. GA and GP have further been used to �nd Boolean func-
tions possessing high nonlinearity and other cryptographically
important properties [19].

Evolution strategy, GA, GP and CGP have been used to design
bent Boolean functions of 8 inputs, and other highly nonlinear
functions with other cryptographic properties [20]. Aside from
generating bent functions directly, there has also been research
into constructions that would allow to construct bent functions
based on smaller bent Boolean functions, resulting in creation of
bent functions with up to 20 inputs [3].

The most advanced work came in the form of using multiple
variations of parallel CGP to design bent Boolean functions of up
to 18 inputs [21, 22]. These works are related not only in their goal,
but also in using similar manner of parallelization. They also try
to create bent functions of multiple sizes, allowing comparison in
terms of the ability to deal with increasing demand on the size of
functions designed.

4 PROPOSED PARALLELIZATION OF LGP
LGP allows multiple types of parallelization. A trivial way to par-
allelize calculation is to replace operations over Boolean variables
with integers, which can be treated as �xed-length arrays of Boolean
variables, making it possible to evaluate multiple independent in-
puts simultaneously.

Another layer of parallelism can be introduced by using multiple
calculation paths. If the number of registers is su�cient, multiple in-
structions can be calculated in parallel. The degree of parallelization
is then limited by the number of instructions that do not overwrite
the registers used as inputs or outputs of the other concurrently
executed instructions [6]. This method of parallelization shortens
the time required to evaluate the �tness function of individuals.

One of the ways to ensure that there will be no con�ict between
the executed instructions is to split the entire chromosome into
multiple sub-chromosomes, each using its own set of registers [23].
Aside from allowing parallel execution, this approach also man-
ages to suppress the negative properties of evolutionary operators
like code disruption. When used on complex problems, each sub-
chromosome can potentially focus on solving di�erent part of the
overall problem, promoting specialization, and allowing further
increases in e�ciency.

The problem of the non-trivial approaches used for paralleliza-
tion of �tness function calculation is their limited scalability. They
are limited by physical technology, and the e�ective number of
registers, or length of the overall chromosome respectively. A type
of parallelization, which can be implemented using a large number
of computation cores, is the island based model of evolution [24].
In this approach the population is split into multiple separate sub-
populations, each assigned to a single core. In this coarse-grained
model, each of these populations is evolved independently, and the
best found individuals are occasionally transmitted along a given
topology, and integrated into the other sub-populations [25]. If this
migration happens asynchronously, each core can spend the maxi-
mum of its runtime by performing computation, without having to
wait for outside inputs. This is useful as the evaluation of various
individuals can require di�erent amounts of time to evaluate based
on the length of their phenotype. The lack of need for a �ne-grained
synchronization makes this approach highly scalable, in some cases
reaching super-linear speedup [26].

4.1 Implementation of LGP
The implementation has been done in standard C++ and paral-
lelized using Message Passing Interface (MPI). The communication
happens over a simple one-way ring topology, because prelimi-
nary experiments have shown that excessive communication has
detrimental e�ect on the quality of provided results.

Individuals are stored in a steady-state population, and selected
via tournament. Initial population is generated randomly, and new
individuals are created by a single point-crossover of the tourney’s
best individuals, or if the crossover rate is not supposed to happen,
as a plain copy of the best individuals. In both cases the newly cre-
ated individual also undergoes universal mutation, where each of its
instruction has a given chance of being replaced by a new randomly
generated instruction. The worst individual in the tourney is then
replaced by the new one, and its �tness is evaluated. Bent functions
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always factor all of their primary inputs, and favoring functions
that use greater number inputs speeds up the evolutionary process.
For this reason, the �tness is de�ned as:

f itness = Nf ∗ 100 + u (6)
where Nf is the nonlinearity, and u represents the number of pri-
mary inputs used in the individuals phenotype. Because the goal is
to create Boolean functions in shortest possible time, other possible
parameters, like the length of the generated phenotypes, are not
factored.

During �tness evaluation the chromosome is searched for ac-
tive instructions, which create the individual’s phenotype. These
instructions are then applied on all possible inputs, 64 bits at a time,
and stored in a truth table. It is then translated into Walsh spec-
trum using the Fast Walsh-Hadamard transform. Nonlinearity is
calculated as a maximum of absolute values in the Walsh spectrum.

Each instruction takes two inputs, which can be either one of
the primary inputs, or one of the registers, applies an operation,
and provides one output, which is stored into one of the registers.
Operation to be applied is selected from a set of only two instruc-
tions {AND, XOR}, based on ANF in which all bent functions can be
represented. This however does not guarantee that the generated
functions will be in ANF, as the other of operations can be di�erent.
Following is the example of a phenotype representing a 14-bit bent
function:
r0 = X11 AND X2; r5 = X3 XOR X12; r5 = X9 AND r5;
r7 = X4 AND X8; r3 = X14 AND X13; r6 = X6 AND X3;
r8 = r7 XOR r3; r9 = r6 XOR r8; r6 = X1 AND X5;
r5 = r5 XOR r0; r5 = X6 XOR r5; r8 = X10 AND X7;
r0 = r5 XOR r8; r0 = r9 XOR r0; r0 = r6 XOR r0;

where X1-X14 are the primary inputs, r0-r9 are the registers. Before
the �tness calculation all registers are initialized to zero, and r0 is
used to store the output.

After the �tness of a new individual is calculated, it is com-
pared to the �tness of the best known individual from the given
computation core, and if new best �tness was found, the value is
updated, and the individual is sent to the core’s neighbors, along
with information about its �tness. The receiving core integrates the
individual into its own population during the evolutionary process,
by skipping creation and �tness evaluation of a new individual, and
replacing the tournament’s loser, by the received individual, and
possibly forwarding it to the next core in topology, according to
the received value of �tness.

5 RESULTS
The implementation of LGP has been used to conduct three ex-
periments. The �rst experiment focused on �nding the optimized
evolutionary parameters. The second examined the e�ectiveness
of used parallelization model. The third experiment designed bent
functions of largest size possible. To obtain statistically meaningful
results, 100 runs have been performed for every experiment. Due
to limitations on available resources, all runs were limited to 1 hour
of maximum runtime.

All experiments were performed on a computing cluster using
up to four nodes with the following hardware con�guration: 2 x
Intel Xeon E5-2680v3 processor, 2.5 GHz, 12 cores; 128GB RAM,

Figure 1: Combination of chromosome length and register
count parameters, providing the bestmean runtime for bent
functions of various sizes.

Figure 2: Combination of chromosome length and register
count parameters, providing the best median runtime for
bent functions of various sizes.

5.3 GB per core, DDR4@2133 MHz; In�niBand FDR56 network
connection.

5.1 Search for LGP parameters
Because, to our best knowledge, LGP has never been used for de-
signing bent Boolean functions before, the �rst experiment focuses
on �nding the optimal evolutionary parameters. To provide infor-
mation whether the values are dependent on the desired function
size, the search is conducted on bent functions of 6 to 14 inputs.
Six parameters are evaluated, two at a time, in order to limit the
size of the search space. Namely they are {register count, chromo-
some length}, {crossover rate, mutation rate}, and {tournament size,
population size}. Initially the values for the other four parameters
are selected based on previous experience. When the experiment is
done, the values considered best for the largest tested bent function
are taken as the new initial values, and the entire experiment is re-
peated. These values are selected, because they are most relevant to
design of other even larger bent functions in the other experiments.
The experiment has been performed on a computation cluster using
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Figure 3: Combination of crossover and mutation rate pa-
rameters, providing the best mean runtime for bent func-
tions of various sizes. Combinations providing the best me-
dian runtime were similar.

Figure 4: Combination of population and tournament size
parameters, providing the best mean runtime for bent func-
tions of various sizes. Combinations providing the best me-
dian runtime were similar.

24 cores. The measured variable was the runtime required to �nd a
bent function with the desired number of inputs.

The �rst examined pair of parameters were the chromosome
length and the number of registers added to the single mandatory
output register. In the experiment’s �rst iteration, the tested values
ranged from 30 to 300 (step size 30) for chromosome length, and
3 to 30 (step size 3) for register count respectively. In the second
iteration, the experiments were performed with decreased gran-
ularity, focusing on the area around the expected value. Ordered
in ascending order based on the function size, the granularity of
chromosome length was {5,10,15,15,15} instructions and {1,2,2,2,2}
registers.

The combination of these parameters that resulted in the best
mean and median runtime are shown in Figures 1 and 2, respec-
tively. Larger bent functions require longer chromosomes and more
registers available. The two values remain proportional, with the
ideal rate staying around 10 instructions for every register. The
parameters to obtain the best median runtime are lower than those

Table 2: Evolutionary parameters used for designing large
bent functions.

Parameter Value

Chromosome length 250
Crossover prob. 100%
Mutation prob. 3.5%
Register count 24
Tournament size 6
Population size 10

providing best mean runtime. This shows, that while shorter chro-
mosomes with fewer registers often �nd the solution faster, they
also lead to a signi�cant number of extremely long runs. For the
purpose of other tests, the setting leading to best mean runtime
have been selected.

The second examined pair of arguments was the crossover and
mutation rates. In both iterations and for all function sizes, the
examined mutation rate ranged from 0.5 to 5% (step size 0.5%) and
the crossover rate ranged from 0 to 100% (step size 10%). The results
providing the best mean runtime value is shown in Figure 3, with
the results for best median runtime being similar. LGP performs
best with high probability of crossover, in the range of 40–100%,
and small mutation rate around 3.5%, regardless of the number of
function inputs.

The third examined pair of parameters were the population and
tournament sizes. In both iterations and for all function sizes the
tournament size ranged from 2 to 10 (step size 1). In the �rst itera-
tion, the examined population size ranged from 10 to 100 (step size
10). Because smaller populations performed better for all function
sizes, the range was changed to 10 to 50 (step size 5) in the second
iteration.

Figure 4 shows the results providing the best mean values with
the best median values being extremely similar. Regardless of the
function size the best results are obtained with small population
and a large tournaments, creating very high evolutionary pressure.
In some cases, the tournament and population sizes were the same,
thus e�ectively leaving the individuals with intermediate �tness out
of the evolutionary process. This creates doubt over the suitability
of steady-state population scheme for the purposes of this LGP
approach, and suggests a venue for further study.

Based on these results, the parameters shown in Table 2 were
selected as the best for design of large bent Boolean functions using
the LGP approach.

5.2 Evaluation of parallelization
To evaluate the e�ectiveness of the island model using one-way
ring topology, an experiment was conducted, using the same evolu-
tionary settings with di�erent number of computation cores. Bent
functions with 20 inputs are designed using the best setting from
the previous experiment. The number of inputs was selected as the
largest function size the implementation is able to reliably create
under one hour using a single core. The examined values are the
total runtime, runtime per core, and total number of �tness function
evaluations.

1829



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Jakub Husa and Roland Dobai

Table 3: Results obtained by design of bent functions with
20 inputs using di�erent number of cores.

cores runtime [s] core run [s] evaluations eval run [s]
1 564.2840 564.2840 25007.63 0.0226
3 165.8795 497.6385 28051.02 0.0177
6 118.7637 712.5821 40105.78 0.0178

12 61.2441 734.9292 41348.42 0.0178
24 61.0679 1465.6299 53444.42 0.0274
48 32.0727 1539.4909 56817.47 0.0271
96 21.5422 2068.0509 75815.44 0.0273

In this experiment the parameters shown in Table 2 were used
to create bent Boolean functions with 20 inputs, using 1 to 96 com-
putation cores. The results of the experiment presented in Table 3
show that parallelization is successful and adding multiple computa-
tion cores signi�cantly improves the application runtime. However
the speedup is not linear. Column core run shows the increase in
the overall runtime for all computation cores combined, with the
maximum number of cores requiring nearly four times as much
total runtime to perform the same task as a single independently
performing core.

Part of this increase can be explained by the increase in total num-
ber of �tness function evaluations shown in the column evaluations.
The gradual increase in this value implies that the communication
topology used to parallelize LGP approach is not ideal. While the
sub-populations are still being evolved at their own rate, the lag
in distribution of the globally best known individual limits their
e�ectiveness. The analysis of the in�uence of di�erent topologies
could motivate further study. In the last column marked as eval run,
the average runtime per core needed to perform a single �tness
function evaluation is shown.

Evaluations using 12 of fewer cores required signi�cantly less
time to perform a single �tness function evaluation, than when a
larger number of cores was used. This can be explained by examin-
ing the underlying hardware con�guration. Because the computa-
tion nodes are equipped with two 12-core processors, experiments
using this number of cores are localized to a single physical pro-
cessor using a single physical memory, allowing extremely fast
communication.

The single core implementation used during the experiments
was pruned from all code pertaining the communication and syn-
chronization with the intent to potentially increase the speed of
evaluation, and were run 24 at a time on a single node. While
these runs should in theory be entirely separate, physically the HW
con�guration likely caused competition during memory access.
Therefore, while removing the need for communication sped up the
evaluation in comparison to 24 cooperating processes, the results
were worse, than when the node was only partially loaded.

The obtained results can be compared to similar experiments
performed using CGP [22], where parallelization using 4 cores
reduced the average runtime by factor of 3.35, and 40 cores by a
factor of 9.78. The information about the number of �tness function
evaluations is not available, but the e�ectiveness is similar to LGP
using a comparable core count.

5.3 Design of bent Boolean functions
The purpose of the last experiment is to create the largest bent
functions possible, and compare the results provided by LGP to
other approaches. Functions of 6 to 24 inputs were designed using
the settings found in �rst the experiment presented in Table 2.
While the evolutionary parameters ideal for larger functions may
be di�erent than for 14-bit bent functions, the amount of runtime
required for their evaluation makes it impossible to perform enough
runs to obtain statistically meaningful results.

The results, obtained using 96 cores, are shown in Table 4. All
runs performed with 6 to 22 inputs have ended successfully by
creating a bent Boolean function. For 24 inputs, 2 out of the 100
runs have failed to create a bent function, and they were accounted
into the dataset with the values they possessed at the end of their
one hour run somewhat skewing the average values.

For functions with 8 to 12 inputs the runtime stayed nearly the
same due to the time required for initiation of communication
infrastructure, and evaluation of initial population. Lasting about
20 milliseconds, its in�uence on the runtime of larger functions is
negligible, and the runtime they require grows at increasing rate.

Other characteristics of the evolution have been considered as
well. For all function sizes, the average length of phenotype is
around 50 instructions, even for smaller bent functions. This is likely
caused by the length of chromosome and the lack of optimization for
this parameter. The number of �tness function evaluations shows
one of the main reasons for the rapid increase in runtime. Larger
bent functions appear with lower frequency and the evolutionary
process needs to perform more generations to reach its goal. This,
combined with the growing size of truth tables, shows why larger
bent functions are so hard to �nd. The last measured parameter
shows the total number of messages sent, which averages at one
message per 15 to 40 �tness function evaluations, representing the
relative frequency of migrations between islands.

The results of this test are compared to results provided by CGP
in other works, as shown in Table 5. The comparison shows that
the LGP approach is signi�cantly faster than both CGP implemen-
tations. This could be at least partially accounted to the use of more
modern hardware. However, LGP also performs better in regard
of the relative increase in runtime required for design of larder
functions. This makes LGP more suitable for creation of very large
bent functions, and allowed the creation of bent functions with up
to 24 inputs in manageable time.

The rate at which runtime increases suggests that, given more
time, LGP should be able to create even larger functions. The ex-
pected growth rate is a roughly tenfold increase in runtime for every
two additional inputs. Because the experiment used the setting ideal
for designing 14-bit bent functions, it should also be possible to
shorten the runtime by applying evolutionary parameters suitable
for larger functions. The values of chromosome length and number
of registers in particular have been shown to increase with increas-
ing number of inputs. Analysis of these parameters on runtime
required for design of large bent functions presents an opportunity
for further study.
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Table 4: Results of bent function design.

input time [s] mean values
size mean median deviation phenotype evaluations messages

6 0.0197 0.0193 0.0026 63.90 6853.52 423.29
8 0.0204 0.0199 0.0022 53.66 10436.91 651.67
10 0.0225 0.0219 0.0036 51.76 13323.56 914.55
12 0.0311 0.0303 0.0041 47.87 17178.94 1184.89
14 0.0824 0.0766 0.0233 48.32 23918.58 1472.75
16 0.3459 0.3112 0.1391 46.24 30941.52 1733.66
18 2.2523 1.8654 1.2530 45.98 49270.83 2089.75
20 19.4152 14.2275 16.1421 48.03 69168.67 2375.32
22 230.9818 150.1619 181.5669 47.28 116466.26 2774.53
24 1095.7768 770.8292 845.4280 50.09 127075.23 3115.01

Table 5: Comparison of LGP with other state of the art ap-
proaches.

input LGP CGP1 [22] CGP2 [21]
size time [s] inc. time [s] inc. time [s] inc.

12 0.0311 – 0.3859 – 0.84 –
14 0.0824 2.65 15.806 40.96 3.62 4.31
16 0.3459 4.2 636.13 40.25 40.88 11.29
18 2.2523 6.51 – – 814.02 19.91

6 CONCLUSION
In this paper, a new approach to designing bent Boolean functions
has been proposed using LGP. While other forms of GP have been
used for design of bent and other interesting types of Boolean
functions in the past, they have all struggled to maintain their
e�ciency when used to design functions with large number of
inputs. While some increase in runtime is inevitable due to the
increasing scarcity of larger bent functions, it is crucial for these
increases to be minimized.

To make use of modern hardware, the approach is parallelized
using island model with one-way ring topology to achieve signi�-
cant decrease in runtime, and design bent Boolean functions that
could not be otherwise created within an acceptable time frame.
The scalability of the approach was worse than linear, and presents
a potential for further study.

In�uence of multiple evolutionary parameters on the perfor-
mance of LGP were explored, and values suitable for designing bent
Boolean functions of various sizes were found. The ideal length of
the chromosome and number of registers scales with the number
of inputs, and the ratio between the two values remains the same.
LGP woks best with high rate of crossover (40–100%), and moderate
rate of mutation (around 3.5%), regardless of the number of inputs.
LGP also works best with high evolutionary pressure, created by
small population combined with large size of tournament selection,
suggesting a possibility of further experimentation using various
population schemes.

The approach has been used to design bent Boolean functions
of up to 24 inputs, which is signi�cantly more than with other
methods. Comparison with other similar works also shows that

LGP copes better with increasing demand on the size of functions
it designs, and shows promise for further use.

Aside from the possibilities already mentioned, future works will
focus on using this new approach to create other types of Boolean
functions with other cryptographically interesting properties, like
balancedness, algebraic degree, algebraic immunity, fast algebraic
immunity and resilience.
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