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ABSTRACT
Automatic algorithm con�gurators can greatly improve the perfor-
mance of algorithms by e�ectively searching the parameter space.
As algorithm con�guration tasks can have large parameter spaces
and the execution of candidate algorithm con�gurations is o�en
very costly in terms of computation time, further improvements
in the search techniques used by automatic con�gurators are im-
portant and increase the applicability of available con�guration
methods. One common technique to improve the behavior of search
methods when evaluations are computationally expensive are sur-
rogate model techniques. �ese models are able to exploit the scarce
available data and help to direct the search towards evaluating the
most promising candidate con�gurations. In this paper, we study
the use of random forests models as surrogate models in irace, a
�exible automatic con�guration tool based on iterated racing that
has been successfully applied in the literature. We evaluate the
performance of the random forest model using di�erent se�ings
when trained with data obtained from the irace con�guration pro-
cess and we evaluate their performance under similar conditions
as in the con�guration process. �is preliminary work aims at
providing guidelines for the incorporation of random forest to the
con�guration process of irace.
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1 INTRODUCTION
Algorithm con�guration is a crucial step when developing or ap-
plying algorithms. Parameter se�ings have o�en a substantial
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e�ect on algorithm performance. Finding adequate parameter set-
tings can be a complex task as parameter spaces may be large, the
evaluation of a parameter se�ing is computationally expensive
as it involves actually executing an algorithm, parameters may
have strong (non-linear) inter-dependencies, and the evaluation of
candidate algorithm con�gurations is inherently stochastic. �e
algorithm con�guration problem is very relevant for the automatic
design of algorithms, not only because of the e�ects of parame-
ter se�ings on the performance of algorithms, but also because
the design of algorithms itself can be modeled as an algorithm
con�guration problem. Design choices can be represented as the
domain of categorical parameters that, under de�ned rules, can be
combined to obtain more specialized and e�ective algorithms. Sev-
eral general-purpose automatic algorithm con�guration tools have
been proposed in the literature such as Paramils [10], SMAC [9],
GGA++ [1] and irace [15]. �ese tools provide methods to e�ec-
tively con�gure algorithms by searching the algorithm parameter
space trying to optimize performance over a provided set of train-
ing instances. Irace is an automatic con�gurator based on iterated
racing, it has been successfully applied to con�gure di�erent types
of algorithms [15], it is freely available as an R package1 and it does
not require any speci�c knowledge of R or the inner workings of
irace itself.

Surrogate models have been widely applied in optimization [4,
13, 14]. �ey have shown to be particularly useful when the prob-
lem at hand involves computationally expensive evaluations (e.g.
simulations) or very limiting time constraints (e.g. real time sys-
tems). Sequential model-based optimization (SMBO) is an example
of a model-based algorithm, in which a surrogate model is itera-
tively built using the available solution evaluations. �is model is
searched to select new solutions that optimize the prediction of
the model and real evaluations are only performed on the most
promising solutions. In this way, the surrogate model provides an
inexpensive evaluation procedure that can be used to guide the
search towards promising regions of the search space. As the eval-
uation of algorithm con�gurations is inherently costly, requiring
the actual execution of candidate con�gurations on a number of
training instances, it seems natural to exploit surrogate modeling
techniques also in the context of automated algorithm con�gura-
tion. Moreover, these models could be later used for the analysis of
properties of algorithm components providing insights that could
be used in automatic algorithm design. Some initial work in this
direction has been done already more than a decade ago [5], and it
has shown to be useful also in at least two high-performing auto-
matic algorithm con�guration packages, SMAC [9] and later also
GGA++ [1]. SMAC is a state-of-the-art model-based automatic
con�gurator based on SMBO. SMAC builds a random forest model

1�e irace package: h�p://iridia.ulb.ac.be/irace/
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to predict the expected improvement of unseen con�gurations in
order to select the most promising to be evaluated. �e GGA++ au-
tomatic con�gurator implements a model-based genetic algorithm
that embeds a random forest model especially adapted to predict
high-performing areas of the search space. �is model is used to
determine the most promising o�spring to be evaluated. A study
of di�erent possible models to predict algorithm performance has
been undertaken by Hu�er et al. [11], where these models are called
empirical performance models. �ey identi�ed random forests as
the most promising models to generate accurate predictions.

Irace is an iterated racing algorithm where in each iteration
�rst a set of candidate con�guration is sampled according to a
probabilistic sampling model, then the best con�gurations are de-
termined using a racing procedure, and �nally the probabilistic
model is updated, taking into account a set of the best candidate
con�gurations and biasing the probabilistic model towards these
best candidate con�gurations. Irace can be seen therefore as an
estimation of distribution algorithm. �e sampling model helps
irace to focus the search on good areas of the search space, while
allowing it to explore the search space in the initial iterations when
the sampling is still wide. �e model used in irace has the advan-
tage of being very simple and providing an easy way to control its
search behavior. Regardless of this, the model is limited compared
with more powerful ones such as the random forests models. For
example, parameter interactions are only taken indirectly into ac-
count: irace is based on a kind of local modeling approach, but at
each local model no parameter interactions are explicitly modeled.
Given the amount of algorithm evaluations performed by irace
during the con�guration process, it would be interesting to use a
more powerful model to improve the data usage and to generate
information on parameter interactions or, more in general, the pa-
rameter landscape, which in turn could be used as feedback for the
con�guration process. For this aim, random forests seem to be a
natural choice, given their ability to deal with di�erent types of
variables (discrete, numerical) and their previously reported good
predictions when used as empirical performance models [11]. In
this paper we study and evaluate the use of random forest models
to support the con�guration process performed by irace. We do
so by examining the prediction performance of the random forest
when trained on data stemming from an irace run. We consider the
integration of random forests into irace by, a�er the sampling of
candidate con�gurations, applying the predictions of the random
forest models to �lter the most promising candidate con�gurations
before these are evaluated in a race. In contrast with SMAC, we
do not search the model to select promising con�gurations and
we perform the selection based on the predicted performance and
not the expected improvement. In this sense, the usage made of
random forest models we study in this work is more similar to the
usage in GGA++.

�e paper is structured as follows. Section 2 gives a short
overview of irace and introduces the random forest models de-
scribing their use in the SMAC and GGA++ con�gurators. We
describe the algorithm con�guration scenarios, the data sets and
the details of the random forest models used in this work in Sec-
tion 3. Section 4 evaluates the performance of the random forest
model using di�erent characterizations over data sets obtained from
the con�guration scenarios. In Section 5, we give a preliminary

Figure 1: Con�guration process in irace.

comparison between irace and using the random forest to �lter
con�gurations in irace. Finally, Section 6 concludes and discusses
future work.

2 BACKGROUND
2.1 Algorithm con�guration and irace
Algorithm con�guration is the task of �nding parameter se�ings
(con�gurations) of a target algorithm, that exhibit good empirical
performance on a given set of problem instances. Con�guration
tasks (scenarios) must de�ne: a target algorithm, a performance
measure to optimize, a parameter search space, a set of problem in-
stances, and a con�guration budget (evaluations or time). �e most
common performance measures are solution quality and running
time. �e �rst one is more common when con�guring metaheuris-
tics, while the second is more common when con�guring exact
algorithms. Normally, the instance set is assumed to be representa-
tive of the instances to be encountered when applying the target
algorithm. A con�guration scenario can be classi�ed as homoge-
neous or heterogeneous depending on how homogeneous is the
relative performance of con�gurations regarding the instance set.
Heterogeneous scenarios have the additional di�culty of requiring
evaluations on a large number of di�erent instances to determine
con�gurations that perform well across the instance set; homo-
geneous scenarios may evaluate less instances and explore more
the parameter search space. Parameter spaces are de�ned by as-
signing a set of possible values to each parameter. �e types of
parameters available to be used depend of the con�gurator at hand.
�e parameter types supported by irace are: categorical parameters
whose domain is a set of unordered values (e.g. the type of local
search to be used in an algorithm), ordered parameters similar to
the categorical ones but the values have an order relationship (e.g.
perturbation strength: none, low, medium, high, very high), integer,
and real parameters. Conditionality is also supported; a conditional
parameter is a parameter that is active only if one or more parame-
ters have certain values (e.g. the tabu list size will be only active
when tabu search is selected as local search). When the conditions
of a parameter are not met, the parameter is not active and ignored.

As already mentioned, irace [15] is an iterated racing-based algo-
rithm [2, 6]. Figure 1 illustrates the con�guration process performed
by irace. �e process starts by generating candidate con�gurations
uniformly at random from the parameter space. Additionally, a set
of user-de�ned initial con�gurations can be provided. A racing
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procedure is then applied to this set of con�gurations. It iteratively
executes con�gurations on problem instances; con�gurations that
perform statistically worse (assessed by means of a statistical test,
commonly the Friedman test or t-test) are discarded and only the
remaining con�gurations continue executing new instances until
the termination criterion of the race is met. Next, the best surviving
con�gurations (elite con�gurations) update a probabilistic model,
from which new candidate con�gurations are sampled. Finally, the
set of elite and new con�gurations undergo a new race. Elite con-
�gurations cannot be discarded from the race until all previously
seen instances have been executed by the new con�gurations. For
more details about irace we refer to [15].

2.2 Random forest
Random forests [7] is an ensemble model technique in which, sev-
eral classi�cation or regression trees are built in order to compose
a high performing model. �e aim of this method is to obtain a
be�er predictive performance by overcoming the over-��ing that
commonly a�ects single trees. �is is done by training several
trees with di�erent subsets of the training data and aggregating
their predictions. A data point is de�ned as ({x1

i , . . . ,x
j
i }, ri ), where

{x1
i , . . . ,x

j
i } is a set of independent variables (predictors) and ri is

the dependent variable (response) to be predicted. �e data subsets
used to build each tree are sampled using the bagging technique,
where msample data points are sampled with replacement from the
data set. �ese points are used to build a tree by selecting at each
node a random subset of msplit independent variables to be eval-
uated to perform a split. �e split variable and spli�ing point are
selected with a de�ned spli�ing criterion based on the dependent
variable values of the data points present in the node. �is spli�ing
process is continued until at least mmin data points are in each
terminal node. Once the full tree is built, new data points can be
predicted by carrying them through the tree and aggregating the
dependent variable values present at the terminal node reached.

Random forests are used in SMAC [9]. �e con�guration process
in SMAC consists in �rst iteratively searching the random forest
model to obtain a con�guration that maximizes the expected im-
provement; then performing the evaluation of the con�guration
comparing it with the current best con�guration on a set of in-
stances; and, �nally, improving the model to restart the search. For
more details about the SMAC algorithm we refer to [9]. �e use of
random forests in SMAC has shown to be bene�cial when con�gur-
ing certain scenarios. �e training data for the random forest is built
by using the parameter values of a con�guration (nparam) and the
instance features (nfeat) as independent variables, and the observed
performance as the dependent variable. Instance features are only
added when available, otherwise an identi�er of the instance is
used. �e random forest model is trained using these data points
and the predicted performance is obtained by aggregating (using
the mean or median) the predictions for all training instances. By
default in SMAC, the random forest model consists ofmtrees = 10
trees, each of them trained with a sample ofmsample = 90% of the
available data points. To split a tree node, a minimum ofmmin = 10
data points is required and msplit =

⌈
(nparam + nfeat) · (5/6)

⌉
of the

independent variables are evaluated as candidates for the split.

GGA++ [1] employs a random forest model to assist in the cross-
over of candidates con�gurations. GGA++ is a genetic-based con-
�gurator, that implements a tree-based representation of con�gu-
rations which permits the de�nition of a cross-over operator. At
each iteration, candidate con�gurations (belonging to a set of the
population) are selected to mate and the resulting child is then
mutated. �e o�spring of two parent con�gurations is obtained
by searching the con�guration space of all the possible combina-
tions of the parents parameter values. �e search is performed
by sampling a number of con�gurations using a sampling method
based on the parameter values of the parents and the structure of
a random forest model trained with the available solution evalua-
tions. �e sampled con�gurations are evaluated with the random
forest model and the con�guration with the higher predicted perfor-
mance is selected. �e random forest model of GGA++ implements
a spli�ing criterion designed to focus the model on the best 10%
performing con�gurations. At each node, the possible split vari-
ables are evaluated by measuring how well they keep the 10% best
performing con�gurations in one node, while maintaining the most
low-performing ones in the other.

3 EXPERIMENTAL SETUP
In this section, we describe the experiments carried out to evaluate
the random forest models to be used in the irace con�guration
process.

3.1 Con�guration scenarios
We perform the experiments based on performance data obtained
by con�guring with irace four con�guration scenarios (two for
optimising solution quality and two for minimising running time):
ACOTSP: ACOTSP [16] as target algorithm for con�guring solu-

tion quality with 11 parameters (3 categorical and 8 numerical).
Executions have 20 seconds of execution time and the training
and testing set are each composed of 50 and 250 instances re-
spectively. �ese instances are random uniform Euclidean TSP
instances varying from sizes 1000 to 3000. �e total con�gura-
tion budget is 5000 evaluations.

ACOTSP 2000: Same characteristics as the ACOTSP scenario, but
the training and testing set is each composed of 200 random
uniform Euclidean TSP instances of size 2000.

Regions 100: CPLEX [12] version 12.4 is used as target algorithm
for minimising computation time with 74 categorical parame-
ters. Evaluations have 5 seconds of maximum execution time
and the training and testing set is composed of 1000 mixed
integer programming (MIP) instances each. �ese instances
are encodings of a combinatorial auction winner determination
problem with 100 goods and 500 bids. �e total con�guration
budget is 18000 seconds.

Spear: Spear [8] as target algorithm for minimising computation
time with 26 categorical parameters. Evaluations have 300 sec-
onds of maximum execution time and the training and testing
set is composed of 302 SAT instances each. �e total con�gura-
tion budget is 172800 seconds.

�e instance test sets mentioned above are only used when evalu-
ating the performance of irace and are not used with the random
forests models.
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3.2 Data sets
To perform the training and evaluation of the random forests mod-
els, we use data sets of the performance of candidate con�gurations
in the training instance set. A data point is de�ned as (θs , i, r

i
s ),

where θs are the parameters values selected in con�guration s , i
is an instance and r is is the performance of con�guration s on in-
stance i . We choose not to use instance features given that these are
not always available in real-world problems and the focus of this
evaluation is on the more general case. Consequently, a di�erent
analysis should be performed if instance features are used to build
the model. We de�ne two types of data sets as follows:

uniform: data sets that were created by sampling uniformly 1000
con�gurations from each con�guration scenario; these con�g-
urations are executed on the instance training set.

real: data sets that were created by obtaining the performance
evaluated by irace at di�erent stages of the con�guration pro-
cess. �e real-�rst data set is composed by the data points
obtained by irace on the �rst iteration of the con�guration pro-
cess and the real-last data set is composed of all data points
obtained by a full irace execution.

In order to train the random forest model, we de�ne categorical
and numerical parameters as categorical and numerical indepen-
dent variables respectively. Moreover, parameter search spaces
commonly de�ne conditional parameters that is, parameters that
are only active when one or more other parameters have certain
values. �is conditionality can be handled as missing values in
the data sets and therefore they must be imputed. In this work,
we have assigned a constant string to impute missing categorical
data points and use the double of the upper bound of the param-
eter domain (2 ∗ max(domain(dparam ))) for numerical ones. As
already mentioned, the instances are also added to the data points
as independent categorical variables.

3.3 Random forest models
�e random forest models are trained using the data sets described
in the previous section. �e performance prediction of an unseen
con�guration s is obtained as: ps = mean(p1

s , . . . ,p
i
s ), where pis

is the predicted performance of con�guration s on instance i and
pis =mean(pi,1s , . . . ,p

i, j
s ), where pi, js is the predicted performance

of con�guration s on instance i obtained by the tree j in the random
forest model. In this work, we use the ranger [17] implementation
of random forest, using the interface for the library provided as an
R package2. We use the default split criterion that is, the reduction
of node impurity, where impurity is measured as the Gini index or
the estimated prediction variance for classi�cation and regression
trees, respectively.

4 RANDOM FOREST EVALUATION
In this section, we perform an analysis of the random forest models
using algorithm performance data in order to evaluate their per-
formance predicting the quality of unseen con�gurations and how
they can support the con�guration process e�ectively.

2ranger package version 0.7: h�ps://cran.r-project.org/package=ranger

Table 1: Random forest model settings

mtrees msample msplit mmin

default se�ings 10 0.9
⌊√

(nparam + 1)
⌋

10
tuned se�ings 500 1 ⌈

(nparam + 1) · 0.5⌉ 10

Table 2: Correlation coe�cient of the average ranking of the
real and predicted performance of 1000 con�gurations using
random forest models trained with real-�rst and real-last
data sets, default random forest settings (Table 1) are used.

ACOTSP ACOTSP2000 Regions 100 Spear
real-�rst 0.7927 0.8836 0.2762 0.2155
real-last 0.8456 0.9031 0.3845l 0.3069

4.1 Random forest models using irace data
In the following experiments we use the real data sets. Two models
are built using the real-�rst and real-last data sets. �e �rst one
aims at studying how much it is possible to rely on the random
forest model in early iterations, and the model trained with real-
last aims at studying the performance of the models in the best
possible case and their applicability a�er the execution of irace
to predict high-performing con�gurations. �e evaluation of the
models is done using the data points of the uniform data sets
and we evaluate their performance by calculating the correlation
coe�cient of the average ranking of each con�guration over the
training instances on the real and predicted performance. �is
evaluation is chosen given that we are not interested in obtain-
ing an accurate prediction of the con�guration performance, but
more on predicting which con�gurations have more potential to
be high-performing. For the computation time data sets, Regions
100 and Spear, we trained the models with the log-transformed run
time as dependent variable. �is is a common practice to improve
performance of models trained to predict algorithm running times.
Table 1 gives the random forests se�ings used in the experiments.
�e default se�ings were chosen based on the default se�ings of
SMAC and the default se�ings of the ranger library. �e tuned
se�ings correspond to the se�ings used to perform experiments
with the random forest and irace, and were de�ned based on the
following experiments.

Table 2 gives the correlation coe�cients of the ranking of real
performance of the 1000 uniformly sampled con�gurations and
the predicted performance obtained by the models trained with
the real-�rst and real-last data sets. �e initial tests show that
the solution quality and running time data sets are very di�erent.
While both ACOTSP models obtain a high correlation coe�cient on
the two irace data sets, on the Spear and Regions 100 scenarios it is
much lower. As can be expected, the performance of the models im-
proves when the real-last data set is used for training, which is due
to the fact that this data set contains more data points and therefore
gives more information about the search space. We presume that
the high correlation obtained by the models trained with real-�rst
on the ACOTSP scenarios is due to the existence (based on our
experience) of parameter values that strongly in�uence the perfor-
mance of ACOTSP. �e evaluations performed on the �rst iteration
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Table 3: Correlation coe�cient of the average ranking of the
real and predicted performance of 1000 con�gurations using
random forest models trained with the real-last data set, de-
fault settings and di�erent values for themtrees.

mtrees 2 10 50 100 500 1000
ACOTSP 0.800 0.846 0.889 0.908 0.916 0.915
ACOTSP2000 0.873 0.903 0.928 0.931 0.933 0.933
Regions 100 0.176 0.384 0.518 0.533 0.552 0.553
Spear 0.202 0.307 0.445 0.469 0.510 0.506

Table 4: Correlation coe�cient of the average ranking of the
real and predicted performance of 1000 con�gurations using
random forest models trained with the real-last data set, de-
fault settings,mtrees = 500 and di�erent values formsp.

msp 0.1 0.3 0.5 0.8 1.0
ACOTSP 0.890 0.926 0.931 0.928 0.924
ACOTSP2000 0.917 0.935 0.937 0.936 0.936
Regions 100 0.551 0.613 0.636 0.658 0.668
Spear 0.433 0.561 0.585 0.586 0.570

are enough for the random forest model to identify this feature
and obtain a be�er prediction. On the other hand, the Regions 100
and Spear scenarios have a very low correlation for both models.
�is may be an e�ect of the size of the parameter space, that makes
di�cult for the random forest model to capture the features of the
search space with the much larger number of parameters of SPEAR
and CPLEX. �e number of trees (mtree) could play a big role in
such poor results since we only use 10 trees in the forest.

We use the real-last data set to perform experiments exploring
the number of trees built in the random forest. Table 3 gives the
performance obtained by the models using di�erent forest sizes.
As expected, the performance of the models increases when the
number of trees is increased. �is is particularly clear for the biggest
scenario (Regions 100), where the performance is strongly increased.
For the ACOTSP scenarios the performance increases very slightly,
indicating that for these data sets only a few trees are necessary.
We set mtrees = 500 from now on for all the scenarios, given that
the performance of the models stabilizes in all the cases for this
number of trees. Note that increasing the number of trees, however,
increases the computational e�ort required to build the forest.

�e number of variables evaluated when spli�ing a node has a
big impact on the computational e�ort required to train the random
forest model [17]. To study the e�ect of the number of variables
evaluated for a split (msplit) in the performance of the model, we
de�ne a new parameter msp so that msplit =

⌈
(nparam + 1) ·msp⌉.

We train the models with di�erent values ofmsp. �e correlation
coe�cients of the predicted and real performance are given in
Table 4. �is parameter has no big impact in the models of the
two ACOTSP scenarios. For the Regions 100 scenario, the best
performance is obtained by evaluating the most possible variables
to �nd good splits for them. We set msp = 0.5, given that it obtains
a reasonable performance for all data sets.

Table 5: Correlation coe�cient of the average ranking of the
real and predicted performance of 1000 con�gurations using
random forest models trained with the real-last data set, us-
ing default settings, mtrees = 500, msplit = 0.5 and di�erent
values for themsample setting.

msample 0.05 0.2 0.4 0.6 0.8 1.0
ACOTSP 0.817 0.895 0.916 0.927 0.928 0.931
ACOTSP2000 0.915 0.933 0.936 0.937 0.937 0.937
Regions 100 0.575 0.603 0.621 0.634 0.634 0.637
Spear 0.521 0.546 0.556 0.582 0.574 0.584

Finally, we perform experiments with the number of data points
sampled to build the trees (msample). Table 5 gives the correlation co-
e�cients obtained by using di�erent values of msample. In all cases
the performance increases when the number of sampled points is
increased. �e ACOTSP2000 model reaches its be�er performance
when sampling 0.6% of the data points, which is evidence of homo-
geneity of the scenario. �e number of points sampled can have
an e�ect on the ability of the model of generalize the predictions;
smaller values of this parameter allows trees to be trained on di�er-
ent areas of the search space. �e results suggest that having access
to all the data points leads to be�er performance than fragmenting
the data set, thus we setmsample = 1.

�e �nal performance of the models using the selected se�ings
is given in Figure 2. �e performance is improved compared to the
initial one (Table 2). �ese se�ings are still preliminary and further
con�guration is possible. As future work we plan to use irace
to set these se�ings for a wide range of con�guration problems.
Even more, since these results suggest that the best se�ings for the
models depend on the scenario features, methods to adapt these
parameters according to the characteristics of the scenario and the
stage of the irace search process could be required.

4.2 Model and irace convergence
�e previous models were evaluated by predicting the mean perfor-
mance of uniformly sampled con�gurations. In irace, the sampling
of con�gurations is centered around the best solutions and thus
it is not really evident if the random forest model will be good at
predicting the performance of the con�gurations that are in the
(current) best part of the parameter space. We performed exper-
iments using real-�rst and real-last as training data and 1000
con�gurations sampled from the model of the best con�guration
obtained by irace in the �rst and last iteration respectively. Figure 3
gives the results obtained by the models. Surprisingly, the ACOTSP
models obtain a very bad performance when predicting the con-
�gurations sampled from the area of the search space on which
irace has converged (models trained with real-last). On the other
hand, it seems that the Regions 100 and Spear models are able to
predict well the con�gurations sampled in the best area, while they
poorly predict the ones sampled at the start of the search process.
�ese results indicate that the characteristics of the scenario are
very important when using the random forest models to predict
the performance of con�gurations in the con�guration process.
Poor predictive performance in late stages of the con�guration
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Table 6: Wilcoxon paired test p-values (signi�cance 0.05) of
the mean performance of 20 executions of irace with and
without random forests models.

irace vs. best proportional uniform
ACOTSP 2000 1.0 0.841 0.003
Regions 100 0.985 0.841 1.907e-06
Spear 0.927 0.097 0.189

process, as observed for the ACOTSP scenarios, might indicate
the convergence of the search and the need to (1) evaluate more
con�gurations in the particular area of the parameter landscape in
order to intensify, or (2) perform a restart of the search to explore
other areas of the landscape.

5 CONFIGURATION SELECTIONWITH
RANDOM FORESTS IN IRACE

In this section, we evaluate the use of random forest models to
support the selection of newly sampled con�gurations in irace.
Each iteration, we train a model using all the available data points
in irace and this model is used to predict the performance of 10 ∗
nconf newly sampled con�gurations, where nconf is the number of
con�gurations required for the next race. We evaluate 3 sampling
and selection strategies:
proportional: 10 ∗ nconf con�gurations are generated from the

irace model and nconf of them are selected randomly propor-
tionally to the performance predicted by the random forest
model.

best: 10 ∗ nconf con�gurations are generated from the irace model
and the nconf con�gurations are selected that have the best
predicted performance according to the random forest model.

uniform: 10 ∗ nconf con�gurations are generated uniformly at
random (that is, not following the irace model) and nconf of
them are selected randomly proportionally to the performance
predicted by the random forest model.

We use for these tests only the ACOTSP2000, Regions 100 and Spear
scenarios and perform 20 repetitions of the con�guration process.
�e results obtained by irace are given in Figure 4 and in Table 6
are given the p-values of the Wilcoxon paired test comparing the
variants to irace without random forest model.

�e overall results evidence no improvement in the performance
obtained by irace when using the random forest model to select new
con�gurations. Sampling con�gurations uniformly and predicting
them is not a good strategy for the ACOTSP2000 and Regions 100
scenarios. �is is probably because disabling the sampling model of
irace does not allow the search to converge properly towards gen-
erating high-performing candidate con�gurations. Interestingly,
there is no signi�cant di�erence for the Spear scenario in any of
the tests performed. We presume that this is due to the high het-
erogeneity of the scenario that makes good con�gurations di�cult
to �nd in early stages of the search. �e con�guration process is
therefore very dependent of the instance sampling and evaluat-
ing a large number of instances is more bene�cial than exploring
a large number of con�gurations. �e random forest seems not

to contribute to face this di�culty. In this sense, the use of in-
stance features in the random forest training data set could lead
to improved performance given that it could help to deal with the
heterogeneity of the scenario. �e results suggest that, to get an
improved irace performance, the con�guration process must be
adapted in order to pro�t from the capabilities of the random forest
models. Given the good performance obtained in Section 4 by the
random forest model for the ACOTSP2000 scenario, the intuition is
that the use of this model to select con�gurations will increase the
intensi�cation in irace from the �rst iteration. �e plots in Figure 5
show the convergence of the mean performance over the test set
of the best con�gurations in each iteration of the 20 irace execu-
tions. As expected, the irace version using the random forest model
converges quicker in the ACOTSP2000 and Regions 100 scenarios,
while for the Spear scenario the convergence is not greatly a�ected.
�e random forest has the opportunity to contribute more in the
early stages of the search, when the sampling model of irace has
not yet converged to a speci�c area of the parameter search space.
�ese preliminary results are an indication that adjustments in the
search behavior of irace are needed in order to make be�er use
of the random forest model. For example, the convergence of the
sampling model can be delayed, in order to allow more exploration
guided by the random forest model. Additionally, the evaluation
of the model every iteration might be useful to detect stages of the
search process and even more, the models can be used to predict the
importance of parameters. In turn, this prediction of the parameter
importance and possible interactions between parameters may lead
to an improved sampling model for irace.

6 CONCLUSIONS AND FUTUREWORK
We have presented a preliminary analysis of the use of random
forest models in irace. Experiments with irace data show that the
random forests can obtain good prediction performance using data
obtained by irace. However, the quality of these predictions seems
to be dependent on the characteristics of the scenario and also on the
convergence state of the sampling model from which the predicted
con�gurations are sampled. Despite the fact that these preliminary
tests with irace and random forests do not indicate a major leap in
performance, the good results obtained by predicting con�gurations
based on irace data, indicates that these models can contribute to
the con�guration process, particularly if the con�guration budget is
small. Uniformly sampling new con�gurations and selecting them
based on the predictions of the random forest model reduced the
performance of irace in most of the studied scenarios. �is is a clear
indication of the importance of the sampling model used in irace.
Nevertheless, the bene�ts of using random forests could be more
evident in scenarios where parameters have strong interactions
that the irace model cannot easily detect.

In future work, we will extend the experiments using irace and
random forest to other scenarios that have di�erent characteristics
to the ones used in this work. �e use of weights for the training
data, based on the number of con�gurations executed in each prob-
lem instance, will be investigated. �e selection of data points to
train the random forests might be also of interest, especially when
convergence is achieved and a specialized model on a particular
area of the search space is required. It is also part of the future
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work, the study of the use of surrogate models to classify con�gura-
tions in high and poor performing ones, instead of predicting their
performance. Additionally, the use of the random forest structure
to analyse the parameter landscape is a promising feature of these
models as variable importance can be calculated from the model,
and this information can be exploited for the sampling process.

REFERENCES
[1] Carlos Ansótegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin

Tierney. 2015. Model-Based Genetic Algorithms for Algorithm Con�guration.
In Proceedings of the Twenty-Fourth International Joint Conference on Arti�cial
Intelligence (IJCAI-15), Qiang Yang and Michael Wooldridge (Eds.). IJCAI/AAAI
Press, Menlo Park, CA, 733–739.

[2] Prasanna Balaprakash, Mauro Bira�ari, and �omas Stützle. 2007. Improvement
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F-Race and Iterated F-Race: An Overview. See [3], 311–336.

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. DOI:
h�p://dx.doi.org/10.1023/A:1010933404324
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Figure 2: Average ranking of the real (x axis) and predicted
(y axis) performance of 1000 con�gurations using random
forest models trained with real-�rst and real-last data sets
using tuned settings (see Table 1).
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Figure 3: Average ranking of the real (x axis) and predicted
(y axis) performance of 1000 con�gurations using random
forest models trained with real-�rst and real-last data sets,
tuned settings (see Table 1) and evaluated on con�gurations
sampled from the best con�guration irace model.

0.5

0.6

0.7

0.8

0.9

ACOTSP 2000

m
e
a

n
 R

P
D

 f
ro

m
 o

p
ti
m

a

best proportional uniform irace

0.4

0.5

0.6

0.7

Regions 100

m
e

a
n

 r
u

n
ti
m

e

best proportional uniform irace

0

10

20

30

40

50
Spear

m
e
a
n
 r

u
n
tim

e

best proportional uniform irace
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and running time over the test set of 20 con�gurations ob-
tained by irace and the irace versions using random forests.
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best con�gurations of irace best using random forests and
irace.
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