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ABSTRACT 

This paper proposes Extreme Learning Surrogate assisted 

Asynchronous Multi-Objective Optimization Based on 

Decomposition (AELMOEA/D) that solves multi-objective 

optimization problems with expensive and different evaluation 

time by integrating a surrogate evaluation model and an 

asynchronous evolution method. Extreme Learning Surrogate 

assisted Multi-Objective Optimization Based on Decomposition 

(ELMOEA/D), which is a surrogate-assisted MOEA/D, was 

proposed to reduce the number of actual evaluations, while 

asynchronous evolution methods were proposed to reduce the 

waiting time for evaluation of solutions in a parallel evolutionary 

algorithm. This paper employs ELMOEA/D as a surrogate 

assisted EA and introduces an asynchronous manner into it. Our 

experiment proves that our proposed AELMOEA/D can obtain 

optimal solutions faster than ELMOEA/D without performance 

deterioration. 
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1 INTRODUCTION 

Evolutionary Algorithm (EA) has been applied to many real world 

problems such as engineering design from the viewpoint of 

versatility and high search performance [1]. In general EAs, many 

solution candidates are generated through the optimization 

process, and their evaluation values are obtained. When applying 

EAs to real world problems, since the evaluation time of solutions 

is expensive, enormous calculation time is required to obtain the 

optimal solution. To tackle this problem, parallel EAs have been 

proposed by many researchers. However, the evaluation time of 

solution may differ from each other when the evaluation time of 

solution is expensive. In such situation, the conventional parallel 

EAs waste a lot of computational time because they evolve 

solutions by waiting for the evaluation of all solutions in the 

population and it is necessary to wait for the slowest evaluation. 

To overcome these problems caused by the evaluation time of 

solutions in optimization problems, there are two recent 

approaches, one is a surrogate assisted EA, while another is an 

asynchronous evolution. 

In the previous researches, several surrogate assisted methods 

have been proposed such as ParEGO [2], MOEA/D-RBF [3] and 

ELMOEA/D [4]. A surrogate assisted EA constructs a surrogate 

evaluation model from already evaluated solutions by using 

machine learning techniques, and generates promising solutions 

by some optimizers like EAs or other methods based on a 

generated surrogate model. For example, in the ELMOEA/D, the 

surrogate evaluation model is generated by Extreme Learning 

Machine (ELM) [5], which is a kind of machine learning method. 

ELMOEA/D generates promising solutions by using Multi-

Objective Evolutionary Algorithm based on Decomposition 

(MOEA/D) [6], which is one of the most powerful multi-objective 

EA, with a surrogate evaluation model constructed by ELM. Since 

the evaluation time of a generated surrogate model is extremely 

shorter than actual evaluation time and actual evaluations are 

applied only to the promising solutions, a surrogate assisted EA 

can reduce the computational time of optimization. 

On the other hand, an asynchronous EA was proposed to 

reduce waiting time of computational nodes in a parallel 
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computational environment. Concretely, an asynchronous EA 

continuously generates a new solution without waiting for other 

solutions, unlike conventional synchronous approaches need to 

wait for evaluations of all solutions in a population. Asynchronous 

EAs can efficiently evolve solutions with different evaluation time 

since the evolution continues without waiting for other solutions 

with long evaluation time. For example, asynchronous particle 

swarm optimization (APSO) [7] and asynchronous differential 

evolution (ADE) [8] were proposed as methods extending 

conventional synchronous EAs to asynchronous ones. 

Although the effectiveness of these two approaches was 

revealed, they cannot solve both problems regarding the 

computation time of solutions. A surrogate assisted EA cannot 

deal with the difference of the evaluation time in a parallel 

environment, while an asynchronous EA has limited ability to 

reduce actual evaluation time. Toward this problem, this research 

aims to reduce both evaluation time and waiting time in a parallel 

environment. To achieve this goal, we explore an integration of a 

surrogate assisted approach with an asynchronous approach. 

Concretely, in our approach, promising solutions are generated 

based on a surrogate model, then they are evaluated in a parallel 

environment and a new solution is generated whenever an actual 

evaluation of any solution completes as an asynchronous manner. 

As an application of an integration of surrogate assisted and 

asynchronous approach, we propose an extreme learning surrogate 

assisted asynchronous multi-objective evolutionary algorithm 

based on decomposition (AELMOEA/D), which is a multi-

objective EA integrating ELMOEA/D as a surrogate assisted EA 

with an asynchronous approach. To investigate the effectiveness 

of as the proposed AELMOEA/D, we conduct the experiment that 

compares our proposed AELMOEA/D with existing ELMOEA/D 

by using the ZDT, MOP benchmarks. 

The remaining of this paper is organized as follows. Section II 

shows related works regarding surrogate assisted EA and 

asynchronous EAs. Section III explains the proposed 

AELMOEA/D. Section IV conducts the experiment to compare 

the proposed and the previous methods on MOP benchmarks and 

shows their result. Finally, Section V concludes this research and 

shows future work. 

2 RELATED WORK 

2.1  Multi-objective optimization problem 

Multi-objective Optimization Problem (MOP) is a problem of 

minimizing or maximizing 𝑘  mutually competing objective 

functions 𝒇(𝐱)    (Eq. (1)) [9]. 

{
  min

𝐱
𝒇(𝐱) = {𝑓1(𝐱), 𝑓2(𝐱),⋯ , 𝑓𝑘(𝐱)}

𝑇              

  Subject to: 𝑥𝐿,𝑑 ≤ 𝑥𝑑 ≤ 𝑥𝑈,𝑑  (𝑑 = 1,⋯ ,𝑁𝐷)
 (1) 

𝐱 = (𝑥1, ⋯ , 𝑥𝑁𝐷)  is a D dimensional solution. 𝑥𝐿,𝑑 , 𝑥𝑈,𝑑  are 

lower or upper bounds of 𝑑𝑡ℎ  variable. 𝒇:Ω → 𝑅𝑘  is a vector 

having several objective functions and maps the decision variable 

space Ω to the objective space. 

In MOPs, it is difficult to obtain a single solution when each 

objective function is in a trade-off relationship. Therefore, the  

goal of MOPs is to achieve the Pareto optimal solution set. The 

Pareto optimal solution set is defined with the dominance 

relationship of solutions in MOPs. The definition of the 

dominance relationship of solutions in the case of minimization of 

MOP is denoted as follows: When two solutions 𝐱，𝐲 satisfy ∀𝑗 ∈

{1,⋯ , 𝑘}: 𝑓𝑗(𝐱) ≤ 𝑓𝑗(𝐲) and ∃𝑚 ∈ {1,⋯ , 𝑘}: 𝑓𝑚(𝐱) < 𝑓𝑚(𝐲), it is 

said that 𝐱 dominates 𝐲 (𝐱 ≺ 𝐲). The Pareto optimal solution set 

consists of solutions that are not dominated by any other 

solutions. 

2.2  Multi-Objective Evolutionary Algorithm 

Based on Decomposition (MOEA/D) [6] 

MOEA/D is a multi-objective evolutionary algorithm that 

decomposes MOP into many scalar optimization sub-problems 

based on an aggregation function with the weight vector 

uniformly distributed in the objective space as shown in Fig. 1. 

Solutions are arranged on each weight vector direction, and a 

single objective search is performed locally. For each weight 

vector, it is possible to search uniform and diverse Pareto solution 

set on the objective space while maintaining the solution selection 

pressure by limiting the genetic operation within the 

neighborhood. The algorithm of MOEA/D is as follows:  

1. Initialization 

i. Generate weight vectors 𝝀𝑖 spread uniformly 

(𝑖 = 1,⋯ ,𝑁) 

ii. Explore a neighborhood set 𝐵(𝑖) of weight vector 𝝀𝑖 
iii. Generate an initial population 𝐱1, ⋯ , 𝐱𝑁 

2. Update 

i. Select two parents randomly from 𝐵(𝑖) 
ii. Generate offspring by using the genetic operators 

iii. Update reference point 𝒛∗: 

( 𝒛∗ = [min(𝑓1(𝐱)) ,⋯ ,min(𝑓𝑘(𝐱))]
𝑇

, 𝑘  is the 

number of objective functions.) 

iv. Update solutions using an aggregation function  

𝑔(𝐱|𝝀,  𝒛∗) 
3. Stopping Criteria 

If stopping criteria are satisfied, the search is terminated. 

Otherwise, return to Step 2. 

Although several aggregation functions were proposed, this 

research employs the Penalty Boundary Intersection (PBI) 

aggregation function. PBI is defined as (Eq. (2)): 

{
 

 
 𝑔(𝐱|𝐰, 𝐳) = 𝑑1 + 𝜃𝑑2       

 𝑑1 =
‖(𝐟(𝐱) − 𝐳)𝑇𝐰‖

‖𝐰‖
        

 𝑑2 = ‖𝐟(𝐱) − (𝐳 + 𝑑1𝐰)‖,

 (2) 

where θ is the user defined parameter. 

2.3  Extreme Learning Surrogate Models in 

Multi-Objective Optimization Based on 

Decomposition (ELMOEA/D) 

ELMOEA/D is a kind of MOEA with a surrogate evaluation 

model. ELMOEA/D employs extreme learning machine (ELM) as 

a surrogate evaluation model and generates promising solutions 

by using MOEA/D on a constructed ELM model. MOEA/D-DE is 
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Figure 1: A concept of MOEA/D 

employed in ELMOEA/D, which uses operators from Differential 

Evolution (DE), in particular DE/rand/1/bin, to generate new 

solutions based on two control parameters: F and CR. Since the 

surrogate evaluation model can estimate the evaluation value in 

shorter time than actual evaluation time and actual evaluation 

value is calculated only for promising solutions generated by 

MOEA/D with the surrogate evaluation models, ELMOEA/D 

significantly reduces the optimization time by reducing the 

number of actual evaluations. 

In their research, ELMOEA/D was compared with 

conventional surrogate assisted MOEAs (MOEA/D-RBFens and 

ParEGO) and MOEA/D-DE. From a set of 47 benchmark 

problems, ELMOEA/D obtained the best results for 30 

benchmarks and was statistically equivalent to the best algorithm 

in other 8 benchmarks. ELMOEA/D showed promising results in 

MOP benchmarks with twice the decision variables commonly 

used in the literature. This is because ELM has ability to estimate 

the evaluation value even in the high dimensional decision 

variables. 

The following subsections explain the detail of ELM and 

ELMOEA/D. 

2.3.1 Extreme Learning Machine (ELM) [5]. ELM is a kind 

of the machine learning technique. ELM is constructed as a Single 

Layer Feed Forward Neural Network (SLFN) with 𝐾 hidden layer 

neurons and the activation functions g(𝐰, 𝐱, b) . As the most 

interesting feature of ELM, the hidden layer parameters are 

randomly assigned and do not need to be adjusted, while the 

output weight are only adjusted as follows from 𝑁  distinct 

samples of 𝑛  dimensional inputs 𝐱𝑖  with 𝑚  dimensional outputs 

𝐭𝑖: 

 

Input: 𝑁 distinct samples (𝐱𝑖 , 𝐭𝑖) 

(𝐱𝑖 = [𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑛]
𝑇 ∈ 𝐑𝑛, 𝐭𝑖 = [𝑡𝑖1, 𝑡𝑖2, ⋯ , 𝑡𝑖𝑚]

𝑇 ∈ 𝐑𝑚) 

1. Randomly assign input weight 𝐰𝑖 and bias 𝑏𝑖, (𝑖=1,⋯ ,𝐾) 

2. Calculate the hidden neurons outputs 𝐇 by Eq. (3) 

 

 

Figure 2: The flow of ELMOEA/D 

   {
 𝐇 = {ℎ𝑖𝑗} (𝑖 = 1,⋯ ,𝑁 and 𝑗 = 1,⋯ , 𝐾)

 ℎ𝑖𝑗 = g(𝐰𝑗 , 𝐱𝑖 , 𝑏𝑗)                                         
 (3) 

3. Calculate output weight 𝜷 Eq. (4) 

𝜷 = 𝐇†𝐓 (4) 

𝐇†  is the Moore-Penrose generalized inverse of matrix 𝐇 

[10]. 𝐓 = [𝐭1 ,⋯ , 𝐭𝑁] 
𝑻 is the matrix of desired outputs. 

The advantages of ELM include the following: 

 ELM can prevent over-learning since the output weight is 

the only parameter to be learnt.  

 It does not assume the differentiability for the activation 

function.  

 Only one parameter, the number of hidden layers 𝐾, should 

be manually set by the user. 

 Iterative processing is not necessary since the output weight 

is uniquely determined. Therefore, the learning time is fast. 

 

Sigmoid (SIG), Gaussian (GAU) and Multiquadric (MQ) are used 

mainly as the activation functions of ELM. Three activation 

functions are defined as follows: 

 Sigmoid (SIG): 

g𝑆𝐼𝐺(𝐰, 𝐱, 𝑏) =
1

1 + exp (−(𝐰 ∙ 𝐱 + 𝑏))
 (5) 

 Gaussian (GAU): 

g𝐺𝐴𝑈(𝐰, 𝐱, 𝑏) = exp (−𝑏‖𝐱 − 𝐰‖
2) (6) 

 Multiquadric (MQ): 

g𝑀𝑄(𝐰, 𝐱, 𝑏) = (‖𝐱 −𝐰‖
2 + 𝑏2)1/2 (7) 
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Figure 3: Relationship diagram of MOEA/D weight vector 

and selector set  

2.3.2 ELMOEA/D. Figure 2 shows the flow of ELMOEA/D. 

The left side of this figure shows the process with the actual 

evaluation, while the right side shows the optimization process on  

the constructed surrogate model. The algorithm of ELMOEA/D is 

as follows: 

 

1. Initialization of population, training set, and selector set 

Initial population of MOEA/D ( 𝑃0 ) and ELM's initial 

training set ( 𝑃𝑡
0 ) are generated by Latin Hypercube 

Sampling (LHS) [11]. LHS can generate various solution 
sets within the range of solutions set for each problem. All 
initial solutions are evaluated with actual evaluation. 

Selector weight sets to select promising solutions are 
collected. Each selector weight vector 𝒘𝑠 ∈ 𝑾𝑠  (Number: 
𝑁𝑠) is associated with a subset of the weight vector 𝑾 of 

MOEA/D, 𝑩𝑠(𝒘𝑠,𝑛) = {𝒘𝑛,1, ⋯ ,𝒘𝑛,𝐾𝑠}  (𝐾𝑠 = 𝑁/𝑁𝑠 )．As 

shown in Fig. 3, 𝐾𝑠 neighbor vectors of each selector vector 
are selected from weight vector 𝑾  of MOEA/D and are 

associated in 𝑩𝑠(𝒘𝑠,𝑛). 

2. Construction of surrogate evaluation model 

The surrogate evaluation model is constructed by learning 

the output weight of ELM using training set 𝑃𝑡
𝑔

. For the 

activation function of ELM, we select the one with the 

smallest mean square error (MSE) out of models using 

sigmoid function, Gaussian function, Multiquadric function. 

In this procedure, the original expensive function 𝒇  is 

transformed into an evaluation function 𝒇𝑎  having a low 

calculation cost. 

3. Optimization with MOEA/D on the constructed surrogate 
model 

The population is optimized up to the maximum number of 
generations (𝐺 generation) with MOEA/D while evaluating 
with alternative evaluation model 𝒇𝑎 constructed in Step 2. 

4. Selection of 𝑁𝑠 solutions to be actually evaluated (promising 
solutions) 

From the population 𝑃𝐺 optimized up to the 𝐺th generation, 
promising solutions are selected based on the weight vectors 
of selector set 𝑾𝑠 . The fitness of solutions belonging to 
𝑩𝑠(𝒘𝑠,𝑛)  is calculated using aggregate function (PBI is 

used) based on𝒘𝑛,𝑖 ∈ 𝑩𝑠(𝒘𝑠,𝑛) . Among them, the best 

solution is selected as a promising solution belonging to the 
selector vector 𝒘𝑛,𝑖 . This process is performed for each 

weight vector set and totally 𝑁𝑠 solutions are selected for the 
actual evaluation. 

5. Update population and training set 

Apply actual evaluation to all selected solutions and add 
them to the population 𝑃𝑔+1  and select next training set 

𝑃𝑡
𝑔+1

 from the evaluated 𝑁𝑠  solutions and the previous 

training set 𝑃𝑡
𝑔

. 

6. Reconstruction of MOEA/D population  

If the number of the non-dominated solutions is larger than 
the size of the population, the initial population for 
MOEA/D is randomly selected from the non-dominant 
solutions, and if it is not enough, it is generated by LHS. 

7. Repeat Step 2 to 6 until the stopping criteria. 

2.4  Asynchronous EA 

Since conventional parallel EAs generate solution candidates for 

next generation by evaluating all solutions, they need to wait for 

completing the slowest evaluation. Therefore, in the case that the 

optimization problem having different evaluation times, they 

waste much idling time to wait for the end of the slowest 

evaluation even if other solutions complete their evaluations 

quickly. To overcome this problem, some recent researches 

proposed asynchronous EAs that asynchronously evolve solutions 

without waiting for the evaluation of other solutions. The general 

procedure of the asynchronous EA is as follows: 

 

1. Initial population generation 

2. Parallel solution evaluation 

3. When evaluation of a solution is completed 

A) Survival selection of solution 

B) Generate children from the evaluated solutions 

C) Start evaluation of children 

 

Asynchronous particle swarm optimization (APSO) [7] and 

asynchronous differential evolution (ADE) [8] are proposed as an 

extension of conventional synchronous EAs to asynchronous 

ones. APSO is an asynchronous extension of Particle Swarm 

Optimization (PSO) [12]. Synchronous PSO obtains all the 

evaluation values of all particles and then updates the best 

position g𝑏𝑒𝑠𝑡  of the whole group. On the other hand, APSO 

sequentially updates g𝑏𝑒𝑠𝑡  every time the evaluation of each 

particle is completed. ADE is an asynchronous extension of 

differential evolution (DE) [13]. In ADE, every time evaluation of 

each solution is completed, child solutions are generated without 

waiting for evaluation of other solutions and executes survival 

selection every time evaluation of each solution is completed. 

The advantage of an asynchronous EA is that there is no 

waiting time because it does not wait for all solution evaluations. 

However, if the actual evaluation time itself of the solution is 

expensive, the ability of an asynchronous EA to reduce the 
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computational time for optimization cannot be expected even if 

the waiting time is reduced. 

3 EXTREME LEARNING SURROGATE 

ASSISTED ASYNCHRONOUS MULTI-

OBJECTIVE OPTIMIZATION BASED ON 

DECOMPOSITION (AELMOEA/D) 

3.1  Overview 

Although the effectiveness of these two approaches, the 

surrogate model EAs and asynchronous EAs, was revealed, they 

cannot solve both problems regarding the computation time of 

solutions. Concretely, a surrogate assisted EA reduces the number 

of actual, computationally expensive fitness evaluation by 

generating promising solutions with a surrogate model, while it 

cannot deal with the difference of the evaluation time in a parallel 

environment. On the other hand, an asynchronous EA has limited 

ability to reduce actual evaluation time.  

Toward this problem, this research aims to reduce both 

evaluation time and waiting time in a parallel environment by 

integrating a surrogate approach and an asynchronous approach. 

Toward this aim, we propose Extreme Learning assisted 

Asynchronous MOEA/D (AELMOEA/D) that introduces the 

asynchronous evaluation to ELMOEA/D. In AELMOEA/D, 

solutions are evaluated in a parallel, master-slave computational 

environment, and a promising solution is asynchronously 

generated on the ELM surrogate evaluation whenever fitness 

evaluation of one solution completes. 

3.2 The algorithm of AELMOEA/D 

To apply an asynchronous approach to ELMOEA/D, 

AELMOEA/D must select only one solution from solutions 

optimized by MOEA/D on the surrogate search space, unlike the 

original ELMOEA/D selects 𝑁𝑠 solutions based on the weighted 

vector of selector set. In this research, the proposed 

AELMOEA/D selects one selector set in order, and chooses one 

solution within the selected selector set according to fitness value 

calculated by an aggregation function. 

Figure 4 shows the flow of AELMOEA/D. The procedure of 

AELMOEA/D is as follows: 

 

1. Initialization of population, training set, and selector set 

2. Construction of surrogate evaluation model 

3. Optimization with MOEA/D on the constructed surrogate 
model 

4. 𝑖 = 𝑖 + 1 𝑚𝑜𝑑 𝑁𝑠 

5. Selection promising solution(s): 

i. If first generation: Select 𝑁𝑠  solutions as same as 
ELMOEA/D 

ii. Otherwise: The 𝑖th (initial value of 𝑖 = 1) selector set 
𝑩𝑠(𝒘𝑠,𝑖)  is selected to choose a current promising 

solution. The fitness of solutions belonging to 
𝑩𝑠(𝒘𝑠,𝑖) is calculated using an aggregate function  

Figure 4: The flow of AELMOEA/D 

(PBI is used) based on 𝒘𝑛,𝑖 ∈ 𝑩𝑠(𝒘𝑠,𝑖). Among them, 

the best solution is selected as a promising solution. 

6. Update population and training set  

7. Reconstruction of MOEA/D population 

8. Repeat Step 2 to 7 until the stopping criteria. 

In this flow, Steps 1, 2, 3, 6, 7, and 8 are same as the original 

ELMOEA/D, while Steps 4 and 5 are modified for an 

asynchronous evolution. In Step 5, since all slave nodes initially 

idle at first as described in Step 5-i, 𝑁𝑠 solutions are selected and 

sent to slave nodes, while after that, a promising solution is 

generated whenever one solution evaluation completes as 

described in Step5-ii. 

By simplifying the objective function using the surrogate 

evaluation model, it is possible to reduce the number of actual 

evaluations that could not be reduced by an existing asynchronous 

EA. In addition, it is possible to reduce the waiting time of 

computational nodes that has occurred in ELMOEA/D by making 

the evaluation asynchronous. 

4 EXPERIMENT 

4.1 Overview 

To verify the effectiveness of our proposed AELMOEA/D, we 

conduct the experiment to compare AELMOEA/D with the 

original ELMOEA/D. The target problem is the ZDT test suite 

[14] of the two-objective minimization benchmark problems. The 

design variable is 30 dimensions for of ZDT1 and ZDT2, while 10 

dimensions for ZDT3, ZDT4, and ZDT6. 

Hypervolume (HV) [15] is used as the evaluation indicator of 

the obtained Pareto solution set in this experiment. We assess two 

methods from the viewpoint of the search ability, the 
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computational time, and the convergence speed. The search ability 

is assessed according to the median HV of 25 independent trials 

after the maximum number of actual evaluations, while the 

computation time to complete the maximum number of actual 

evaluations is compared in both methods. The convergence speed 

is assessed by comparing the computational time until when the 

median of HVs in 25 trials reaches to a certain percentage of the 

maximum HV of each ZDT benchmark. Note that the 

convergence speed is assessed with 90% for ZDT1, 75% for 

ZDT2, 85% for ZDT3 and ZDT6, 60% for ZDT4. These 

percentages are determined according to the result of 

AELMOEA/D where it achieves HV of given percentage in all 25 

trials. 

In this experiment, we use the pseudo master-slave parallel 

computing environment that refers the computational time model 

proposed in the previous research [16]． Concretely, the fitness 

evaluation of any solutions is performed in 𝑡𝑝 (time units) on any 

distributed slave nodes, while the sequential computation tasks 

(i.e., ELM learning and MOEA/D optimization on the surrogate 

evaluation) are performed in 𝑡𝑠 (time units) (<< tp) on the master 

node in order to create a new solution. 𝑐𝑣  is a degree of the 

variance of evaluation time, and solution evaluation time is 

determined according to the normal distribution with the mean 𝑡𝑝 

and the standard deviation 𝑡𝑝×𝑐𝑣 if 𝑐𝑣 > 0. 

4.2 Parameter 

The following parameters of ELMOEA/D and AELMOEA/D are 

used in this experiment, which are the same as those in [4]: 

 Number of selector weights (𝑁𝑠): 10 

 Training set size: 10𝑁𝐷 

 (𝑁𝐷: the number of decision variables of the problem) 

 Initial minimum distance (ε): 0.001 

 The number of generations (𝐺): 100 

 Population size (𝑁): 100 

 Neighborhood selection probability (𝛿): 0.9 

 PBI penalty (𝜃): 5 

 DE scaling factor (𝐹): 0.5 

 DE crossover rate (𝐶𝑅): 1.0 

 Polynomial mutation rate (𝑝𝑚): 1/𝑁𝐷 

 Number of hidden neurons (𝑁𝐻): 2𝑁𝐷 + 1 

 Activation Function (𝐴): {SIG，MUL，GAU} 

 Regularization parameter (𝐶): {2−5, 20, 25} 

 Maximum number of actual evaluations (𝑁𝐸): 2000 

while the following settings for the pseudo master-slave parallel 

environment are used: 

 The number of slave nodes: 10 (= 𝑁𝑠) 
 Mean solution evaluation time (𝑡𝑝): 1000 

 Master node operation time (𝑡𝑠): 1 

 The variance of evaluation time (𝑐𝑣): {0.02, 0.05, 0.1, 0.2} 

 

 

 

4.3 Result 

TABLE I shows the median HV value after the maximum actual 

evaluation number (“HV” column in TABLE I), the calculation 

time to obtain the defined percentage of the maximum HV of each 

ZDT benchmark (“Convergence time” column in TABLE I), and 

the total calculation time to evaluate the maximum number of 

actual evaluations (“Total time” column in TABLE I) in the 

proposed AELMOEA/D and the previous ELMOEA/D. Values in 

parentheses indicate the standard deviation in “HV” and “Total 

time” columns and the number of trials that reach to the defined 

percentage of the maximum HV of each ZDT benchmark in 25 

independent trials (maximum 25). The bold style in TABLE I 

indicates that this value is significantly better than another, while 

“*” marks indicate that the significant difference between two 

methods is found by the Wilcoxon rank sum test with 5% of 

significance level (marked with “*”) or 1% of significance level 

(marked with “**”). 

First, according to “HV” column in TABLE I, it is confirmed 

that the median values of HV in AELMOEA/D and that in the 

previous method are not significantly different according to the 

Wilcoxon rank sum test in ZDT1 with 𝑐𝑣 = 0.1, ZDT2 with all 

𝑐𝑣 , ZDT3 with 𝑐𝑣 = 0.05, 0.2, ZDT4 with  𝑐𝑣 = 0.05, 0.1, and 

ZDT6. On the other hand, the median value of the HV value of 

the previous method is significantly higher than that of the 

AELMOEA/D with 1% of the significance level in ZDT1 with 

𝑐𝑣 = 0.02, 0.05, 0.2  and ZDT3 with 𝑐𝑣 = 0.02, 0.1 , though in 

other cases, the median value of the HV value of AELMOEA/D is 

significantly higher than that of the previous method with 5% of 

the significance level. Therefore, it is revealed that AELMOEA/D 

achieves the equivalent performance to the existing method in the 

same number of actual evaluations, but in some case the 

asynchronous manner gives negative influence on the search 

ability of ELMOEA/D. 

“Convergence time” column in TABLE I, on the other hand, 

shows that AELMOEA/D has a shorter calculation time to reach 

the defined percentage (90% for ZDT1, 75% for ZDT2, 85% for 

ZDT3 and ZDT6, 60% for ZDT4) of the maximum HV in 

problems than the previous method regardless of the degree of the 

variance of solution evaluation time 𝑐𝑣, except for ZDT4. This is 

because waiting time for solution evaluation was reduced by 

introducing asynchronous evolution method to ELMOEA/D. In 

AELMOEA/D, the calculation time to reach 60% is longer in 

ZDT4, but almost trials achieve 60% of Pareto solution, in 

contrast to ELMOEA/D that fails some trials. In addition, the 

median value of the HV value of AELMOEA/D is higher than 

that of the previous method in ZDT4. Therefore, it can be 

indicated that the performance has improved in AELMOEA/D. 

According to “Total time” column in TABLE I, it is indicated 

that AELMOEA/D has a shorter computation time to reach the 

maximum number of actual evaluations in all problems than the 

previous method, regardless of the degree of the variance of 

solution evaluation time 𝑐𝑣. In particular, in the previous method, 

as 𝑐𝑣 increases, the calculation time to reach the maximum  
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From these results, it is revealed that the proposed 

AELMOEA/D can achieve optimal solutions faster than the 

previous method without performance deterioration in a parallel 

computational environment. 

5 CONCLUSION 

In this research, we aim to reduce both evaluation time and 

waiting time of optimization problems that deal with solutions 

having expensive and different evaluation time in EAs in a 

parallel computational environment. To achieve this goal, we 

proposed AELMOEA/D, which is a MOEA integrating 

ELMOEA/D that is a surrogate assisted EA to reduce evaluation 

time of expensive solutions and the asynchronous approach that 

reduces waiting time in the situation to optimize solutions with the 

large variance of evaluation time. 

From the result of the comparative experiment of the proposed 

AELMOEA/D with the previous ELMOEA/D in the pseudo-

parallel computational environment, it is indicated that, in multi-

objective optimization problems, the HV value of solutions 

obtained by AELMOEA/D at the maximum number of actual 

evaluations is mostly equal to that of the previous method. 

AELMOEA/D has a shorter computation time to reach the 

maximum actual evaluation number in almost problems than the 

previous method. In addition, in the proposed method, the 

computational time to reach to a certain percentage of the 

maximum HV is shorter than the previous method. This is 

because waiting time for solution evaluations was reduced by 

introducing an asynchronous evolution method to ELMOEA/D. 

Therefore, our experiment proves that AELMOEA/D can achieve 

optimal solutions faster than the previous method without 

performance deterioration in a parallel computational 

environment. 

In this research, we select the method of choosing promising 

solutions in an asynchronous order, but there is a possibility that 

solution accuracy and convergence speed may be improved 

depending on the method of choosing a promising solution. From 

this viewpoint, we will explore other improved selection methods 

of a promising solution in an asynchronous manner and verify 

their effectiveness. We will not only tackle this issue, but also 

explore the timing of ELM learning in an asynchronous evolution 

and the use of recent MOEA methods like NSGA-III [17] or 

MEMO [18]. Additionally, we will verify the effectiveness of the 

proposed method with other recent benchmarks like WFG test 

suite [19]. 
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