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ABSTRACT

Multi-objective optimization problems with changing vari-
ables are very common in real-world applications. This kind
of problems often has a changing Pareto-optimal set and a
complex relation among decision variables. In order to rapid-
ly track the time-dependent Pareto-optimal front, we pro-
pose a framework of parallel cooperative co-evolution based
on dynamically grouping decision variables. Decision vari-
ables are first divided into a number of groups using the
Spearman rank correlation analysis, with different groups
having a weak correlation. Then, a sub-population is em-
ployed to optimize decision variables in each group using a
traditional multi-objective evolutionary algorithm. The eval-
uation of a complete solution is fulfilled through the cooper-
ation among sub-populations. We compare the proposed
algorithm with three state-of-the-art algorithms by apply-
ing them to two modified benchmark optimization problems.
Empirical results show that the proposed algorithm is supe-
rior to the compared ones.
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1 INTRODUCTION

A dynamic multi-objective optimization problem (DMOP)
involves simultaneously optimizing more than one conflicting
objective, and the objectives, constraints, and/or parame-
ters change over time [10]. DMOPs are very common in
real-world applications, such as dynamic job-shop schedul-
ing [1, 5, 17, 21], green-house control [27], dynamic airspace
resectorization [22], vehicle path planning [11, 24], to say
a few. For a DMOP, if the number of decision variables
changes over time, it is called as a multi-objective optimiza-
tion problem (MOP) with changing variables. For example,
in production scheduling formulated with a multi-objective
optimization problem, the production process, the type of
parts in equipment, and raw materials may vary due to ma-
chine failure, the change of customer needs and other fac-
tors. For logistics scheduling, transport routes and vehicles
are dynamically adjusted because of weather and other fac-
tors. Due to changing variables, a DMOP involves not only
a changing Pareto-optimal set, but also a complex relation
among decision variables. Accordingly, it is challenging to
tackle the problem.

In this paper, a minimization problem is considered here.
The MOP with changing variables can be formulated as fol-
lows:

minF (X, t) = (F1(X, t), F2(X, t), · · · , FM (X, t))

s.t.


gi(X, t) ≤ 0, i = 1, 2, · · · , q;
hj(X, t) = 0, j = 1, 2, · · · , s;
X ∈ [Xmin, Xmax]

(1)

where F represents a set of M objectives to minimize,
X= (ω1(t)x1, ω2(t)x2, · · · , ωD(t)xD) is the decision variable,
and ωk(t) is a control parameter with its value of 0 or 1, and
ωk(t)=0 means that the k -th component, xk, is excluded
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from the decision variable at time scale t ; otherwise, the
decision variable includes the component. Besides, gi ≤ 0
and hj = 0 represent the i-th and the j -th inequality and
equality constraints, respectively.

There are four types of DMOPs according to the changes
of the Pareto-optimal set (PS) and the Pareto front (PF), i.e.,
Type I-Type IV [8]. For Type I, the PS changes, whereas
the PF remains unchanged. With respect to Type II, both
the PS and the PF change. Regarding Type III, the PF
changes, whereas the PS remains unchanged. For the last
type, Type IV, both the PS and the PF remain unchanged as
an optimization problem changes. For a MOP with changing
variables, there are only two types, i.e., Type I and Type II.
The reason is that the PS always changes with the number
of decision variables. More precisely, the PS has two ways
of change. One is that the value of each original decision
variable does not change, and the PS changes due to the
additional decision variable, denoted as Type I(A) or Type
II(A), the other is that the value of at least one original
decision variable changes as the problem changes, denoted
as Type I(B) or Type II(B).

A method of effectively solving a DMOP is required to
overcome difficulties raised by the change of a problem, such
as tracking the time-dependent PF and providing solutions
with a good diversity. According to the manners of tackling
the change, there have been three techniques for a DMOP
whose number of decision variables is not increased [8], that
is ωk(t)=1, k = 1, 2, · · · , D in formula (1), such as memory-
based mechanism [18, 20], prediction-based strategies [9, 15,
16, 28, 29], and multi-population approaches [2, 3, 14, 20].
However, they have a difficulty in handling a MOP with
changing variables.

A variety of strategies incorporating into cooperative co-
evolutionary algorithms (CCEAs) [19] have been proposed to
tackle a single-objective optimization problem with a large
number of decision variables [13, 23]. However, they have
been rarely applied to MOPs, particularly to DMOPs. As
stated by Potter [19], cooperative co-evolution has good po-
tential for parallelism, only limited studies have, however,
studied the capability. Recently, Dorronsoro et al. proposed
three novel parallel synchronous cooperative co-evolutionary
multi-objective algorithms [7], which divides a problem into
a number of sub-problems by splitting the solution of the
original problem. They demonstrated the efficiency of the
proposed algorithms by solving continuous or combinatorial
multi-objective optimization problems [6, 7].

In this paper, we present a framework of parallel CCEAs
for a MOP with changing variables to speed up the algo-
rithms in convergence. In the proposed framework, a num-
ber of initial groups are first obtained according to the rela-
tion among decision variables. When the number of decision
variables increases, the Spearman rank correlation between
a new decision variable and each group is calculated based
on information provided by the population evolution to ad-
just decision variable groups. Finally, a strategy is employed
to initialize each of the groups when the problem changes,
in order to timely responding the change.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed framework of parallel CCEAs
based on dynamically grouping decision variables in detail.
Experimental results are reported and analyzed in Section 3.
Finally, Section 4 draws conclusions.

2 THE PROPOSED FRAMEWORK

In this section, we propose a framework of CCEAs based on
dynamically grouping decision variables for a DMOP with
changing decision variables. We first obtain a number of non-
dominated solutions by solving the original problem with a
traditional evolutionary algorithm (e.g., NSGA-II [5]). Then,
the correlation coefficient between decision variables is cal-
culated by the Spearman rank correlation analysis based on
the above solutions. Following that, all the decision vari-
ables are divided into a number of groups by the proposed
method. Finally, a strategy of dynamically grouping decision
variables is adopted when the problem changes.

2.1 Forming the Initial Groups of
Decision Variables Based on the
Spearman Rank Correlation

In this subsection, we present a method of initially grouping
decision variables based on the Spearman rank correlation
[12].

A population for solving the original problem is first e-
volved for a number of generations, until λ solutions are ob-
tained. Then, the Spearman correlation coefficient between
the first decision variable, X(1), and each of the others is
calculated by taking the obtained solutions as samples. Fi-
nally, decision variables having a high correlation with the
first one are saved in the same group, and removed from
the set of decision variables. Repeat the process, until each
decision variable has its group.

For the optimal solution set currently obtained, P =
(p1, p2, · · · , pλ), and the set of decision variables, X =
(x1, x2, · · · , xD), X(j), is the j-th decision variable in X,
and size(X) means the size of X. δ is a threshold and δ ≥ 0.
The steps of the proposed grouping method are provided as
follows.

Step 1: Set the initial value of the number of groups as k=1;
Step 2: Xk = {X(1)};

Step 2.1: Set j = 2;
Step 2.2: Calculate the Spearman correlation coefficien-

t between X(1) and X(j), denoted as r1j . If
|r1j | ≥ δ, let Xk = Xk ∪ {X(j)};

Step 2.3 If j < size(X), let j = j + 1, go to Step 2.2;
otherwise, let X=X\Xk;

Step 3: If size(X) > 1, let k = k + 1, go to Step 2;
otherwise, output the decision variable groups,
X1, X2, · · · , XK .

1889



A Parallel Multi-objective Cooperative Co-evolutionary Algorithm with Changing VariablesGECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

2.2 Dynamically Grouping based on the
Spearman Rank Correlation
Coefficient

When a new decision variable, y, occurs in the optimization
problem, we should dynamically grouping decision variables
according to the following manner. First, a new subpopula-
tion with its individual including the new decision variable,
y, is randomly initialized; then,for the new sub-population,
together with the other sub-populations, execute a CCEA
several generations until λ solutions are achieved; Store the
Pareto-optimal solutions in the archive, A , with each being
a complete solution (please see subsection 2.4 for details).
at last, a representative individual from each of the original
groups is randomly selected , and the Spearman rank corre-
lation coefficient, rk, is computed between the new decision
variable, y, and the representative individual, by taking the
solutions in A as samples. If ru =max{

∣∣rk∣∣} ≥ δ, combine
y into the corresponding group, Xu; otherwise, form a sepa-
rate group.

2.3 Responding the change of the
optimization problem

The PF may change to a large degree when a problem changes.
In this case, how to make full use of information provided
by the evolutionary population to speed up an algorithm in
convergence and to rapidly seek the PF become very impor-
tant.

In this subsection, we propose a strategy of responding the
change of a problem, which initializes sub-populations using
half of the number of individuals in the archive. Besides, we
employ a Gaussian perturbation operator with the following
expression to improve the diversity of each sub-population:

xi(t+ 1) = ai(t) +N(µ, σ2) (2)

where xi (t+ 1) is the i-th individual at time scale t+1. ai (t)
means the i-th non-dominated solution randomly selected
from the archive set. N(µ, σ2) is a random value obeying
the Gaussian distribution, µ and σ refer to the location and
the scale parameters. In this paper, we set µ = 0 and σ = 1.
The other individuals in each of these sub-populations are
randomly initialized.

2.4 Evaluating the Individuals in each
Sub-population

In this subsection, we provide a simple strategy of efficiently
selecting the representative, i.e., selecting the representative
based on the distance between the candidate and each in-
dividual in the archive in this paper. In this strategy, the
individual with the shortest distance to the candidate is first
selected from the archive as the representative. Then, a com-
plete solution is formed by replacing the values of the corre-
sponding decision variables of the representative with those
of the candidate.

Fig. 1 display the process of selecting the representative
for the case of three sub-populations. In Fig. 1, The de-
cision variables are divided into the following three groups:
X1= (x1

1, x
1
2, · · · , x1

n1
), X2= (x2

1, x
2
2, · · · , x2

n2
), X3 =

(x3
1, x

3
2, · · · , x3

n3
). The three subpopulations, P 1, P 2 and P 3

are employed to optimize the above three groups, respec-
tively. A complete solution in the archive, A, closest to the
candidate is first selected as the representative. Then, a new
complete solution is formed by replacing the corresponding
value of the representative with that of the candidate. The
objective value of the complete solution is assigned with the
fitness of the candidate.

Candidates Candidates Candidates

1
X

Complete solutions in archive, A

2
X

3
X

1
X

2
X

3
X

Representative Representative Representative

1
P

2
P

3
P

Figure 1: The strategy of selecting the representa-
tive

2.5 The Spearman Rank
Correlation-based Parallel
Cooperative Co-evolutionary
Algorithm

We present a Spearman rank correlation-based parallel coop-
erative co-evolutionary algorithm by incorporating the pro-
posed strategies into NSGA-II (SCC-NSGAII, for short) in
this subsection. The pseudo code of the proposed parallel
algorithm is displayed in Algorithm 1.

The decision variables are first divided into a number of
groups with the strategy proposed in subsection 2.1. Then,
each sub-population is initialized in line 3. This parallel

1890



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany B. Xu et. al.

Algorithm 1 Parallel CCEA for DMOPs

1: grouping(X) //Grouping the decision variables utilizing
the strategy proposed in subsection 2.1

2: g←0
3: `i ∈ [1,K], initialize(P i

0) //` means a parallel run
4: sync() // Synchronization point
5: ∀i ∈ [1,K], archive(P i

0) //Construct a complete solu-
tion by randomly selecting a representative from each
subpopulation and remain the non-dominated solutions;
∀means a sequential run

6: `i ∈ [1,K], evaluate(P i
0) //Evaluate solutions in each

subpopulation
7: sync()
8: while not termination condition() do
9: `i ∈ [1,K], evolve(P i

g) // Evolve each sub-population
one generation

10: sync()
11: ∀i ∈ [1,K], archive(P i

g)
12: if the problem changes() then
13: adjust grouping
14: conduct the responding strategy
15: end if
16: g←g+1
17: end while
18: output the archive, A

CCEA framework includes the first synchronization point
(line 4) before the archive is obtained by randomly selecting
a representative from each sub-population to construct com-
plete solutions and remaining the non-dominated solutions.
Following that, all the sub-populations evaluate their initial
populations in parallel, as shown in line 6, followed by the
next synchronization point (line 7). The loop for the coop-
erative evolution is begun until the termination criterion is
met. For each iteration of the loop, all the sub-populations
evolve one generation in parallel (line 9), and then synchro-
nize (line 10) to achieve non-dominated solutions (line 11).
If the problem changes, the groups of decision variables will
be adjusted using the strategy proposed in subsection 2.2
(line 13), and the responding strategy presented in subsec-
tion 2.3 will start (line 14). Finally, the archive is output
and the algorithm is ended.

3 EXPERIMENTAL STUDIES

In this section, we evaluate the proposed method by apply-
ing it to solve two benchmark optimization problems, and
comparing it with three state-of-the-art methods. The im-
plementation environment is as follows: Inter(R) Core(TM)
i3-4170 CPU, 4.00GB RAM, windows 7 and Matlab R2012a.

3.1 Test Problems

We select the improved ZDT [4] and DTLZ [30], two well-
defined test problem suites as the benchmark optimization
problems, and denote them as DMOP1-DMOP2. ZDT and
DTLZ are two continuous problem suites that can be scaled

to any number of decision variables. To comprehensively
evaluate the proposed method, we consider two- and three-
objective optimization problems of these two suites with var-
ious characteristics, such as linear, non-concave, and multi-
modal, which are summarized in Table 1.

For these problems, the number of decision variable is
|X| = m+p, wheremmeans the number of decision variables
of the initial problem, p is that of additional variables. In the
experiments, m is set to 100 and p is an integer in the range
of [0, 5]. That is to say, only one variable is added to the
current optimization problem, and there are 5 changes. As a
result, we consider six cases for each optimization problem.

The true PFs of DMOP1 is are shown in Fig.2, where
p = 0 means the PF of the problem without any additional
variable, p = 1 represents the PF of the problem with one
additional variable. We can similarly understand the mean-
ings of the other values of p. For the other problem, it has
the same true PF before and after the optimization problem
changes. Please refer to [4, 30] for details.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True PF of DMOP1

f
1
(x)

f 2
(x
)

p=5

p=3

p=1

p=0

Figure 2: The true PFs of DMOP1

3.2 The Comparative Algorithms and
Parameter Settings

We compare the proposed method, denoted as SCC-NSGAII,
with NSGA-II, the random grouping-basedcooperative co-
evolution NSGA-II (RCC-NSGAII), and the uniform group-
ing-based cooperative co-evolutionary NSGA-II (UCC-
NSGAII).

The termination criterion is that the number of evaluation-
s reaches to a predefined one, 600,000, for all the algorithm-
s. The population size is set to 50 for SCC-NSGAII, RCC-
NSGAII, and UCC-NSGAII, and 100 for NSGA-II. The com-
plete solution is formed via the strategy proposed in subsec-
tion 2.4 to evaluate a candidate in a sub-population for all
these algorithms. Besides, δ and λ are set to 0.8 and 20,
respectively.
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Table 1: Benchmark of MOPs with changing variables

Function Definition Characteristics

DMOP1
(ZDT1)

f1(XI) = x1,

f2(XII , ω) = g(1 −
√

(f1/g))
(1+

∑|X|
i=m+1

ωi)

g(XII , ω) = 1 + 9
m∑

i=2

(xi − 1
2+p )

2
/
(|X| − 1)

+9
|X|∑

i=m+1
ωi(xi − 1

2+p )
2
/
(|X| − 1)

s.t.X= (XI , XII), |X| = m + p,m = 100,
p = |{i|ωi = 1}| , ωi ∈ {0, 1},i= 1, 2,...
0 ≤ xi ≤ 1, i = 1, 2, ...,m.

TypeII(B), Non − concave
PS : x1 ∈ [0, 1], xi = 1

2+p ,

i = 2, 3, ..., |X| .
PF :
f1 = x1,

f2 = (1 − √
x1)

(1+
∑|X|

i=m+1
ωj)

DMOP2
(DTLZ1)

f1(X) = 0.5x1x2(1 + g(XM ));
f2(X) = 0.5x1(1 − x2)(1 + g(XM ));
f3(X) = 0.5(1 − x1)(1 + g(XM ))

g(XM ) = ((|X| − 2) +
m∑

i=3

((xi − 1
2+p )

2 − cos(20π(xi − 1
2+p )))

+
|X|∑

i=m+1
ωi((xi − 1

2+p )
2 − cos(20π(xi − 1

2+p ))))

s.t.0 ≤ xi ≤ 1, i = 1, 2, ..., |X| , |X| = m + p,m = 100,
p = |{i|ωi = 1}| , ωi ∈ {0, 1}

TypeI(B), Linear,Multimodal
PS : x1, x2 ∈ [0, 1], xi = 1

2+p ,

i = 3, 4, ..., |X| ;
PF :
f1 = 0.5x1x2;
f2 = 0.5x1(1 − x2);
f3 = 0.5(1 − x1).

3.3 Performance Metrics

The inverted generational distance (IGD) [26] is widely used
in multi-objective problems. To adapt the IGD metric to
dynamic multi-objective optimization, its modified version-
s, denoted as MIGD [25, 28], is taken as the performance
metrics.

The MIGD value of a Pareto-optimal set is calculated by
averaging the IGD values of the set in a number of time
scales over a run,

MIGD =
1

|T |

T∑
t=1

IGD (3)

where T is a set of time scales in a run, and |T | means its
cardinality. The MIGD metric can measure both diversity
and convergence, which assists in evaluating the tracking
ability of an algorithm. To have a small MIGD value, the
obtained PF must be very close to the true PF.

IGD requires a reference set of optimal solutions, which
are uniformly distributed on the PFs of a problem. We set
the number of reference points to 5,000 for all the problems.

For each problem, 20 independent runs are conducted.
The mean and the standard deviation of each indicator over
20 runs are recorded before the problem changes. Besides,
the Mann-Whitney U test at the significant level of 0.05 is u-
tilized to test the significance of different algorithms in terms
of a metric.

3.4 Experimental Results and Analysis

Table 2 lists the mean and the standard deviation of MIGD
obtained by different algorithms on DMOP1 and DMOP2,
where the boldface data are the best among these methods,
and those labeled by ’*’ mean data obtained by the proposed
algorithm significantly different from those obtained by the
comparative one.

Table 2 reports that, for DMOP1, with the help of the pro-
posed strategy of grouping, SCC-NSGAII performs the best,
followed by NSGA-II, RCC-NSGAII and UCC-NSGAII. Ad-
ditionally, for DMOP1, NSGA-II significantly outperforms
RCC-NSGAII and UCC-NSGAII in terms of MIGD. This
means that an inappropriate grouping strategy may deterio-
rate an algorithm.

DMOP2 has a linear and simple Pareto front, but it is a
multi-modal problem with a great number of local optima.
Table 2 shows that, for DMOP2, SCC-NSGAII archives the
best performance on the MIGD metric. Accordingly, the
proposed method has a good capability in tackling DMOP2.

4 CONCLUSIONS

Aiming at a MOP with changing variables, we have proposed
a parallel cooperative co-evolutionary algorithm based on dy-
namically grouping decision variables, termed SCC-NSGAII,
in which the decision variables are grouped according to
the Spearman rank correlation. In SCC-NSGAII, a com-
plex DMOP is decomposed into a number of simple sub-
problems via grouping decision variables. A number of sub-
populations are utilized to optimize the groups in parallel.
Besides, SCC-NSGAII contains a method of selecting the
representative based on the distance between a candidate
and each of individuals in the archive. To demonstrate the
effectiveness of SCC-NSGAII, we apply it to two benchmark
optimization problems, DMOP1 and DMOP2, in compari-
son with three state-of-the-art algorithms. The experimental
results demonstrate that SCC-NSGAII is very competitive
among the compared algorithms.
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