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ABSTRACT
We present a hyper-heuristic algorithm for solving combinato-
rial black-box optimization problems. The algorithm named
CMA-VNS stands for a hybrid of variants of Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) and Vari-
able Neighborhood Search (VNS). The framework design and
the design profiles of variants of CMA-VNS are introduced
to enhance the intensification of searching for conventional
CMA-ES solvers. We explain the parameter configuration
details, the heuristic profile selection, and the rationale of
incorporating machine learning methods during the study.
Experimental tests and the results of the first and the second
Combinatorial Black-Box Optimization Competitions (CB-
BOC 2015, 2016) confirmed that CMA-VNS is a competitive
hyper-heuristic algorithm.
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1 INTRODUCTION
The characteristics of optimization problems, such as deriva-
tives of the objective function or linear constraints over vari-
ables, contain critical information for finding the optimal
solutions [1]. However, such kinds of characteristics are of-
ten unavailable, unreliable, or impractical to obtain in many
∗Part of this work was done when the author was with Faculty of Con-
struction and Environment, The Hong Kong Polytechnic University.
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areas of engineering and applied science such as civil engi-
neering, molecular biology and material sciences [17]. Similar
difficulties are also encountered in the fields of operations
research, such as the configuration of algorithm parameters
and the adaptation of heuristics into various applications.
Under such circumstances, methods for solving these black-
box [8] (or cross-domain [15]) optimization problems are
always required.

Researchers from engineering and applied sciences have
developed many successful methodologies, such as derivative-
free optimization [4] methods, surrogate models, and hyper-
heuristics [2], to map the search space of solutions into some
model space [4, 22]. Examples include general pattern search
algorithms resulting in a significantly better result for pro-
tein structure prediction [14], surrogate management frame-
works for optimization of cardiovascular geometries in surgical
planning and treatment design [12], and life-long learning
hyper-heuristics for bin packing [19]. The increasing research
interests in the black-box optimization also led to a list of
online competition tracks, as shown in Table 1. According to
the results of the competitions, such as [6], some algorithms
including variants of DIviding RECTangles (DIRECT) [4]
and covariance matrix adaptation evolution strategy (CMA-
ES) [7] are among the best solvers for challenging and ex-
pensive black-box optimization problems. Poli and Graff [16]
pinpointed that taking advantage of instance-specific, dataset-
specific, and domain-specific features promisingly is a key to
avoiding the pitfall of the no free lunch theorems [5, 20] in
the circumstance of such competitions.

The algorithm presented in this paper aims to promote
intensification of searching by a variant of variable neigh-
borhood search (VNS) [13] with respect to the semi-adapted
covariance matrix model of CMA-ES in the combinatorial
black-box optimization, where a part of or the whole set of
variables are discrete values. We implemented CMA-VNS for
the CBBOC competitions, where the problems are black-box
NK-models [9] with n (50 ≤ n ≤ 300) binary variables, gener-
ated from four classes including random, Ising Spin Glasses,
MAX-kSAT, and Concatenated Traps. We introduce the
algorithmic components and different design profiles of CMA-
VNS and developed a design and configuration rationale in
the context of the CBBOC competitions.
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Table 1: A list of competitions related to black-box optimization

Year Competition title (URL) Organizer / Conference

2009–2017 Black-Box Optimization Benchmarking (BBOB) INRIA, GECCO, CEC
(http://coco.gforge.inria.fr/doku.php)

2011 Cross-domain Heuristic Search Challenge (CHeSC) University of Nottingham, OR
(http://www.asap.cs.nott.ac.uk/external/chesc2011/)

2014–2017 Real Parameter Single Objective Optimization (the expensive track) CEC
(http://sites.ieee.org/cec2015)

2015–2016 Combinatorial Black-Box OptimizationCompetition (CBBOC) MST, GECCO
(http://web.mst.edu/~tauritzd/CBBOC/)

2015–2017 Black Box Optimization Competition (BBComp) GECCO, CEC, EMO
(http://bbcomp.ini.rub.de/)

2 THE CMA-VNS HYPER-HEURISTIC
In this section, we describe the algorithmic components,
parameter configuration, solution space exploration profiles,
implementation tips, and their final integration in the CMA-
VNS algorithm. The C++ source code is available at https:
//github.com/ffxue/cmavns.

2.1 Low-level heuristic components of
CMA-VNS

Figure 1 shows the pseudo code of the framework of CMA-
VNS. There are two main blocks in the pseudo code, i.e.
the CMA-ES block (line 5–8) and the VNS block (line 9–
19). The first CMA-ES block is employed to estimate the
overall landscape of solution space, while the latter VNS block
mainly handles the ruggedness in the local landscape (i.e.
neighborhood) of NK-models. There are five components
involved in the two blocks:

• A bi-population CMA-ES [11] implemented in the
libcmaes1 library for recommending promising can-
didate solutions with its semi-adapted covariance
matrix model,

• An elite set for collecting some (or all) of the best-
so-far solutions during searching,

• A backbone [24] (result of logical and of binary vari-
ables in this case) of the elite set for intensification
of searching,

• A variable candidate set of local search consisting
of binary flips of a given solution and a number of
candidates recommended by CMA-ES, with a tabu
list of recent flips, and

• An adaptive acceptance [10] heuristic for the toler-
ance of a non-best-so-far solution with a probability.

2.2 Heuristic selection by a dataset-specific
parameter configuration: CMA-VNS’15

CMA-VNS has three main parameters, i.e. the propor-
tion of evaluations in the CMA-ES block and the VNS
block(p = cmaes_eval

vns_eval ), the population size of CMA-ES

1See https://github.com/beniz/libcmaes.

(lambda), and the switch of adaptive acceptance heuristic
(AA). In general, a greater proportion p stands for a higher
necessity of estimating the overall landscape by CMA-ES,
while a smaller p means that the algorithm needs to focus
more on intensified local search of VNS.

In the CBBOC 2015 entry of CMA-VNS, we employed a
dataset-specific parameter configuration mechanism to adapt
the CMA-VNS to the instances in the dataset of the CBBOC
competition. For example, in CBBOC 2015, we generated
over 10,000 random training instances from the official API2.
Each black-box instance has n variables and allows mn2

times of evaluations, where m indicates the abundant level
of evaluations. Thus, a small m indicates that the instance
is expensive, while a great m stands for relatively affordable
evaluations. Three decision trees, as shown in Figure 2, were
trained offline for the three variables from computational
results on the training instances with m and n as the two
decision attributes. The decision trees were generated by the
best-first decision tree learning method [18] implemented in
Weka3.

The decision trees in Figure 2 show that all the parameters
are more sensitive to m instead of n. The first tree denotes
that the proportion p should be considerably smaller when
the instances are expensive, whereas in some small-scale (n <
125) and expensive evaluation (m ≤ 0.125) cases p should be
set to 0. In other words, it is not worthy to allocate limited
evaluations to adaptation of the covariance matrix by CMA-
ES for expensive and small-scale instances. In the relatively
affordable (m > 0.5) and intermediate (0.125 ≤ m ≤ 0.5)
instances, p can vary from 1.22 to 1.86. A greater portion of
CMA-ES (p > 1.2) denotes that the CMA-ES block should
consume more evaluations than the VNS block. The second
tree shows that the population size lambda of CMA-ES also
should also be considerably smaller when the instances are
expensive. In comparison, the suggested values of lambda
are three to six times greater in the relatively affordable
and intermediate instances. The third tree shows that the
adaptive acceptance should be enabled only in the relatively
affordable evaluation (m > 0.5) instances. One can also find

2See: https://github.com/cbboc.
3See: http://www.cs.waikato.ac.nz/ml/weka/.
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1: procedure cma-vns . Note: Main procedure
2: attributes← perceive instance attribute() . Note: Awareness of instance-specific features
3: params← heuristic selection by pre-trained rules(attributes) . Note: Core of hyper-heuristic
4: elites← ∅
5: repeat . Note: CMA-ES runs first
6: solutions← bipopCMAES(params.lambda)
7: elites += solutions.new_best_knowns
8: until params.cmaes_eval is met
9: repeat . Note: Followed by VNS

10: backbone← ∧(elites) . Note: Logical and for vectors of binary variables
11: s0 ← random_start(backbone) . Note: Guided by backbone of elites
12: candidates← Flip(s0) ∪ bipopCMAES.predict(s0, backbone) \ Tabu . Note: Candidate set
13: s0 ← VNS(candidates)
14: if s0 is new best known then
15: elites += s0
16: elseif params.AA && Adaptive_acceptance(s0) then . Note: Adaptive acceptance
17: goto 12
18: end if
19: until params.vns_eval is met
20: end procedure

Figure 1: Pseudo code of the framework of CMA–VNS

(a) p

affordable
1.86145 ≤ n < 220

1.50o.w.
1.22n ≤ 135m > 0.5

inter-
mediate 1.50o.w.

1.86n < 175o.w.

expensive
0.43n > 220

0.33o.w.
0.00n < 125

m ≤
0.125

(b)
lambda

affordable
n÷ 8n > 280

n÷ 6o.w.
n÷ 4n < 135m > 0.5

inter-
mediate n÷ 8o.w.

expensive
n÷ 26n > 220

n÷ 22o.w.
n÷ 28n < 150

m ≤
0.125

(c) AA

affordable true
m > 0.5

expensive
& inter-
mediate

falseo.w.

Figure 2: The decision trees of parameter configuration of
CMA-VNS trained for CBBOC 2015

that the intermediate category is actually much closer to the
affordable category than the expensive category regarding
the trained configuration of parameters of CMA-VNS’15.

According to the decision trees, CMA-VNS can result in a
finite number of combinations of the low-level heuristics in
model space. Even the three parameters are set to free, the
size of the model space is no more than countable infinity
(ℵ0). According to Xue’s definition [22] of subcategories of
hyper-heuristics, i.e., heuristic selection and heuristic genera-
tion, CMA-VNS is a heuristic (combinations of parametric
components) selection algorithm, a subcategory of hyper-
heuristics.

2.3 Heuristic profile selection: CMA-VNS’16
Profiles and portfolios are known as effective mechanisms for
solving challenging problems, in particular for the competi-
tion entries such as SATzilla [21]. In the entry of CBBOC
2016, five different profiles of CMA-VNS were designed as
follows.

P1 The profile P1 is exactly the same as the 2015 entry
of CMA-VNS as described in Subsections 2.1 and 2.2.

P2 The profile P2 is an intensification (emphasizing the
local search in the VNS block) version of P1. In particular,
the adaptive acceptance heuristic is set to higher tolerance
to suppress frequent restarts of local search. A random
k-point crossover operation is implemented to replace the
random start from the backbone of the elite set under certain
circumstances. The size of the elite set is also controlled
to support the effectiveness of the backbone. The space of
the initial solutions to the VNS block is hence considerably
increased.

P3 The profile P3 is a diversification (emphasizing the
restarts in the VNS block) of P2. The profile P3 introduces
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Table 2: A table of deciding the best heuristic profiles of CMA-VNS trained for the CBBOC 2016

Resource of evaluations Instance Dimension (n)
(m) category 25.5 26 26.5 27 27.5 28 28.5

m ≤ 0.125 Expensive P2 P2 P2 P2 P2 P1 P1
0.125 < m ≤ 0.5 Intermediate P2 P2 P2 P2† P3‡ P3 P1 P1

m > 0.5 Affordable P2† P3‡ P3 P3 P2 P2 P1 P1
†: When v was lower than a threshold (v ≤ 1.50); ‡: Otherwise.

an elite set pruning after very new best-so-far solution. Hence
the elite set is usually much smaller, and the backbone is
longer. The profile P3 also limits the size of the candidate set
by reducing the number of solution recommended by CMA-
ES. The overall effect aims to jump out of the attraction of
local optima.

P4 The profile P4 is a variant of P3. The profile P4
abandons the elite set pruning and resets the composition of
the candidate set back to that in P1.

P5 The profile P5 is an iterated version of CMA-VNS.
The end of the VNS block, in profile P5, will trigger the next
iteration of CMA-VNS, i.e. both the CMA-ES block and
the VNS block instead of restarts of local search. Also, the
variables in the backbone of the elite set will be set as fixed
values in the next iteration. In other words, the dimension
n is reduced after an iteration. The maximum number of
maximum available evaluations is also updated accordingly.

In the 2016 entry of CMA-VNS, three decision attributes
were considered for the parameter configuration of each profile
and the selection of the heuristic profiles. The attributes were
the problem dimension (n), the resource of evaluations (m),
and the best objective value per dimension (v = best-so-far

n ).
The new attribute v was introduced to indicate the latent
nature of the problem instance. Table 2 shows the best
heuristic profiles of CMA-VNS regarding aggregated average
results of solutions. The results were calculated from a large
number of experimental tests based on generated training
instances of CBBOC 2016.

Table 2 of heuristic profile selection shows that two at-
tributes n and m can discriminate almost all cases. The
profile P1 returns the best results for large-scale instances
(approximately n > 220), while the profile P2 works very
well for other instances roughly n ≤ 220). The profile P3
is slightly better than P2 in some cases, including small-
scale (approximately n ≤ 110) and relatively affordable
evaluation (m > 0.5) instances and intermediate-scale (ap-
proximately 110 < n ≤ 220) and intermediate evaluation
(0.125 < m ≤ 0.5) instances. The attribute v is needed in
rare cases to choose between P2 and P3, such as the smallest
(n ≈ 50) and relatively affordable evaluation instances and a
few intermediate-scale (approximately n ≈ 130) and interme-
diate evaluation instances. The profile P3 is preferred when
v > 1.50, which stands for the latent nature of an instance is
quite different from random instances of NK-models. The
profiles P4 and P5 are completely dominated in the range of
the training instances of CBBOC 2016.

2.4 Design and configuration rationale
The main framework of CMA-VNS, which follows the Pearl
Hunter hyper-heuristic [3], is a heuristic selection trained by
offline or online learning. The Pearl Hunter algorithm always
performs diversification of searching (or “snorkeling”) before
the expensive intensification of model (low-level heuristics)
space exploration (or “dive”). Meanwhile, the Pearl Hunter
tries to “recognize” the model space for the instance into
several categories and take corresponding actions of search.

Balancing the diversification and the intensification is one
of the most important issues for the design of a searching
algorithm. For example, experimental tests showed that inten-
sification of the CMA-ES was limited in the rugged landscape
of NK-models in the later stage of problem-solving. Hence
a typical intensification scheme such as VNS has the chance
to improve the CMA-ES. Empirical comparison and analysis
of different profiles of diversification and intensification may
also improve the overall performance of an algorithm.

Meta-models such as derivative-free optimization methods,
surrogate models, and hyper-heuristics are proven successful
for many black-box or cross-domain optimization applications.
Such a model map the solution space of instances onto their
model space such as combinations of low-level heuristics. The
mappings usually depend on the objective function value and
a few other attributes such as the dimension of variables. If
the mapping can be well-established before testing, such as
meta-model can be very competitive against some ad hoc
algorithms, e.g. the Pearl Hunter also found a number of new
best-known solutions for the staff shift scheduling dataset [3].

Incorporating machine learning techniques, which focus on
the correlation between features (characteristics of problems)
and classification (indicating the performance of components
and profiles of a meta-model), into heuristic selection leads
to an efficient estimation of the mapping between the solu-
tion space and the model space. Hence, machine learning
techniques can be found in many successful meta-models in-
cluding CMA-ES and SATzilla. Characteristics of problems,
datasets, or domains are, in both theory [16] and practice,
keys for black-box optimization algorithm design. Further-
more, matured machine learning methods can provide not
only reliable heuristic selection rule sets for the algorithm
but also inspirational insights for researchers. For example,
the decision trees about p and lambda in Figure 2 shows
that the intermediate and the affordable categories which
require similar configurations of the two parameters may
have comparable difficulty in problem-solving.
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Figure 3: The results of the average of best solution (higher is better), time cost (lower is better), and the Pareto frontier (dotted
line in (a)) of tests of CMA-VNS and other algorithms on 100 randomly generated test problems, 50 instances for each problem,
where Random, SA, and NAHC were three test algorithms implemented in the CBBOC framework
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time cost (lower is better) of the results in Figure 3 based on
CBBOC’s Schulze Voting method

A large number of training instances and experiments are
thus necessary for training the machine learning methods for
a dataset or domain, just like one needs a large number of
sample points to reconstruct a solution space of an instance.
Experiments were conducted on the instances to compare
the average performances, regarding the mean best objective
values, of the three profiles.

2.5 Implementation tips
A solution cache was employed in CMA-VNS to record solu-
tions (bit vectors in C++) and their objective function values.
Before spending any resource of valuable evaluations, a so-
lution is tested in the cache first. A successful hit can save

both time and adequate evaluations. Thanks to the efficient
implementation of std::unordered_map in C++11 standard,
such a solution cache can be created in a single line of code.

The offline trained heuristic selection and heuristic profile
selection were prepared for the (online) no-training tracks.
For the short-training and long-training tracks, a good prac-
tice was leaving one or two key parameters, such as the pro-
portion p in CMA-VNS’15 and the profile in CMA-VNS’16,
to determine during the online training process.

2.6 Experimental tests and the results the
CBBOC competitions

We tested the CMA-VNS in the CBBOC development frame-
work, in comparison with the five profiles, CMA-ES, and
three test algorithms in CBBOC framework — Random, sim-
ulated annealing (SA) and next ascend hill-climbing (NAHC).
100 problems were randomly generated, 50 instances for each
problem. The results are shown in Figure 3 and 4.

Figure 3 shows the average value of best solutions (higher
is better) over the dimension n against time cost. The dotted
line in Figure 3 (a) denotes a Pareto frontier of the tested
algorithms. It can be observed that SA, Random, CMA-ES,
P1 , P4 , and P5 were generally dominated in both so-
lution quality and time. On the top of the Pareto frontier,
CMA-VNS with trained profile selection achieved significant
increments in solution quality for many problems. By com-
paring the sub-figures, one can find the spatial relationships
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of the markers of algorithms are stable against different prob-
lem classes, but a weakness of CMA-VNS’s heuristic profile
selection can be found for the Unrestricted class. Although
the five profiles are different hybrids of CMA-ES and VNS
local search, the five profiles cannot be clearly distinguished
from the entry of CMA-ES in any sub-figures in Figure 3.
Figure 4 shows the average rank of each algorithm which was
calculated with Schulze Voting method. The order of ranking,
in which CMA-VNS was ranked the third, was considerably
different from the order of average solution quality.

The first entry of CMA-VNS with the configuration exactly
shown in Figure 2 (or P1 ) won three tracks in 2015. The
2016 entry with the profile selection shown in Table 2 won
two more tracks in 2016.

3 CONCLUSION
This paper introduces the design of CMA-VNS, a hyper-
heuristic algorithm for combinatorial black-box optimization.
We first selected five low-level heuristic components and
designed a hybrid of CMA-ES and VNS. The parameters of
the components were thoroughly trained and configured for
the CBBOC competitions. Moreover, four different design
profiles were derived by adjusting the diversification and
intensification of the first version of CMA-VNS. The design
and the rationale have been confirmed by experiments and
the results of competitions.

One interesting direction for future research is a learning-
based automated hyper-heuristic development library. Since
the main frameworks of CMA-VNS and Pearl Hunter are
more or less the same, they might be automatically produced
from one template of hyper-heuristics. Another direction can
be some industrial applications of hyper-heuristics such as
automated 3D modeling of civil infrastructures [23].
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