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ABSTRACT
An important challenge in designing evolutionary search heuristics
is the statistically signi�cant evaluation of di�erent con�gurations.
�e goal is to �nd an optimal algorithm design with respect to its pa-
rameters, i.e., parameter tuning. In this paper, we propose an open
source so�ware framework, called Multijob, allowing to simplify
and automate EA con�guration and parameter tuning. Additionally,
the framework o�ers a work�ow for distributed execution of the
precon�gured algorithms in heterogeneous computing clusters or
grids.

�e framework uses features of the Unix-based command line
utility GNU Parallel, which enables the pausing and resuming of
jobs, estimation of experiment completion time, etc. It is highly
dynamic due to its language-agnosticism and �exible with respect
to parameters and con�gurations of speci�c EAs. �e possibility of
distributing computing time among (heterogeneous) hardware, only
requiring access over secure shell (SSH) and a proper environment
for job execution, makesMultijob a noteworthy utility for improving
e�ciency of statistically signi�cant parameter testing and tuning.
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1 INTRODUCTION
Finding the optimal con�guration for an evolutionary search heuris-
tic is itself a computationally hard problem. It can be observed that
most parameters for an evolutionary algorithm (EA) interfere with
each other. �erefore, parameter tuning has to be done and evalu-
ated observing the overall evolutionary system and its output.

According to the monothetic analysis in design of experiments
theory, i.e., changing only one variable at a time, the amount of
possible EA con�gurations increases massively when multiple pa-
rameters need to be considered. �is e�ect is also known as “com-
binatorial explosion”. Additionally, as evolutionary algorithms can
be classi�ed as probabilistic search heuristics and thus are non-
deterministic, measurement uncertainty has to be reduced while
providing statistical replicability. �is is done by repeating exper-
iments up to a level where statistical signi�cance can be shown
using appropriate statistical tests and methods.

As an example, an EA might be parameterized over its mutation-,
recombination-, and selection operations. �e EA has 3 discrete
parameters with 4 di�erent values each to specify a particular
operation. Additionally, each operation had a trigger probability
ranging from 0% to 100% in steps of 1%. �is simpli�ed EA will
result, in case an exhaustive search of parameters is performed on
a signi�cance level using 100 repetitions per con�guration, in more
than 6.6 billion distinct con�gurations to be executed and evaluated.
Assuming a runtime of 1 second per EA execution, which is far from
being realistic for many search heuristics solving computationally
hard problems, experiments would require more than 200 years to
be executed serially.

In this paper, we propose a framework called Multijob, which
helps in multiple ways to con�gure and evaluate experiments for
new EAs. Multijob does not reduce the number of distinct con�g-
urations in an exhaustive search, thus, does not replace a proper
design of experiments beforehand. However, it eases the con�gura-
tion, execution, and result handling of EA con�gurations including
repetitions for statistical signi�cance, while handling adequate dis-
tribution of jobs in a (possibly) heterogeneous computing cluster
or grid. �e framework consists of a library for EA con�guration
generation, and a work�ow for distributed execution of these con-
�gurations.
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�e Multijob library1is wri�en in the Python 3 language2, and
is able to create a list of possible EA con�gurations according to
the experimental design and the signi�cance level that should be
achieved. �is is done by either providing the discrete parameter
values to be tested, or by le�ing Multijob select concrete values from
a range given by a start, stop, and (optional) step argument. �e
library then generates all possible combinations and exports them
for processing. �e library is also able to decode EA con�gurations
that are provided as command line arguments.

�e Multijob work�ow suggests a strategy for distributed exe-
cution of the previously generated EA con�gurations in a hetero-
geneous computing cluster or grid using GNU Parallel [16]. �is
provides information about the overall progress of the experiment
such as the estimated time until completion, manages logging and
redirection of output and error streams, can pause and resume
experiments, and transfer data to and from computing nodes.

In total, the proposed framework provides support for the whole
process of evaluation of empirical experiments, from design and
con�guration of the EA to distributed execution of those con�gu-
rations and gathering of (individual) outputs and results.

�e remainder of this paper is structured as follows. In the
following section, the proposed so�ware is set into the context
of related work and other so�ware projects. It is followed by a
description of the Multijob library, and a section about the GNU
Parallel-based work�ow. We then present an empirical experiment
showing the e�ciency of the proposed library. Finally, the paper
summarizes its results in a conclusion and provides an outlook to
possible future features and improvements.

2 RELATEDWORK
According to the “no free lunch” theorem [18], each algorithm �nd-
ing a solution to a speci�c problem is necessarily worse on other
problems. �is leads to the fact, that each speci�c (optimization)
problem requires dedicated a�ention in algorithm design. �ere ex-
ist many so�ware projects targeting this problem, o�ering features
to reduce runtime of individual EA runs or whole experiments by
distributing computation and providing libraries containing several
well-known and researched operators and schemes.

HeuristicLab [5, 17] is a Microso� .NET based framework, of-
fering an comprehensive amount of di�erent prede�ned problems
and algorithms, such as genetic programming, machine learning,
and multiple di�erent single- and multi-objective evolutionary al-
gorithms. �e provided API eases extension of the framework
using own problems and heuristics. HeuristicLab aims at executing,
analyzing, and understanding those problems and their solving
strategies, supported by an extensive graphical user interface and
plo�ing functionality. Within the framework, it is possible to dis-
tribute executions of independent algorithms using a Hive server.
However, the primarily Microso� Windows based server infras-
tructure may be an obstacle for users familiar with other operating
systems or without access to proper licensing of the corresponding
so�ware.

1�e Multijob source code is available at h�ps://github.com/fg-netzwerksicherheit/
multijob and the documentation at h�ps://fg-netzwerksicherheit.github.io/multijob/.
2h�ps://docs.python.org/3/

�e jMetal framework [4, 14] is a Java-based so�ware project
aiming at rapid prototyping of several di�erent multi- and single-
objective meta heuristic algorithms. It supports several prede�ned
algorithms, di�erent quality indicators, and an API to develop your
own algorithms. However, the native parallelization methods are
currently limited to use Java threads on the same CPU. Distribution
of computation would require starting multiple instances of the EA
under test.

Distributed Evolutionary Algorithms in Python (DEAP) [3, 7]
is a framework wri�en in Python which makes extensive use of
dependency injection and higher-order functions, making it highly
adaptable. Some basic algorithms are already implemented, and
the API simpli�es creation of new algorithms and methods. While
implementation speed is fast in Python and supports rapid proto-
typing, a major drawback of the framework is the slow execution
speed of the language. �is is mostly due to the CPython implemen-
tation being an interpreter, and further limited by the threading
model. Python’s global interpreter lock (GIL) prevents threads from
running in parallel, which makes them unsuitable for speeding up
CPU-bound tasks. Process level parallelism can be used instead,
which requires proper interprocess communication, e.g. over pipes
or sockets. Due to the strongly enforced dynamic typing in DEAP,
enabled through the before mentioned dependency injection and
higher-order functions, using speci�c operators and types in the
algorithms is challenging, even using the recommended parallel
execution frameworks, e.g., SCOOP [9].

Evolving Objects (EO) [10] is a C++ library which implements
several distinct search heuristics, variation-, replacement-, and
selection-operators. Furthermore, it implements di�erent visualiza-
tions for displaying results and a parallelization using OpenMP [2]
and OpenMPI [8]. Beside the fast execution speed and paralleliza-
tion using the techniques mentioned before, EO is restricted to
the C++ programming language, which may be a drawback for
researchers aiming for rapid prototyping or working in interdis-
ciplinary �elds, as C/C++ require a deeper understanding of the
underlying architecture than other languages.

Several other so�ware projects exist, targeting the same issue as
the proposed Multijob framework. �ere exist frameworks using
Apache Hadoop3 as a platform for distributed computing [1, 6, 15].
While this promotes rapid prototyping using Java and would allow
using any possibly existing and maintained Hadoop cluster, most
of the evolutionary algorithms do not require a reduction step and
simply omit it. Furthermore, the computational overhead due to
the shu�e phase of the MapReduce paradigm and a maintenance of
a synchronized Hadoop �le system (HDFS) in the cluster require a
computationally expensive evaluation function in order to be e�ec-
tive. �us, an e�cient usage of Hadoop for distributed computing
of EAs applies to a speci�c set of problems.

Finally, an architecture for using a combination of Node.js and
browser-based JavaScript, NodIO, has been proposed for distributed
evaluation of EAs [12]. In the publication it has been shown that
performance of the JavaScript implementation is around 30% slower
than its Java or Matlab counterpart. �erefore, NodIO may also
be useful for speci�c EAs or rapid prototyping, as the language
encourages a fast implementation speed.

3h�p://hadoop.apache.org/
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All before mentioned frameworks, architectures, and techniques
serve speci�c goals. While some of them focus on rapid implemen-
tation of ideas, others serve the purpose to analyze and understand
problems, operators, and algorithms. Furthermore, all of them
implement a parallelization or distribution mechanism, custom
tailored to the speci�c purpose the framework serves. �e pro-
posed Multijob framework sidesteps some of the restrictions of
other frameworks by focusing on process-level distribution and
parallelization, without prescribing any language or framework for
the EA implementation. �e EA can be wri�en with any technology
that can parse command line parameters. Any number and kind of
computation nodes can be used, as long as they can be reached over
SSH and have the environment for execution of the speci�c EA
prepared. As the EA and any data �les are uploaded to the nodes
during the experiments, Multijob reduces the administrative e�ort
and allows to easily run and quickly modify distributed experiments
running on a cluster.

3 THE HITCHHIKER’S GUIDE TO MULTIJOB
In the following, an overview of the proposed Multijob framework
and its architecture will be given, followed by a detailed description
of the individual subparts.

3.1 Overview
As can be seen in Figure 1, Multijob is composed of 2 major compo-
nents: the Job builder and the GNU parallel processor. Both compo-
nents are connected using an asynchronous queue data structure.
�e Multijob job builder is responsible for creating a set of EA con-
�gurations, given a template of an algorithm, the parameters under
test, and the level of statistical signi�cance described by the number
of repetitions per con�guration. In the next step, the generated
con�gurations are enqueued in the processor queue, where the
processor distributes them for execution in the de�ned computing
cluster. Distribution is done using either the local machine and its
resources in terms of processing power, memory, and storage, or,
which may be more a�ractive with respect to e�ciency, one or mul-
tiple remote machines, which are accessible via SSH. For both, the
local and the remote case, it is necessary that the EA con�guration
is executable on the target machine, i.e., has all necessary libraries
and other requirements available. Finally, the processor aggregates
all result data, e.g., found optima, runtime statistics, logs etc., and
transfers it back to the machine running Multijob. In the following,
the individual steps will be described in more detail, explaining the
technical details of the underlying architecture.

Multijob separates the parallelization and con�guration of multi-
ple EA runs from the EA itself. �e EA is implemented in an inde-
pendent executable (the target executable), which is then invoked
by GNU Parallel. By using process-level parallelization, signi�cant
�exibility is gained: �e target executable does not have to use the
same language as the rest of the toolchain, and the processing can
be distributed across multiple servers. However, this also requires
that all data �ow is in a technology-agnostic format. Using com-
mand line parameters satis�es this and is highly debuggable. �e
Multijob data �ow (as illustrated in Figures 1 and 2) has four stages:

First, the job con�gurations are generated from the provided
parameter ranges. �is produces a list of Job objects.

�en, these Job objects are encoded as command line arguments.
�is produces a shell script (called jobs.sh), which e�ectively
is a job queue. �e shell script may use environment variables as
placeholder for the target executable, so that the same con�guration
can be run with multiple executables.

Next, the jobs.sh is processed concurrently by GNU Parallel
which can run the jobs locally or on remote servers via SSH. �e
placeholder for the target executable is now resolved by an envi-
ronment variable. If the job is executed on remote servers, GNU
Parallel will need to transfer the target executable and any required
input �les.

Finally, the command line arguments are decoded inside the
target executable. �e evolutionary algorithm is then executed with
these parameter values, and results are wri�en to output �les that
can then be analyzed. If the job was executed on a remote server,
GNU Parallel will transfer these results back to the controlling
host �rst. Now that all jobs have run, a statistical analysis can be
performed over the results.

3.2 Job Generation
Generating the job con�gurations is easy with the JobBuilder class.
For each parameter, a range of one or more values can be provided
either explicitly, or implicitly as an uniformly distributed range. �e
number of resulting con�gurations is the Cartesian product of all
parameter value sets. �e JobBuilder can calculate the number of
con�gurations before the con�gurations are actually generated. A
user can then abort the script if too many con�gurations would be
generated. In our experience, most experiments will not go beyond
a few hundred distinct con�gurations, although Multijob does not
have or impose any limit itself.

�e resulting Job objects contain a callback function that is to be
invoked when the job is executed, and a table of concrete parameter
values. When generating jobs for a shell script, the function cannot
be encoded, and will be provided by the target executable instead.
A placeholder like lambda **kwargs: None will have to be used
instead. Each distinct con�guration has an ID, repetitions of the
same con�guration are distinguished by a repetition-id. �ese IDs
are particularly useful for generating unique names of output �les.

Repetitions of each con�guration are necessary to gain statistical
con�dence for the results. �ese repetitions are represented as
separate job objects. Two repetitions of the same con�guration
di�er only in their repetition-ID.

An example of job generation is shown in Listing 1. �ere,
a JobBuilder object is created which then receives several pa-
rameters (“use injection” set to True and False, “mxpb” de�ned as
{0.0, 0.1, . . . , 1.0}, and “popsize” as static values 10, 20, 50, and 100).
�e Cartesian product of this con�guration leads to 88 di�erent
con�gurations. Using the “repetitions” parameter in Line 9 will
execute each con�guration 20 times for statistical signi�cance, each
with a separate ID, leading to 1760 total jobs.

3.3 Encoding and Decoding of Command Line
Arguments

To communicate the job parameters to the target executable, a
language-agnostic serialization method is required. Multijob repre-
sents the �elds of a Job object as simple strings, without using a
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Figure 1: �eMultijob data �ow

Figure 2: Encoding and decoding the job con�guration as command line arguments

1from m u l t i j o b . j o b impor t J o b B u i l d e r
2b = J o b B u i l d e r ( )
3b . add ( ' u s e i n j e c t i o n ' , True , F a l s e )
4b . add ra nge ( 'mxpb ' , 0 . 0 , 1 . 0 , 0 . 1 )
5b . add ( ' p o p s i z e ' , 1 0 , 2 0 , 5 0 , 1 0 0 )
6i f b . n u m b e r o f j o b s ( ) > 1 0 0 0 :
7r a i s e Runt imeError ( ' too many j o b s ' )
8j o b s = b . b u i l d ( lambda ∗ ∗ kwargs : None ,
9r e p e t i t i o n s =20 )
10#=> l i s t o f 1760 j o b s

Listing 1: Job generation example

complete serialization format such as JSON. Most EA parameters
we are interested in tuning are simple values like integers or �oat-
ing point numbers, so using Python’s default string representation
is su�cient.

Should a parameter have a more complex format, a custom co-
ercion for that parameter can be provided via the typemap option.
A typemap is a dictionary that maps parameter names to coercion
functions, so that the default coercion can be overridden.

1 from m u l t i j o b . commandline impor t \
2 s h e l l c o m m a n d f r o m j o b
3 f o r j o b i n j o b s :
4 p r i n t ( s h e l l c o m m a n d f r o m j o b ( ' $RUN GA ' , j o b ) )

Listing 2: Shell script generation

�e full shell command for a job needs to invoke some executable,
but the target executable is not known when the job con�gurations
are generated. �erefore, the shell script jobs.sh with all jobs
generally uses the environment variable $RUN GA as a placeholder.

A sketch of the encoding work�ow is depicted in Figure 2. An
example of shell script generation can be seen in Listing 2. �is pro-
duces commands in text format such as $RUN GA --id=42 --rep=3
-- mxpb=0.5 popsize=20 use injection=True per line.

In the target executable, the command line parameters need to
be decoded into usable data types. In Python, the command line
arguments can be accessed through the sys.argv list.

For decoding, a typemap is required. �e typemap is a dictionary
associating coercion functions with parameter names. For decoding,
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1impor t s y s
2from m u l t i j o b . commandline impor t \
3j o b f r o m a r g v
4

5d e f runGA ( pops i ze , mxpb , u s e i n j e c t i o n ) :
6. . . # your EA here
7

8TYPEMAP = d i c t (
9p o p s i z e = ' i n t ' ,
10mxpb= ' f l o a t ' ,
11u s e i n j e c t i o n = ' b o o l ' )
12

13# s k i p the e x e c u t a b l e name argv [ 0 ]
14j o b = j o b f r o m a r g v (
15s y s . argv [ 1 : ] , runGA , typemap=TYPEMAP )

Listing 3: Parameter decoding

1impor t c sv
2

3d e f save ( r e s ) :
4fname = ” r e s u l t {} {} . c sv ” . fo rmat (
5r e s . j o b . j o b i d ,
6r e s . j o b . r e p e t i t i o n i d )
7with open ( fname , 'w ' ) a s f :
8c s v w r i t e r = csv . w r i t e r ( f )
9f o r row i n r e s . r e s u l t :
10c s v w r i t e r . wr i terow ( row )
11

12save ( j o b . run ( ) )

Listing 4: Handling results

these coercions read a value from the string in the command line
argument. For common types, named coercions can be used. In
some cases, custom coercion functions will have to be created.

During decoding, the job parameters are also associated with the
runGA() function containing the actual evolutionary algorithm we
want to run. �e result of the decoding with the job from argv()
function is a Job object that has the same parameter values and IDs
as one of the jobs generated by the job creation script.

�e overview of the decoding process is visualized in Figure 2.
An example of parameter decoding is shown in Listing 3. In Line
5, the EA is de�ned where the usual recombination / mutation /
selection process takes place. Line 8 de�nes the typemap to decode
the di�erent parameters given according to their data type, while
the �nal decoding is done in Line 14.

3.4 Running the Job and Writing of Files
Aggregating the parts of the work�ow described before, the job
can now be executed. �e runGA() function is expected to return
the relevant results, which then have to be wri�en to a �le. �e
�lename should use the ID and repetition-ID in order to distinguish
separate jobs.

An example is shown in Listing 4, having a job object to be run
in Line 12, whose results are processed into a *.csv �le using the
function save() as de�ned in Lines 3 to 10.

4 DISTRIBUTED EXECUTIONWITH GNU
PARALLEL

GNU Parallel provides a �exible toolkit to run a set of processes in
parallel either on the local computer, on a remote host, or distributed
across multiple remote hosts.

When we run the job generation script with Multijob, we get a
jobs.sh �le describing all jobs. �is �le could be executed sequen-
tially as a true shell script with the Linux Bash shell. Instead, GNU
Parallel views each line as a separate record, but can also execute
each record as a shell script snippet. �e di�erence is that GNU
Parallel will execute multiple lines in parallel and possibly out of
order. In its simplest form, this can be done by piping the jobs
into GNU Parallel, and resolving the RUN GA variable to a target
executable: “RUN GA="python runGA.py" parallel <jobs.sh”.

Using GNU Parallel in this manner has a number of advantages
over other ways to run the jobs, in particular over language-native
parallelization methods. For Python, the primary way to parallelize
CPU-intensive tasks is the multiprocessing module.4 Compared
with it, GNU Parallel seems to be more correct and more mature,
especially regarding the premature termination of the jobs with
SIGINT (Ctrl-C).

Another interesting feature is that by default GNU Parallel gath-
ers the output of each subprocess, and prints the output upon
completion. �is can make it much easier to debug the processes.
If the performance overhead of this feature is undesirable it can be
turned o� with --line-buffer, but that depends mostly on the
output characteristics of the experiment.

For long-running experiments there is a chance that the experi-
ment is interrupted. With the --joblog option �ag, GNU Parallel
will keep track of the incomplete and successfully completed jobs.
When a�er an interruption the experiment is restarted with the
--resume or --resume-failed option, GNU Parallel will continue
where the previous run stopped and will not repeat existing results.
Only the work of the currently running jobs is lost when the exper-
iment is aborted. �is encourages starting experiments early, and
optimizing them while they are running.

GNU Parallel can estimate the remaining time of the experiment
with the --eta option. While this is notoriously imprecise espe-
cially before the �rst set of jobs has completed, we �nd that the
runtime estimate lets us make be�er decisions as to when an exper-
iment should be performed. For a swi� experiment, waiting for the
result may be acceptable. If an experiment turns out to take longer,
running it over several hours or days, blocks less time.

�e most valuable feature is the ability to distribute the jobs
across multiple hosts via SSH. As a precondition, this requires
that all hosts have a comparable environment. In particular, any
interpreters and libraries required by the target executable must
be installed. Depending on the problem structure, it may also be
necessary to upload data �les to a known location on each used
host. In the following examples, we will assume that the necessary
�les are uploaded by GNU Parallel for each job, and that the target
executable requires a venv Python virtual environment5 to run.

As it is necessary to prepare the environment on the remote
host �rst, GNU Parallel should not invoke the target executable

4h�ps://docs.python.org/3/library/multiprocessing.html
5h�ps://docs.python.org/3/library/venv.html
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1# ! / b in / bash
2# usage : remote− j o b . sh ID SHELL COMMAND
3s e t −e
4s e q i d = ” $1 ”
5t a r g e t e x e = ” $2 ”
6

7# unpack d a t a f i l e s
8t a r x z f d a t a . t a r . gz
9

10# i n i t i a l i z e environment
11s o u r c e path / t o / venv / b in / a c t i v a t e
12

13# run command
14RUN GA= ' python runGA . py '
15e v a l ” $ t a r g e t e x e > l o g f i l e $ { s e q i d } . t x t 2>&1”
16

17# pack r e s u l t s
18t a r c z f r e s u l t −${ s e q i d } . t a r . gz \
19r e s u l t ∗ . c sv l o g f i l e ∗ . t x t

Listing 5: remote-job.sh

directly. Instead, we create a small wrapper script remote-job.sh
to manage these problems. It is given by GNU Parallel as command
line arguments the GNU Parallel job ID (unrelated to the Multijob
job ID), and the shell script snippet generated by Multijob which
contains the EA parameters. �e script will then unpack any trans-
ferred data archives, will initialize the required environment, will
execute the target executable, and will pack the output �les into
a result archive that will be transferred back by GNU Parallel. An
example is shown in Listing 5.

To drive the experiment, it is convenient to pack the data �les
into an archive, invoke GNU Parallel with the required options, and
then unpack the result �les. However, transferring all individual
�les would be possible as well.

First, GNU Parallel needs to know which hosts to log in to via
SSH. �ese logins can be speci�ed as arguments to the --sshlogin
option, or can be listed line by line in a �le that is given to the
--sshloginfile option. It is necessary that GNU Parallel can log
into these hosts without a password. In particular, this means that
a public/private SSH key pair is generated, the public key uploaded
to the remote host, and the private key added to the ssh-agent
keyring session with ssh-add. It may also be necessary to increase
the maximum number of simultaneous SSH connections to the host
by editing the sshd con�guration, as GNU Parallel will maintain
one connection per available CPU on the remote host unless it is
explicitly thro�led.

On the remote host, the jobs will be executed in some working
directory. A particular directory can be speci�ed if required by
the experiment, but generally a disposable temporary directory
is preferred. �is can be con�gured with the “--workdir ...”
option, where the triple dot is a special value that requests this kind
of temporary disposable working directory.

We can specify with --transferfile all �les that should be
transferred to the remote working directory from the controlling
host. �ese are the target executable (here: runGA.py), the wrapper
script remote-job.sh, and any data �les data.tar.gz. If �les
should be returned from the remote host, these can be given to

1 # ! / b in / bash
2

3 t a r c z f d a t a . t a r . gz d a t a /
4

5 p a r a l l e l \
6 −− s s h l o g i n f i l e h o s t s . t x t \
7 −−workdir . . . \
8 −− t r a n s f e r f i l e d a t a . t a r . gz \
9 −− t r a n s f e r f i l e remote− j o b . sh \

10 −− t r a n s f e r f i l e runGA . py \
11 −− r e t u r n ” r e s u l t −{#} . t a r . gz ” \
12 −−c l e a n u p \
13 −−e t a \
14 −− j o b l o g . j o b l o g \
15 . / remote− j o b . sh ” {#} ” ”{} ” < j o b s . sh
16

17 p a r a l l e l t a r x z f : : : r e s u l t − ∗ . t a r . gz
18 rm d a t a . t a r . gz r e s u l t − ∗ . t a r . gz

Listing 6: Typical session using GNU Parallel

the --return option. Since we return �les from many hosts, the
returned �le names should be distinct. �is can be achieved by
including the GNU Parallel job ID in the �lename pa�ern with the
{#} symbol. Finally, the transferred �les can be deleted, which is
done with the --cleanup �ag.

When the remote-job.sh script is executed, it must receive the
ID ({#} symbol) and the job shell command argument ({} symbol).

Unless explicitly limited, GNU Parallel will use as many hosts as
available, and will launch as many jobs on each host as CPU cores
are available on that host. Once the experiment has completed, the
returned result archives can be unpacked and the results can be
analyzed.

A typical session is shown in Listing 6. Since GNU Parallel is
a general utility, it can also be used to unpack the returned TAR
archives in parallel as shown in Line 17.

5 EXPERIMENTS
In order to study the e�ectiveness of the approach, several experi-
ments have been conducted. A prede�ned evolutionary algorithm
using di�erent con�gurations has been executed on a computing
server having the following speci�cations: 2x Intel Xeon CPU E5-
2690 v4 @ 2.60GHz CPU, 28 total cores, 56 total threads, 126GB
RAM. �e experiments aim at simulating typical parameter tuning
experiments, where one (or multiple concurrent) parameters are
researched including an adequate amount of statistical signi�cance
through experiment repetition.

Performance is measured using real execution time of the ex-
periments using a doubling amount of jobs, starting at 1, to be
simultaneously executed on the server. As optimization heuristic,
we picked the EA as proposed in [13]. However, as the evaluation
of the experiments is problem-independent, any other con�gurable
EA may have been used. �is algorithm is used to optimize the
number and positions of monitors in a given dynamic communi-
cation network topology model. �e computational e�ort of this
algorithm is low for the given problem instance and it requires
several �les to be transferred to/from the computing nodes, which
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Table 1: Experimental Results for E�ciency Study of the
Multijob library

Experiment con�guration Concurrent jobs Exec. time

∗ Repetitions: 100
∗ Number of evaluations: 1 000
∗ Total number of jobs: 100

1 473 sec
2 231 sec
4 114 sec
8 58 sec

16 32 sec
32 19 sec
56 15 sec

∗ Crossover rate ({0.0, 0.1, . . . , 1.0})
∗ Repetitions: 100
∗ Number of evaluations: 1 000
∗ Total number of jobs: 1 100

1 4 888 sec
2 2 399 sec
4 1 178 sec
8 583 sec

16 293 sec
32 151 sec
56 125 sec

∗ Crossover rate ({0.0, 0.1, . . . , 1.0})
∗ Repetitions: 100
∗ Number of evaluations: 10 000
∗ Total number of jobs: 1 100

1 20 991 sec
2 10 454 sec
4 5 228 sec
8 2 610 sec

16 1 319 sec
32 764 sec
56 763 sec

∗ Crossover rate ({0.0, 0.1, . . . , 1.0})
∗ Repetitions: 100
∗ Number of evaluations: 10 000
∗ Total number of jobs: 1 100
∗ Computation distributed

2 12 371 sec
4 6 190 sec
8 3 128 sec

16 1 625 sec
32 833 sec
64 542 sec
96 536 sec

is why we decided on this EA as test case. For comparison reasons,
the same EA with a changing con�guration is executed over all
experiment instances. As problem instance for all con�gurations,
the network model of the “National Research and Education Net-
work (NREN) Europe” [11] is used, which consists of 1 157 nodes
and 1 465 edges.

�e termination condition of all EAs is the number of evaluations.
�e �rst two experiments are designed to terminate swi�ly, using
a maximum number of evaluations of 1 000. Each can be observed
to terminate within several seconds. For the third experiment, the
number of evaluations is increased to 10 000, which will result in a
runtime per job of several minutes. �is is done in order to di�er-
entiate between total runtime due to job runtime or total runtime
due to communication overhead, i.e., �le transfer, SSH connection
handling, etc. In the following, the di�erent con�gurations will be
described.

�e �rst EA con�guration aims at simulating a check for statis-
tical signi�cance without performing any parameter tuning, thus,
one EA con�guration is repeated 100 times. �e second con�gura-
tion alters the crossover rate from 0.1 to 1.0, increasing it by a step
size of 0.1. Again, in order to simulate checks for signi�cance, each
experiment in the con�guration is repeated 100 times. �e third
con�guration aims at tuning the same parameter as the second
one, except for a longer job runtime due to the increased number
of evaluations. For the fourth experiment, the same con�guration
as for experiment 3 is used. However, another computing node is
added (2x Intel Xeon CPU E5-2650 v3 @ 2.30GHz CPU, 20 total
cores, 40 total threads, 62GB RAM) and computation is done in a
network-based computing cluster. �erefore, the maximum num-
ber of parallel jobs for this experiment is increased to 96, while the
minimum number is increased to 2, i.e., one job per machine.

�e numerical results of the experiments are shown in Table 1.
Visualization of the results are shown in Figures 3 and 4. As can be
observed in the obtained results, runtime of the jobs nearly halves
in case the double amount of concurrent jobs is used. �is indicates
that speedup for the given experiment is close to linearity (the
optimal case). Furthermore, the results imply that the transmission
and job scheduling overhead are negligibly low, as indicated by
the comparison of the job runtimes of the di�erent experiments
and the overhead a cluster con�guration may have introduced. As
shown, Multijob o�ers the expected linear job execution speedup
for all of the given experiments.

6 CONCLUSIONS AND OUTLOOK
In this paper, we introduced a framework called Multijob, which
has a library component to create di�erent algorithm con�gura-
tions for parameter tuning and a work�ow component to use GNU
Parallel for distributed execution of the jobs. As the results of the
experiments indicate, Multijob is able to conveniently create job
con�gurations and e�ciently distribute execution of them. In the
studied cases, a linear speedup can be observed, where the e�ciency
doubled with a doubled number of simultaneously executed jobs.
Programming language-agnosticism is one of the major bene�ts
of the presented framework, thus, it may be helpful for increasing
productivity for a wide range of researchers from distinct �elds
using di�erent toolchains for research.

So far, the library part of Multijob, responsible for generation
of di�erent con�gurations, is implemented as a Python module,
although it was intentionally designed to be language-agnostic.
As future work, it is planned to implement backends in other lan-
guages, so that EAs can be wri�en in di�erent languages. Primarily,
creating C++ and Golang backends seem to be promising due to
their e�ciency. As opposed to o�ering di�erent backends for pro-
gramming required parameters on a code level, creation of �les
describing the requirements on a con�guration level is another
option, e.g., XML-based. Furthermore, as creation of distinct con�g-
urations for the de�ned EA is neither time critical nor does it imply
a noticeable impact on computing power in our experiments, the
necessity for programming knowledge may be eliminated creating
a graphical user interface as wrapper for Multijobs builder library.

�e Multijob work�ow reduces the administrative overhead for
running distributed experiments on a cluster or grid, but does not
eliminate it. Besides a SSH connection to the remote host(s), a
valid environment for the execution of the experiments must be
present. In the future, con�guration management might be subject
to improvement, which would eliminate major drawbacks of using
Multijob in dynamically changing computing clusters of entering
and leaving nodes. A possible �x for this could be using Pythons
virtual environments (venv) in case a Python-based EA is executed.
However, a more generic approach would be to use containers like
Docker, which will be subject to further research in the future.
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Figure 3: Experiment results indicating the job distribution e�ciency ofMultijob I
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Figure 4: Experiment results indicating the job distribution
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