
Benchmarking a Pool-Based Execution with GA and PSO
Workers on the BBOB Noiseless Testbed

Mario Garcı́a-Valdez
Instituto Tecnolgico de Tijuana

Tijuana BC, Mexico
mario@tectijuana.edu.mx

JJ Merelo
Grupo GeNeura, Depto. ATC + CITIC, Universidad de

Granada
Granada, Spain
jmerelo@ugr.es

ABSTRACT
In this work, we evaluate an asynchronous population-based algo-
rithm following a pool-based approach. In Pool-based algorithms,
a collection of workers collaborates through a shared population
repository. In particular, we followed the EvoSpace approach in
which workers asynchronously interact with a population pool by
taking samples of the population to perform a standard search on
the samples, to then return newly evolved solutions back to the
pool. For this purpose, we use the BBOB Noiseless Testbed and a
hybrid algorithm combining two kinds or workers: PSO and GA.
We �nd that a Pool- based approach outperforms the canonical
GA and PSO algorithms in nearly all cases. �e results of these
tests suggest that a Pool Based approach can be used to implement
hybrid algorithms that can improve the performance of canonical
population-based optimization algorithms.
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1 INTRODUCTION
Asynchronous EAs [1, 2, 14] have started to become common only
relatively recently, in an e�ort to exploit computing resources avail-
able through di�erent Internet technologies, including cloud and
volunteer-based. In this work, we are interested in benchmarking
asynchronous EAs following a pool-based approach, we will refer
to such algorithms as Pool-based EAs or PEAs, and highlight the
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fact that such systems are intrinsically parallel, distributed and
asynchronous.

Pool-EAs di�er from the closely related Island Model, mainly
with regards to the responsibilities assigned to the server. When
there is a server in the island model, it is responsible for the inter-
action and synchronization of all the populations. In Pool-EAs, on
the other hand, the population repository only receives stateless
requests from isolated workers or clients. In this way, Pool-EAs are
capable of using and leveraging an ad-hoc and ephemeral collabo-
ration of computing resources.

�e algorithm presented in this paper follows the basic EvoSpace
model [7] in which EvoWorkers asynchronously interact with the
population pool by taking samples of the population to perform a
standard evolutionary search on the samples, to then return newly
evolved solutions back to the pool. �is design is a particular in-
stance of a Pool-based EA, which, as long as there is a shared
population pool leaves every other detail to their speci�c imple-
mentations.

To test this PEA against the Noiseless BBOB testbed, we mixed
two canonical versions of the GA and PSO algorithms, by just de�n-
ing EvoWorkers of each kind. �e performance obtained highlight
that a Pool Based approach can be used to improve the performance
of single population-based optimization algorithms.

2 ALGORITHM PRESENTATION
As we mentioned earlier, EvoWorkers are independent of the popu-
lation repository, and developers can code them in any language
that supports HTTP requests. In this work, EvoWorkers were imple-
mented in Python taking advantage of two open source libraries of
nature inspired optimization metaheuristics: DEAP [6] and EvoloPy
[4]. �e EvoSpace population repository is implemented in Node.js
and uses the Redis memory store as the repository. �e code is
in the following GitHub repository: h�ps://github.com/mariosky/
evospace-js. On the other hand, each EvoWorker runs inside a
Docker container. Before each experiment, a script initializes the
population on the server, creating the number of individuals spec-
i�ed in the Population Size parameter, this size depends on the
dimension of the problem. �e same script then starts the number
of containers needed, one for each EvoWorker. When starting each
container, the following parameters are used: �rst, the Sample Size
indicates the number of individuals the worker would take from the
server on each interaction, then the Iterations per Sample parameter
speci�es the number of generations or iterations the local algorithm
will run before sending back to the server the resulting population.
Finally, the number of times an EvoWorker will take, evolve and
return a sample, is indicated by the Samples per Worker parameter.
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Table 1: EvoWorker Setup

Dimension 2 3 5 10 20 40
Iterations per Sample 50 50 50 50 50 50
Sample Size 100 100 100 200 200 200
Samples per Worker 20 30 25 25 25 25
PSO Workers 1 1 2 2 4 8
GA Workers 1 1 2 2 4 8

Table 2: DEAP GA EvoWorker Parameters

Selection Tournament size=12
Mutation Gaussian µ = 0.0, σ = 0.5, indbp=0.05
Mutation Probability [.1,.6]
Crossover Two Point
Crossover Probability [.8,1]

Table 3: EvoloPy PSO EvoWorker Parameters

Vmax 6
Wmax 0.9
Wmin 0.2
C1 2
C2 2

�ese parameters are speci�ed for each of the dimensions, and
they give the maximum number of function evaluations for each
problem. Each time an EvoWorker returns an evolved sample, it
also returns benchmark data, indicating the type of algorithm and
parameters used, the number of function evaluations, best individ-
ual, and �tness of each iteration. �e source code for the Python
EvoWorkers proposed in this work is in the following GitHub repos-
itory: h�ps://github.com/mariosky/EvoWorker. For the purpose of
this work, we called this algorithm EvoSpace-PSO-GA.

3 EXPERIMENTAL PROCEDURE
A script was responsible for creating the EvoWorker containers and
running the testbed. �e maximum number of function evaluations
was set to 105 ∗ D. For each run of the algorithms, the initial
solution X0 is sampled uniformly in [-5, 5]D . In order to maintain
the required number of function evaluations the EvoWorkers were
set up as shown in Table 1. �e current experiment uses instances 1-
5 and 41-50 from the 2016 version of the test bed. In this experiment
the maximum dimensionality was 20.

3.1 Parameter Tuning
�e parameters for each type of EvoWorker are shown in Table
2 and Table 3 for GAs and PSO respectively. �ese parameters
were obtained by testing �rst on the Rastrigin separable function
with �ve dimensions. A�er about ��een experiments the most
challenging targets were achieved. We tested again with functions
one to three, and a�er obtaining favorable results, the PSO and GA
algorithm parameters were set.

4 CPU TIMING
In order to evaluate the CPU timing of the algorithm, we have
run the EvoSpace-PSO-GA algorithm on the BBOB test suite [11]
with no restarts for a maximum budget equal to 105 ∗ dim function
evaluations according to [13]. �e Python (version 2.7.13) code
was run on a MacPro (late 2013) Intel(R) �ad Core Intel Xeon
(TM) E5 CPU @ 3.7GHz with 12 GB 1866 MHz DDR3 ECC RAM,
1 processor and 4 cores, EvoWorkers were executed in Docker
(v 17.03.0-ce-mac2) container images are available at h�ps://hub.
docker.com/r/mariosky/evo worker/ . �e time per function evalu-
ation for dimensions 2, 3, 5, 10, 20, 40 equals 0.0678, 0.0676, 0.0372,
0.03929, 0.03929, and 0.05223 milliseconds respectively. Times were
measured with EvoWorkers executing in parallel on the Docker
containers mentioned above, is important to notice that the number
of EvoWorkers increased with dimensions (see Table 1).

5 RESULTS
A�er the execution, a script processed the logs and generated the
�les needed by the COCO platform [10] post-processing scripts.

A requirement of the COCO platform is that it needs to inspect
each function evaluation to keep the log required to analyze the
execution. �e logging code maintains a sequential record of the
number function calls.

It is not practical to track the exact sequential number of function
evaluations in an asynchronous execution, because many workers
could be calling the function at the same time. For this reason,
the granularity of the number of function evaluations and their
order was kept at the sample and iteration level. As we mentioned
earlier, each worker returns the number of evaluations performed
in each iteration. �e order of function calls was given by the
order in which the server received the samples and the order of
the iterations in each. On the other hand, the number of function
evaluations is incremented in each iteration by the sample size and
the best function evaluation is assigned that number, as if in each
iteration the best solution was found in the last function evaluation.
Instead of increasing the number by one it is incremented by the
number of solutions in the sample. It is important to notice that
EvoWorkers run the algorithm only for a small number of iterations
and with a relatively small sample of the population. For instance,
for the COCO benchmark presented in the case study the maximum
number of function evaluations in a single iteration (generation)
was 200.

�e COCO post-processing script currently has an assertion
stating that all the function evaluations start at number 1. In our
case the �rst evaluation had a number equal to the total number
of evaluations in a single iteration. In order to run the script a
function evaluation of a random generated solution was inserted
at the beginning. Each component of the solution was generated
using the basic random function from the Python standard library.
�e random function generates a random �oat uniformly in the
semi-open range [0.0, 1.0) using the Mersenne Twister as the core
generator.

Results of EvoSpace from experiments according to [13] and
[9] on the benchmark functions given in [5, 12] are presented in
Figures 1 and 2 and in Table 3. �e experiments were performed
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with COCO [10], version bbob.v15.03 in python, the plots were
produced with version 2.0.

6 DISCUSSION
�e results obtained show that the algorithm reaches the most dif-
�cult targets on separable functions (1-5), and scales well to higher
dimensions, with be�er-than-linear scaling in most cases and close
to quadratic in some of them. �ese results are competitive when
compared to other nature-inspired algorithms [8]. In particular
when comparing against the Binary GA algorithm implementa-
tion of Nicolau [16], and the PSO algorithm by El-Abd and Kamel
[3]: the EvoSpace-PSO-GA algorithms outperforms both, reaching
more targets with a lower expected running time (ERT). When
testing with harder problems, for instance functions 13 and 24, the
algorithm is not capable of reaching the most di�cult targets.

Future lines of work will focus on using other EA or meta-
heuristic techniques, such as the Grey Wolf Optimizer [15] or Di�er-
ential Evolution [17] for having workers that are heterogeneous in
more than one sense. RPSS could be used in those cases where each
algorithm has a di�erent set of parameters, but also to randomly
select the technique employed.

�e experiment shows that an asynchronous execution of population-
based optimization algorithms following a Pool-based approach is
possible and easy to achieve. Results, however, are still preliminary
and further tuning of the parameters could potentially yield be�er
results.
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Figure 2: Empirical cumulative distribution functions (ECDF), plotting the fraction of trials with an outcome not larger
than the respective value on the x-axis. Le� subplots: ECDF of the number of function evaluations (FEvals) divided by
search space dimension D, to fall below fopt + ∆f with ∆f = 10k , where k is the �rst value in the legend. �e thick red
line represents the most di�cult target value fopt + 10−8. Legends indicate for each target the number of functions that were
solved in at least one trial within the displayed budget. Right subplots: ECDF of the best achieved ∆f for running times of
0.5D, 1.2D, 3D, 10D, 100D, 1000D, . . . function evaluations (from right to le� cycling cyan-magenta-black. . . ) and �nal ∆f -value
(red), where ∆f and Df denote the di�erence to the optimal function value. Light brown lines in the background show ECDFs
for the most di�cult target of all algorithms benchmarked during BBOB-2009.
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Figure 3: aRT loss ratio versus the budget in number of
f -evaluations divided by dimension. For each given bud-
get FEvals, the target value ft is computed as the best target
f -value reached within the budget by the given algorithm.
Shown is then the aRT to reach ft for the given algorithm or
the budget, if the best algorithm from BBOB 2009 reached
a better target within the budget, divided by the aRT of the
best algorithm from BBOB 2009 to reach ft. Line: geometric
mean. Box-Whisker error bar: 25-75%-ile withmedian (box),
10-90%-ile (caps), and minimum and maximum aRT loss ra-
tio (points). �e vertical line gives the maximal number of
function evaluations in a single trial in this function sub-
set. See also Figure 4 for results on each function subgroup.
Data produced with COCO v2.1
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Figure 4: aRT loss ratios (see Figure 3 for details).
Each cross (+) represents a single function, the line is the
geometric mean.
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