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ABSTRACT
Finding the optimal solution for a given problem has always been an
intriguing goal and a key for reaching this goal is sound knowledge
of the problem at hand. In case of single-objective, continuous,
global optimization problems, such knowledge can be gained by
Exploratory Landscape Analysis (ELA), which computes features
that quantify the problem’s landscape prior to optimization. Due to
the various backgrounds of researches that developed such features,
there nowadays exist numerous implementations of feature sets
across multiple programming languages, which is a blessing and
burden at the same time.

�e recently developed R-package flacco takes multiple of these
feature sets (from the di�erent packages and languages) and com-
bines them within a single R-package. While this is very bene�cial
for R-users, users of other programming languages are le� out.
Within this paper, we introduce flaccogui, a graphical user inter-
face that does not only make flacco more user-friendly, but due
to a platform-independent web-application also allows researchers
that are not familiar with R to perform ELA and bene�t of the
advantages of flacco.
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1 INTRODUCTION
In recent years, the interest in research �elds related to the (sta-
tistical) analysis of data – such as machine learning, optimization
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or algorithm selection – has been growing steadily and usually,
their results can be improved by further knowledge of the under-
lying problems. For instance, when trying to solve the Algorithm
Selection Problem [3, 32] – whose goal is the prediction of the best
algorithm A ∈ A out of a (pre-de�ned) portfolio or set of optimiza-
tion algorithms A for a given instance I ∈ I – the knowledge of
problem-speci�c properties or characteristics is useful to train an
enhanced algorithm selection model [4, 17].

�e choice of characteristics is obviously domain-dependent, in
a lot of cases even problem-dependent, but luckily there o�en exist
several groups of characteristics which can be used. For instance,
there exist features for single-objective combinatorial [7, 29], con-
tinuous [22, 27] or multi-objective optimization problems [8, 16, 18],
but also for other domains such as the Traveling Salesperson Prob-
lem [10, 23, 30].

While it is de�nitely pro�table that researchers from all over the
world contribute to their speci�c domain of interest, it also comes
with a major drawback when looking at it from a practical point of
view: each group’s features are – if at all – only provided within
a single package of the respective group’s favorite programming
language. �erefore, if one wants to use features from di�erent
research groups, one has to deal with multiple interfaces. As the
la�er is not very user-friendly, people tend to avoid features from
di�erent sources and rather opt to restrict their experiments to
features from a single source. Consequently, the conducted ex-
periments are less powerful as their results are not comparable to
experiments that were based on a di�erent set of features. Also, all
the information, which might be hidden within any of the neglected
feature sets, is discarded; the same holds for possible interactions
among features from di�erent feature sets.

At least in the context of single-objective continuous optimiza-
tion – in which the respective feature-generating process is o�en
called Exploratory Landscape Analysis (ELA, [22]) – this obstacle has
been mainly resolved by the development of flacco [12], which
combines the respective features from multiple research groups
within a single R-package [31]. Unfortunately, R is not very user-
friendly (given its command-based interface) and thus, only people
who are familiar with this programming language are currently
able to pro�t from the package. In order to tackle this obstacle, we
created a graphical user interface (GUI), which lets one pro�t from
all the functionalities of flacco without any knowledge of R.

Following a brief introduction into Exploratory Landscape Anal-
ysis and its integration into flacco within Section 2, we provide
a description of the GUI in Section 3 and conclude our work in
Section 4.
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Figure 1: Schematic representation of the usage of ELA for
training algorithm selection models.

2 EXPLORATORY LANDSCAPE ANALYSIS
As mentioned in the previous section, Exploratory Landscape Anal-
ysis (ELA, [22]) is a sophisticated approach, which aims at char-
acterizing the landscapes of single-objective, continuous, global
optimization problems by means of – not necessarily intuitively
understandable – numerical features. �ese numbers could then
for instance be used to guide optimization algorithms towards a
landscape’s optimum or even automatize the algorithm selection
process for a given set of problem instances as depicted in Figure 1.

�e importance of ELA becomes more obvious when taking
into consideration that it is usually used in the context of black-
box optimization, i.e., the underlying problems are unknown and
function evaluations are (o�en) considered to be highly expensive.
�erefore, features which solely rely on an initial sample can be
very bene�cial as long as the size of the initial sample is low. In
an ideal scenario, the initial sample could be identical to a well-
distributed initial population of an evolutionary algorithm and thus,
its information could be used prior to even running the algorithm
itself.

Although the term “Exploratory Landscape Analysis” is still
rather new, contributions to this �eld, e.g., [11, 19, 20], have been
made well before its �rst public mentioning in 2010 [24]. However,
as there exist no obvious traits that clearly characterize a landscape,
researchers from all over the world invent new sets of landscape
features on a regular base, such as [1, 13, 25–28].

In addition, there have also been successful a�empts of em-
ploying landscape features within algorithm selection [4] or for
detecting whether a problem possesses an underlying funnel struc-
ture [14], i.e., a landscape whose local optima pile up to an upside-
down version of a mountain.

As the previous examples show, there exist numerous sets of
landscape features and also di�erent �elds of application. However,
they are usually programmed in di�erent languages – mainly in
R [31], python [33] or Matlab [21] – and thereby exclude people
who are not familiar with the respective programming language.

2.1 Integration of ELA into Flacco
In order to overcome the obstacle of the feature sets being dis-
tributed across di�erent programming languages, we collected sev-
eral of them and combined them (publicly accessible) within a sin-
gle R-package for feature-based landscape analysis of continuous
and constraint optimization problems: flacco [12]. Currently, the
package holds a total of 17 feature sets or equivalently more than
300 landscape features and can either be used via its stable release

Figure 2: Creating the so-called “feature object”, which is the
basis for all further computations within flacco, cf. [15].

from CRAN1 or as a development version which can be found on
GitHub2. Note that the la�er also provides a link to a tutorial.

Aside from the feature values itself, the package also automat-
ically tracks the costs (in function evaluations and runtime) per
feature set. Also, flacco provides functions for visualizing certain
feature sets and hopefully, these plots improve the understanding
of the o�en not intuitively comprehensible numerical values.

�e essential ingredient of all computations and visualizations
within flacco is the so-called “feature object”. As shown in Fig-
ure 2 this object basically stores the information of the initial design,
either provided by (a) a matrix or data frame with the input vari-
ables and a vector with the corresponding objective values, or (b)
a data frame, which merged the two parts of (a) within a single
object. �is input data – eventually enhanced by some additional
information such as the exact lower and upper bounds of the input
variables or the exact de�nition of the (usually unknown) problem
– is then transformed into the “feature object” by using the function
createFeatureObject. Note that the exact function de�nition is
only relevant for feature sets, which can not be computed without
further additional function evaluations, such as the local search
search features of [22].

For be�er usability, the package also ships with a function called
createInitialSample which creates an initial sample (of points
within the decision space). By de�ning the function’s arguments,
the user can de�ne the number of observations (= points) as well
as the number of dimensions (= input variables) d . Note that per
default, the points are sampled random uniformly within the d-
dimensional hypercube [0, 1]d , but these default se�ings can easily
be changed by the user. �at is, the user can use a latin hypercube
sample [2] rather than sampling the points random uniformly and
the values of the boundaries can be set to any other value.

�e code snippet below shows how one could create the fea-
ture object that is based on an initial design consisting of 100
two-dimensional points and whose respective objective values are
exemplarily de�ned as yn =

∑2
i=1 xn,i · (xn,i + 1):

> # compute the initial sample
> X = createInitialSample(n.obs = 100, dim = 2)
> # define the function

1Link to stable release: h�ps://cran.r-project.org/package=�acco
2Link to development version: h�ps://github.com/kerschke/�acco
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Figure 3: Example of an information content plot, cf. [27].

> fun = function(x) sum(x * (x + 1))
> # compute the objective values
> y = apply(X, 1, fun)
>
> # compute the feature object
> feat.obj = createFeatureObject(X = X, y = y,
+ fun = fun)

Given this feature object, one now can compute speci�c feature
sets, such as the local search features (ela local) from [22] or the
dispersion features (disp) from [19]:

> feats.local = calculateFeatureSet(
+ feat.object = feat.obj, set = "ela_local")
> feats.disp = calculateFeatureSet(
+ feat.object = feat.obj, set = "disp")

Similarly to the feature computation, one can also create related
plots, such as the information content plot by [27]:

> plotInformationContent(feat.object = feat.obj)

�e corresponding plot for the example above is shown in Fig-
ure 3. �e idea of the information content approach is to perform a
random walk across the problem’s �tness landscape and measure
speci�c values based on the changes occurring in the objective
space. Within the plot, some of these measures, such as the in-
formation content H (ε ) and partial information content M (ε ), are
shown in dependency of the parameter for the information sensitiv-
ity ε . For further details, the interested reader is referred to [27].
Note that again, all computations completely rely on the feature
object.

3 A GUI FOR FLACCO
As shown in the previous chapter, the R-package flacco can be
seen as a powerful library to carry out landscape analysis. However,
for users who do not have experiences in using R it is quite di�cult

Figure 4: Exemplary screenshot of the flaccogui web-
application.

to use the package. With flaccogui we therefore designed an ap-
plication, which provides a graphical user interface for flacco. �e
idea of this GUI is that also people, who do not have experiences in
using R, can pro�t of the functionalities of flacco. And although
flaccogui is also implemented in R it can be run with just a few
clicks. Moreover, there exists a hosted version of the flaccogui
application online (h�ps://�accogui.shinyapps.io/�accogui/), which
allows the usage of the GUI without any installation (or even knowl-
edge) of R.

�e implementation of flaccogui makes use of the R-package
shiny [6], which was designed to create web applications in R
so that the user can develop web applications using R-functions
without any knowledge of web-technologies. Note that shiny apps
are wri�en completely in R. For a be�er code structure shiny-
applications are divided into two parts: a ui-function for the de-
scription of the user interface and a server-function for the ap-
plication logic. When the application is started, shiny starts a
web-server and transforms the components described in the ui-
function into a web-application (consisting of HTML, CSS and
JavaScript) which can be used in every browser.

For the application logic the shiny-web-server runs the server-
function of the app. �e server-function is automatically con-
nected (through ajax) with the browser session so it can calculate
results in R and display them in the application based on the user
input. �e shiny-package also o�ers the possibility to cluster ap-
plication parts into modules, so that they can be reused in other
(shiny-) apps. In order to integrate a module into a shiny app,
the main application only has to use two functions provided by
the module. One will be used for describing the UI, the other will
control the logic.
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Figure 5: Within the functionInput-module on the le� side (green box), the user can select (or con�gure) the input data and
within the featureCalculation-module on the right side (red), the user can compute the desired feature sets.

3.1 Using flaccogui
To use the flaccogui interface the user has di�erent options.
�e easiest option is to use the hosted version of flaccogui at
shinyapps.io3. In that case, the user does not need to install any
other so�ware but just needs to open the web page and perform
the landscape analysis online.

If one prefers to run the application locally on its own machine,
one can do so by executing the following R-code snippet:

> # first, install the "flacco"-package and its depen-
> # dencies from CRAN
> install.packages("flacco", dependencies = TRUE)
>
> # then, load the package and start the app
> library(flacco)
> runFlaccoGUI()

�e library-command loads the flacco-package in R and the
following command will start the web-application right out of R
(as shown in Figure 4). �e application includes all functionalities

3Link to the hosted version of flaccogui: h�ps://�accogui.shinyapps.io/�accogui/

(i.e., modules) of flacco, i.e., feature calculation and visualization,
but also extends them by allowing the user to choose among various
test problems such as the ones from the Black-Box Optimization
Benchmark (BBOB, [9]) or any other test problems provided by the
R-package smoof4 [5].

Note that the modular build of flaccogui comes with an addi-
tional advantage: it facilitates the integration of parts of the package
into other shiny applications.

3.2 Creating the Feature Object
As explained before, the �rst step to perform landscape analysis
with flacco is to create an initial sample and the corresponding
feature object. Following this work�ow, flaccogui provides a mod-
ule that creates a featureObject as shown in the le� part of Figure 5
(highlighted by a green box).

As there are di�erent application contexts to perform landscape
analysis, our GUI o�ers di�erent options to create the featureObject:

4smoof integrates well-known optimization problems from the literature so that the
exact mathematical function de�nition does not need to be entered by the user.
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(1) Describe the optimization problem by a mathematical term
within a plain text �eld.

(2) Select an optimization problem that is already de�ned within
the R-package smoof [5].

(3) Con�gure a function from the Black-Box Optimization Bench-
mark (BBOB, [9]). Although the BBOB functions are also part
of the smoof-package, we separate them from the others as
they are frequently used when performing ELA.

(4) CSV-import of the initial design. Whenever the exact functions
are unknown – which is the case for most real-world scenarios
– and also in the cases, in which the calculation of the function
values is very cost intensive, it makes sense to just import the
sample (which has been generated before).

Based on the selection how to create the feature object, the user
needs to put in di�erent con�guration parameters (e.g., lower and
upper bound, dimensions, number of blocks for cell mapping fea-
tures, etc.). Our GUI will use this input to create a feature object,
which can be used for the calculation of any of the feature sets from
flacco.

�e integration of the module is very easy. �e following code
snippet shows a basic shiny app, which can create a feature object:

> ui <- sidebarLayout(
+ featureObject_sidebar("feature_function")
+ )
>
> server <- function(input, output) {
+ featureObject <- callModule(
+ functionInput,
+ "feature_function",
+ stringsAsFactors = FALSE)
+ }

3.3 Calculation of a Feature Set
Beside the creation of the feature object our GUI provides modules
for the calculation and visualization of feature sets. �e red box
in Figure 5 shows the FeatureSetCalculationComponent. Based
on a feature object, which has to be handed over to the module, the
module can calculate feature sets. As shown in Section 3.2, this
feature object can be created by the functionInput-module of our
GUI, but – given the modularized structure of the app – it can also
be created through another way.

When using the GUI, the user can select a speci�c feature set
from a drop down menu and the respective feature values will
be calculated directly a�er the user made a choice. �ere is also
an option for the calculation of all feature sets (at once), which
are currently available in flacco. For a be�er integration in the
development work�ow, the calculated feature sets can also be down-
loaded (in CSV-format). So, if a user wants to use the ELA results
in another application or programming environment he/she just
needs to import the CSV-�le generated by flaccogui.

3.4 Landscape analysis visualizations
As mentioned in Section 2.1, flacco also provides options for the
visualization of speci�c feature sets, such as plots for general cell

mapping, barrier trees (in 2D and 3D), as well as an information
content graph.

Similar to the FeatureSetCalculation-component there is a
FeatureSetVisualization-component, which generates the dif-
ferent plots. Based on the feature object, which the module uses as
input, the module shows the di�erent graph options that are avail-
able for the current feature object – for instance, the cell-mapping
plots and the barrier-trees are only available for two-dimensional
problems. Depending on the user’s selection flaccogui will gen-
erate the corresponding plot, such as the cell mapping plot shown
in Figure 6.

For creating an application as the cell mapping plot that is shown
in Figure 6, one only needs a few lines of code, as shown below:

> ui <- sidebarLayout(
+ featureObject_sidebar("feature_function"),
+ mainPanel(
+ # Tabset-panel for the different possibilities
+ # providing certain input in the app
+ tabsetPanel(
+ tabPanel("Feature Calculation",
+ FeatureSetCalculationComponent(
+ "featureSet_Calculation")),
+ tabPanel("Visualization",
+ FeatureSetVisualizationComponent(
+ "featureSet_Visualization"))
+ )))
>
> server <- function(input, output) {
+ featureObject <- callModule(
+ functionInput,
+ "feature_function",
+ stringsAsFactors = FALSE)
+ callModule(
+ FeatureSetCalculation,
+ "featureSet_Calculation",
+ stringsAsFactors = FALSE,
+ reactive(featureObject()))
+ callModule(
+ FeatureSetVisualization,
+ "featureSet_Visualization",
+ stringsAsFactors = FALSE,
+ reactive(featureObject()))
+ }

3.5 BBOB CSV-import
For advanced users, the flaccogui-package also includes modules
for batch-import of functions and their corresponding parameters.
Especially when analyzing multiple BBOB-functions, the analysis
should be carried out for di�erent functions and instances.

�erefore flaccogui incorporates a module (shown in Figure 7),
which imports a CSV-�le whose rows represent the input parame-
ters of a BBOB function, namely the function ID (FID), instance ID
(IID) and dimension (dim). Along with the CSV-�le, the user can
set some additional parameters, such as the number of replicates
(how o�en should the features be calculated per function), which
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Figure 6: featureVisualization-module (red box) displaying a two-dimensional cell-mapping plot. �e plot is exemplarily
shown for an instance of the two-dimensional Rastrigin function within the box constraints [0, 1] × [0, 1].

Figure 7: flaccogui allows to import the parameters of several BBOB functions via a CSV-�le and thereby enables the calcula-
tion of multiple feature sets across several optimization problems at once.
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are relevant when computing stochastic features (especially when
the sample size is quite small). Our application will then calculate
the selected feature sets for each of the replicates and also provides
a possibility to download the results.

4 CONCLUSION
�is paper introduces flaccogui, a graphical user interface to
flacco, which is an R-package for Exploratory Landscape Analysis.
Our GUI has recently been integrated in the R-package flacco, but
is also available as a platform-independent web-application. �e
la�er allows to enjoy the advantages of flacco – most importantly
calculating di�erent landscape features – without needing any
knowledge of R. As a result, researchers can reuse already developed
source code and tools for feature calculation without the burden
of interfacing or re-implementing the same features in another
language.

In the future, flaccogui will be developed hand-in-hand with
flacco, which allows to keep its content up-to-date with the most
recent developments in ELA, while sustaining the bene�ts of a
platform-independent graphical user interface.
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[7] Fabio Daolio, Sébastien Verel, Gabriela Ochoa, and Marco Tomassini. 2012. Local
optima networks and the performance of iterated local search. In Proceedings
of the 14th annual conference on Genetic and evolutionary computation. ACM,
369–376.

[8] Deon Garre� and Dipankar Dasgupta. 2007. Multiobjective Landscape Anal-
ysis and the Generalized Assignment Problem. In Proceedings of 2nd Inter-
national Conference on Learning and Intelligent Optimization (LION), Vi�orio
Maniezzo, Roberto Ba�iti, and Jean-Paul Watson (Eds.). Lecture Notes in Com-
puter Science, Vol. 5313. Springer, 110 – 124. DOI:h�p://dx.doi.org/doi.org/10.
1007/978-3-540-92695-5 9

[9] Nikolaus Hansen, Anne Auger, Ste�en Finck, and Raymond Ros. 2010. Real-
Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup. Tech-
nical Report RR-7215. INRIA. h�p://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.
pdf

[10] Frank Hu�er, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2014. Algorithm
runtime prediction: Methods & evaluation. Journal of Arti�cial Intelligence 206,
0 (2014), 79–111.

5Link to ERCIS: h�ps://www.ercis.org/

[11] Terry Jones. 1995. Evolutionary algorithms, �tness landscapes and search. Ph.D.
Dissertation. Citeseer.

[12] Pascal Kerschke. 2017. �acco: Feature-Based Landscape Analysis of Continuous and
Constraint Optimization Problems. h�ps://github.com/kerschke/�acco R-package
version 1.5.

[13] Pascal Kerschke, Mike Preuss, Carlos Hernández, Oliver Schütze, Jian-Qiao Sun,
Christian Grimme, Günter Rudolph, Bernd Bischl, and Heike Trautmann. 2014.
Cell Mapping Techniques for Exploratory Landscape Analysis. In EVOLVE - A
Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation
V. Springer, 115–131. DOI:h�p://dx.doi.org/doi.org/10.1007/978-3-319-07494-8
9

[14] Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. 2016. Low-
Budget Exploratory Landscape Analysis on Multiple Peaks Models. In Proceedings
of the 18th Annual Conference on Genetic and Evolutionary Computation. ACM.
DOI:h�p://dx.doi.org/10.1145/2908812.2908845

[15] Pascal Kerschke and Heike Trautmann. 2016. �e R-Package FLACCO for Ex-
ploratory Landscape Analysis with Applications to Multi-Objective Optimization
Problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC).
IEEE.

[16] Pascal Kerschke, Hao Wang, Mike Preuss, Christian Grimme, André Deutz,
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