
A Study of Self-Adaptive Semi-Asynchronous Evolutionary
Algorithm on Multi-Objective Optimization Problem

Tomohiro Harada
College of Information Science and Engineering,

Ritsumeikan University
1-1-1, Noji-Higashi, Kusatsu

Shiga, Japan 525-8577
harada@ci.ritsumei.ac.jp

Keiki Takadama
Department of Informatics, �e University of

Electro-Communications
1-5-1, Chofugaoka, Chofu

Tokyo, Japan 182-8585
keiki@inf.uec.ac.jp

ABSTRACT
�is paper proposes a self-adaptive semi-asynchronous evolution-
ary algorithm, SA2EA for short, and veri�es its e�ectiveness on
multi-objective optimization problems. SA2EA is an extension of
an asynchronous EA that continuously evolves solutions whenever
one solution completes its evaluation in a parallel computation envi-
ronment, unlike a conventional generation-based synchronous EA
needs to wait for evaluations of all solutions in a population, which
causes to waste much idle time of parallel computation nodes. In
contrast to such asynchronous EA, SA2EA adequately controls its
asynchrony, which means the number of waited solutions, depends
on the variance of evaluation time of solutions. To investigate the
e�ectiveness of the proposed SA2EA, this paper conducts the ex-
periment on benchmark problems of multi-objective optimization
where several variations of the variance of evaluation time are
tested in pseudo-parallel computation environment. �e experi-
mental result reveals that the proposed SA2EA outperforms the
synchronous and the asynchronous EA with constant asynchrony
not depends on the variance of evaluation time of solutions.

CCS CONCEPTS
•Mathematics of computing→Evolutionary algorithms; Bio-
inspired optimization; •Computing methodologies→ Paral-
lel algorithms;

KEYWORDS
Asynchronous evolutionary algorithm; multi-objective optimiza-
tion; parallelization; asynchrony; self-adaptation

ACM Reference format:
Tomohiro Harada and Keiki Takadama. 2017. A Study of Self-Adaptive Semi-
Asynchronous Evolutionary Algorithm on Multi-Objective Optimization
Problem. In Proceedings of GECCO ’17 Companion, Berlin, Germany, July
15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3084221

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3084221

1 INTRODUCTION
Evolutionary algorithms (EAs) have been applied to wide range of
real world optimization problems [2, 18] because of their high opti-
mization ability without any problem speci�c knowledge. When
applying EAs to real world optimization problems, any solution
evaluations may take much time due to physical simulation or
measurement of actual consumption time. In such situation, a par-
allelization of �tness evaluations is a possible option to speed-up
the optimization process. Parallelization techniques of EAs have
been proposed [4, 5, 10, 24], however, if evaluation times of solu-
tions di�er from each other, conventional parallel EAs waste a lot of
idle time to wait for completion of the longest �tness evaluation of
solution. �is is because conventional parallel EAs generate a next
population a�er evaluating all solutions in a current population.

To overcome this problem, asynchronous evolution approach has
been proposed, which continuously generates a new solution with-
out waiting evaluations of other solutions, unlike the conventional
synchronous approaches need to wait evaluations of all solutions
in a population. Since the asynchronous EAs continuously evolve
solutions in a parallel evaluation environment, it is possible to e�-
ciently search solutions in the situation where evaluation times of
solutions take time and di�er from each other, such result has been
presented in several previous researches [22, 23].

Most of the previous asynchronous EAs generate a next solu-
tion whenever each solution completes its evaluation. However, to
improve search ability of a parallel EA, it can be considered more
e�cient that a parallel EA waits some, not only one, solution eval-
uations to utilize information of solution evaluations to generate
new solutions. In concrete, if the variance in evaluation times is not
large, it is more e�cient to generate new solutions a�er waiting
some or most evaluations in a population to utilize information
of solution evaluation. While if the variance in evaluation times
is large, an asynchronous approach is still be�er choice to reduce
idle time. It is possible to improve search ability of parallel EAs
by adjusting asynchrony depends on the trade-o� between idle
time to wait solution evaluations and search e�ciency. From this
fact, our recent paper introduces asynchrony in asynchronous EA
and proposes a semi-asynchronous EA (SAEA) In addition to this,
this paper explores a self-adaptive SAEA, SA2EA for short, that
adjusts its asynchrony depends on the tendency of the variance of
evaluation times.

To investigate the e�ectiveness of SA2EA, this paper conducts
experiments to solve multi-objective optimization problems (MOPs)
with several variances of evaluation times by using multi-objective
EA (MOEA), in particular NSGA-II [8] is employed in this paper.

1812

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Tomohiro Harada and Keiki Takadama

�is paper employs a computational time model in a parallel envi-
ronment proposed in [30], and compares four kind of paralleliza-
tion, synchronous, complete asynchronous, semi-asynchronous,
and self-adaptive semi-asynchronous MOEAs. We also test several
variants of an adaptation of asynchrony in a self-adaptive semi-
asynchronous MOEA.

�e remaining of this paper is organized as follows. Section 2
shows some related works regarding asynchronous evolutionary
algorithms and their analyses. Section 3 explains the concept of
semi-asynchronous EA and shows the relation between the vari-
ance of evaluation times and asynchrony. Section 4 proposes the
self-adaptive semi-asynchronous EA and shows the self-adaptive
semi-asynchronous NSGA-II as an example. Section 5 describes
the experimental se�ings where the synchronous, the semi-asynch-
ronous, and the self-adaptive semi-asynchronous NSGA-IIs are
compared, and Section 6 shows its results. Finally, Section 7 con-
cludes this paper and presents future works.

2 RELATEDWORKS
2.1 Asynchronous evolutionary algorithm
Several researches proposed asynchronous EAs for single- and
multi-objective optimization problem. �is paper focuses on the
master-slave parallelization where a master computation node ex-
ecutes main process of EA like initialization, selection, solution
generation through genetic operators and population maintenance,
while many slave nodes execute evaluation process in parallel. �is
is because most of previous researches with respect to asynchro-
nous evolution employ such master-slave parallelization.

As simple extensions of existing synchronous EAs, asynchro-
nous steady-stage GP (ASSGP) [15], asynchronous particle swarm
optimizaiton (APSO) [3, 13], asynchronous di�erential evolution
(ADE) [16, 26] were proposed, and APSO was also extended to
multi-objective APSO (MAPSO) for solving MOPs [14]. For asyn-
chronous MOEAs, Depolli et al. proposed asynchronous master-
slave parallelization of di�erential evolution for multi-objective
optimization (AMS-DEMO) [9] that is an asynchronous extension
of DEMO [19]. Some recent researches also proposed asynchro-
nous MOEA, for instance, Santander-Jimenez and Vega-Rodriguez
proposed asynchronous non-generational indicator-based multi-
objective bat algorithm (ANIMOBA) [20] that is an asynchronous
extension of bat algorithm for MOPs [21], while in [25], Wessing
et al. compares synchronous and asynchronous variant of S-metric
selection evolutionary multi-objective algorithm SMS-EMOA [1].

Sco� et al. analyzed behavior of asynchronous EA on the eval-
uation time di�erent problems [22, 23]. In [23], they compared a
synchronous (µ + λ) EA and an asynchronous (µ + 1) EA from the
viewpoint of the relationship between �tness value of solutions and
their evaluation time, and indicated that the asynchronous EA out-
performs the synchronous one in all �tness-time relationships. On
the other hand, in [22], it was indicated that an asynchronous EA
increases the possibility to converge to local optima that is worse
�tness value than the global optima but can be quickly evaluated.

2.2 Computational time model in a parallel
environment [30]

Zvoianu et al. modeled the computational time of synchronous and
asynchronous EAs in a parallel computational environment, and
compared synchronous (µ+λ) EA with asynchronous (µ+1) (steady-
state) EA [30]. �is comparison is conducted on MOPs and two
typical MOEAs, NSGA-II [8] and SPEA2 [28], are employed. In their
research, assuming the master-slave computational environment
that consists of single master node and λ slave nodes. A master
node executes the main process of EA by consuming time ts , while
each slave node evaluates a received solution by consuming time
tp .

�eir previous research did not only model the computational
time of synchronous and asynchronous EAs in a parallel environ-
ment, but also they conducted an experimental comparison of these
EAs on MOPs with di�erent variance of evaluation time of solu-
tions. Concretely, they de�ned a parameter cv that decides the
variance of evaluation time, and each solution evaluation requires
a certain computational time decided by the normal distribution
with mean tp and standard deviation tp × cv . From the result of
this experiment, it was indicated that large variance of evaluation
time increases the e�ciency of an asynchronous EA in comparison
with a synchronous one.

3 SEMI-ASYNCHRONOUS EVOLUTIONARY
ALGORITHM

3.1 Overview
Previous researches proposed a lot of variation of asynchronous
single- and multi-objective EAs and revealed their e�ectiveness
in computational time variant optimization problems. However,
asynchronous EAs have a problem that their search ability be-
comes worse than synchronous EAs in terms of same computa-
tional time when the variance evaluation times of solutions is not
large. �is is because bad in�uence due to not waiting for evalu-
ations of other solutions in asynchronous EAs cannot be ignored.
While in synchronous EAs, even though they waste much idle
time of slave nodes, they have higher search ability than asynchro-
nous ones because synchronous EAs can use evaluation informa-
tion of all solutions when generating next population. From this
fact, this paper proposes a semi-asynchronous EA that waits for
n = dα × λe (1/λ ≤ α ≤ 1) evaluations (dxe means the ceiling
function that maps a real number x to the smallest next integer)
of slave nodes and executes the master process, unlike (complete)
asynchronous EAs waits for only one evaluation. In other words,
this means that a semi-asynchronous (µ + dαλe) EA that selects
µ be�er solutions from original µ solutions and newly evaluated
dαλe solutions.

Herea�er, this paper denotes the parameter α that decides the
number of evaluations to be waited as an asynchrony parameter,
and dαλe is simply represented as αλ unless otherwise noted. High
asynchrony means that a semi-asynchronous EA is closer to a
synchronous EA, e.g., waits for λ solutions when α = 1, which is
same as a synchronous EA. While low asynchrony means that it
is closer to a complete asynchronous EA, e.g., waits for only one

1813

A Study of Self-Adaptive Semi-Asynchronous EA on MOOP GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 1: Semi-asynchronous (µ + αλ) EA where λ = 4 slave
nodes and the asynchrony parameter α = 0.5, i.e., n = αλ = 2
evaluations out of four slave nodes are waited to execute the
master process

solution when α = 1/λ, which is same as a complete asynchronous
EA.

3.2 Computational time model generalized
with consideration of asynchrony

According to the computational time model in [30], Fig. 1 depicts
an illustration of a semi-asynchronous EA with the asynchrony
parameter α = 2/λ, i.e., n = λ/2 = 2 evaluations are waited. In this
situation, as same as a synchronous and a complete asynchronous
EAs, the initial generation takes λ × ts + tp computational time,
while a�er that, a semi-asynchronous EA waits αλ evaluations (two
evaluations in Fig. 1) and generates new αλ solutions. Accordingly,
each generation, except for the initial generation, takes α × λ ×
ts + tp computational time a�er the last λth evaluation completes
in each generation, and in total, the computational time of a semi-
asynchronous EA to complete N generations, i.e., N ×λ evaluations,
is generalized and denoted as follows:

T (α ;N , λ) = (λ × ts + tp) + (N − 1) × (α × λ × ts + tp), (1)

which is derived from sum of the initial computational time λts + tp
and (N − 1) generations of αλts + tp . According to this generalized
equation, a synchronous model is expressed as T (1;N , λ), while a
complete asynchronous model is expressed as T (1/λ;N , λ).

In [30], a criterion that indicates how many solutions can be
evaluated by an asynchronous EA in the time interval required by
a synchronous EA to evaluate N generations of λ solutions was
referred as the structural improvement measurement (∆struct). As
same as this, this paper refers the generalized structural improve-
ment ∆struct (α) that contains the asynchrony parameter α , which
is given by the following equation:

∆struct (α) =
T (1;N , λ) −T (α ;N , λ)

T (α ;N , λ)

=
(N − 1) × (1 − α) × λ × ts

N × (α × λ × ts + tp) + (1 − α) × λ × ts
.

(2)

From this equation, it is easily indicated that ∆struct (α) mono-
tonically decreases by increasing the asynchrony parameter α , i.e.,
the computational e�ciency of a semi-asynchronous EA decreases

Figure 2: An example of ine�ectual asynchrony of semi-
asynchronous (µ + αλ) EA where λ = 4 slave nodes and the
asynchrony parameter α = 3/4, i.e., n = αλ = 3 evaluations
out of four slave nodes are waited to execute the master pro-
cess

by increasing the number of waiting solutions. From this crite-
rion, in order to achieve be�er performance by semi-asynchronous
EAs, it is necessary to accomplish the improvement of search abil-
ity surpassing the disadvantage of decrease of the computational
e�ciency.

3.3 E�ectual and ine�ectual asynchrony
In a semi-asynchronous EA, all values of α within the range of 1/α
to 1 cannot be used. �is is because incorrect se�ing of α causes
ine�ectual parallelization. Concretely, an e�ectual α should satisfy
the following restriction:

λ ≡ 0 (mod dαλe), (3)
where a ≡ b (mod n) expresses congruent modulo where the dif-
ference of integers a and b, (a − b), is multiple of a positive integer
n. �is is because if α does not satisfy the restriction of Eq. (3) and
there exists some k that satis�es λ ≡ k (mod dαλe), k slave nodes
cannot be synchronized with other slave nodes and ine�ectual
waiting time occurs.

An example of such ine�ectual asynchrony se�ing is shown in
Fig. 2, where λ = 4, α = 3/4 and λ ≡ 1 (mod dαλe). In that case,
as shown in Fig. 2, the �rst three evaluations by Slaves 1 to 3 are
synchronized, and next three solutions are generated with starting
their evaluations in these slave nodes. �en next evaluation by
Slave 4 completes at almost the same time, but since other slaves
just start their evaluations, Slave 4 mast wait for evaluations of
other two out of three slaves, which causes the ine�ectual waiting
time occurs. It is possible that such ine�ectual situation is avoided
if evaluation times of solutions di�er from each other, but this paper
supposes that the restriction in Eq. (3) should be preserved in a
semi-asynchronous EA.

3.4 Relation between the variance of
evaluation time and asynchrony

As noticed in [30], the number of evaluations in the asynchro-
nous EA increases by increasing the variance of evaluation time
of solutions within the same computation time of the synchro-
nous one. �is tendency can be applied to the semi-asynchronous
EA. In particular, not only the number of evaluations in the semi-
asynchronous EA increases by increasing the variance of evaluation

1814

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Tomohiro Harada and Keiki Takadama

0.00 0.05 0.10 0.15 0.20

−
0

.1
0

.0
0

.1
0

.2
0

.3
0

.4

The variance of evaluation times (c_v)

P
e

rf
o

rm
a

n
c
e

 c
o

m
p

a
re

d
 w

it
h

 s
y
n

c
.

N
S

G
A

−
II

0.01

0.02

0.04

0.05

0.1

0.2

0.25

0.5

Figure 3: Relation between the variance of evaluation times
and the performance of semi-asynchronous NSGA-II with
several asynchrony

time of solutions within the same computation time of the syn-
chronous one, but also it decreases by increasing the asynchrony
parameter α [11].

Figure 3 shows the ratio how many evaluations are computed
to achieve a certain performance by the semi-asynchronous EA
with a certain asynchrony α in comparison with the synchronous
EA. In this case NSGA-II [8] is employed, which is one of the
most powerful MOEA method, and ZDT1 benchmark [27] that
is two objective optimization problem is solved. �e horizontal
axis shows the variance of evaluation time of solutions, while the
vertical axis shows the ratio of the number of evaluations to achieve
95% the Hypervolume [29], which is an indicator to assess the
quality of the achieved solutions, between the semi-asynchronous
and the synchronous EAs. �e negative value indicates the semi-
asynchronous NSGA-II is not be�er than the synchronous one,
while the positive value indicates the semi-asynchronous NSGA-II
outperforms the synchronous one. In this �gure, each solution
is evaluated in time determined from N (tp , (cv × tp)

2), where
N (µ,σ 2) denotes the normal distribution with the mean µ and the
standard deviation σ , and the results of cv = {0.0, 0.02, 0.05, 0.07,
0.10, 0.20} are depicted. As shown in Fig. 3, the ratio increases by
increasing the variance cv , while the ratio decreases by increasing
the asynchrony parameter α , i.e., by increasing the number of
waited solutions. From this analysis, it is indicated that if the
variance of the evaluation times is low, e.g., cv ≤ 0.05, the semi-
asynchronous version is not e�cient, while if the variance is large,
e.g., cv > 0.05, the semi-asynchronous one greatly outperforms the
synchronous one and low asynchrony, e.g., 0.01 ≤ α ≤ 0.05 have
be�er performance than high asynchrony.

4 SELF-ADAPTIVE SEMI-ASYNCHRONOUS
EVOLUTIONARY ALGORITHM (SA2EA)

4.1 Adaptation of asynchrony parameter
From the analysis mentioned in the previous section, this paper
proposes the self-adaptive semi-asynchronous EA that adapts its
asynchrony depends on the measured variation of evaluation times
during the evolution process. Concretely, we de�ne the asynchrony
function α (ˆcv) that is monotone decreasing function depends on
the measured variance ˆcv . We test four kind of the asynchrony
functions as follows:

Step

αstep (ˆcv) =

1.0 ˆcv ≤ 0.05
0.01 otherwise

(4)

Linear
αl inear (ˆcv) = 1.0 − ˆcv

0.2 (5)

Inverted Sigmoid (ISig)

αisiд (ˆcv) = 1.0 − 1.0
1.0 + exp(−βisiд × (ˆcv − 0.05)) (6)

Exponentioal (Exp)

αexp (ˆcv) = exp(−βexp × ˆcv) (7)

Since the semi-asynchronous EA has the e�ectual asynchrony as
mentioned in Section 3.3, the calculated asynchrony value is con-
verted to the closest e�ectual asynchrony as follows:

αef f (αada , ˆcv) = arg min
a∈e�ectual α

(|a − αada (ˆcv) |), (8)

where αada corresponds to any asynchrony function. �e reason
why Step function is separated at 0.05 is that the semi-asynchronous
EA outperforms the synchronous one in the situation where the
variance of evaluation time cv is larger than 0.05 as shown in Fig. 3.
As the same reason, Inverted Sigmoid function switches its in�ec-
tion point at cv = 0.05. In Equations (6) and (7), the parameters
βisiд and βexp control sensitivity of adaptation, and this paper
employs βisiд = 100.0 and βexp = 20.0 in both equations, which
is decided to converge to α = 0.01 when the variation cv is larger
than 0.2. Figure 4 shows adaptive asynchrony value calculated
by each asynchrony function. In this �gure, the horizontal axis
indicates the variation of evaluation times cv , while the vertical
axis indicates the asynchrony value. �e dashed line indicates the
asynchrony value directly calculated by each function, while the
solid line indicates the converted value by equation (8).

4.2 Self-adaptive semi-asynchronous NSGA-II:
An example

To take an application of a SA2EA into account, this section shows
a concrete example of self-adaptive semi-asynchronous NSGA-II,
SA2NSGA-II for short. NSGA-II [8] is one of the most powerful
MOEA method. �e brief �ow of the master node in the parallel
synchronous NSGA-II is described as follows:

(1) Set generation counter t = 0.
(2) Initialization

(a) Initialize population P0.
(b) Send all solutions to slave nodes.

1815

A Study of Self-Adaptive Semi-Asynchronous EA on MOOP GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

0.00 0.10 0.20 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

cv

α
s
te

p

(a) Step (Eq. (4))

0.00 0.10 0.20 0.30
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

cv

α
li
n

e
a

r

(b) Linear (Eq. (5))

0.00 0.10 0.20 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

cv

α
is

ig

(c) Inverted Sigmoid (ISig) (Eq. (6))

0.00 0.10 0.20 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

cv

α
e

x
p

(d) Exponential (Exp) (Eq. (7))

Figure 4: Adaptive asynchrony value calculated by each
asynchrony function

(c) Wait for evaluations of all solutions.
(3) Repeat until termination condition is satis�ed

(a) Generate o�spring population, which size is equal to
Pt , through binary tournament selection and genetic
operator.

(b) Send all o�spring to slave nodes.
(c) Wait for evaluations of all o�spring→ Qt .
(d) Rt = Pt ∪Qt .
(e) Select next population Pt+1 from merged population

Rt according to the non-dominated sorting and the
crowding distance metric.

(f) t = t + 1.
In this �ow, the role of slave nodes is evaluating a solution given
from a master node and returning its evaluation to a master node.

Since NSGA-II is a special case of (µ + λ)-EA where µ = λ = |P |,
it can be easily extended to a self-adaptive semi-asynchronous
approach. Concretely, the parallel SA2NSGA-II is executed as fol-
lows, where di�erence between synchronous and self-adaptive
semi-asynchronous versions is denoted as italic style:

(1) Set generation counter t = 0.
(2) Initialization

(a) Initialize population P0.
(b) Send all solutions to slave nodes.
(c) Wait for evaluations of all solutions.
(d) ˆcv = 0.0 (initialized by zero)

(e) n = 0
(f) α = 1.0 (initialized by zero)

(3) Repeat until termination condition is satis�ed
(a) Generate o�spring population, which size is equal

to the number of idling slave nodes, through binary
tournament selection and genetic operator.

(b) Send all o�spring to idling slave nodes.
(c) Wait for evaluations of αλ o�spring→ Qt .
(d) Rt = Pt ∪Qt .
(e) Select next population Pt+1 from merged population

Rt according to the non-dominated sorting and the
crowding distance metric.

(f) n = n + |Qt |

(g) if n = # of slaves
(i) ˆcv ← standard deviation of evaluation time

average evaluation time
(ii) α = αef f (αada , ˆcv)

(iii) n = 0
(h) t = t + 1.

�e essential di�erence between the synchronous and the self-ada-
ptive semi-asynchronous NSGA-II is 3-c to 3-g in the above �ow.
SA2NSGA-II waits for αλ evaluations in every step and generates
the same number of o�spring from the current population. Note
that the population selection according to the non-dominated sort-
ing and the crowding distance metric is applied to (λ+αλ) solutions
in Rt , unlike the synchronous NSGA-II applies them to (λ + λ) so-
lutions in Rt , and this di�erence may a�ect to the di�erence of
search ability in the synchronous and semi-asynchronous NSGA-II.
�en, SA2NSGA-II calculates the average and the standard devia-
tion of evaluation times of all evaluated solutions and calculates
adaptive the asynchrony value α by Eq. (8). Such adaptation is
executed every when solutions as the same number of slave nodes
are evaluated. �is is because to avoid the ine�ectual waiting time
by adapting the asynchrony value α every step.

5 PERFORMANCE COMPARISON
5.1 Experimental settings
To verify the e�ectiveness of the proposed SA2EA, this paper con-
ducts the performance comparison using the self-adaptive semi-
asynchronous NSGA-II (SA2NSGA-II), described in the previous
section. We employ the typical multi-objective benchmark prob-
lems, the ZDT series (except for ZDT5) and the WFG series [12].
�e ZDT series consists six two objective optimization problems,
in which 30 decision variables in ZDT1, 2, and 4, while 10 decision
variables in ZDT3 and 6 are optimized in this paper. �e WFG series
consists of nine scalable, multi-objective test problems, and this pa-
per employs two objectives and six decision variables (k = 4, l = 2)
WFG2–7 and WFG9. WFG1 and WFG8 are not employed in this
paper because it is hard for all variation of NSGA-II in this paper
to achieve enough quality of HV (more than 80% of the maximum
HV).

�is experiment is conducted on the simulated parallel computa-
tional environment, in which single master node and λ = 100 slave
nodes work. tp is set as 1000, which is 1000 times longer than the
master process, and several variances of cv = {0.0, 0.02, 0.05, 0.07,
0.10, 0.20} are tested.

1816

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Tomohiro Harada and Keiki Takadama

We compare complete synchronous, semi-asynchronous, and
self-adaptive semi-asynchronous NSGA-IIs. Herea�er, these vari-
ants of NSGA-II are represented as CSNSGA-II, SANSGA-II, and
SA2NSGA-II, respectively. For them, the following genetic opera-
tions and the parameter se�ings are commonly employed in this
experiment:

• Population size λ = 100
• �e maximum number of evaluations = 50000 (=the maxi-

mum number of generation = 500)
• Simulated Binary Crossover (SBX) [6] with Pc = 0.9 and

ηc = 20.0
• Polynomial Mutation (PM) [7] with Pm = 1/D and ηm =

20.0

All e�ectual asynchrony of SANSGA-II are tested in this experi-
ment as described in Section 3.3. Concretely, since the population
size λ is set as 100, the asynchrony parameters α = {0.01, 0.02, 0.04,
0.05, 0.1, 0.2, 0.25, 0.5, 1.0} are e�ectual, in which α = 0.01 corre-
sponds to the complete asynchronous NSGA-II, while α = 1.0 cor-
responds to CSNSGA-II. In SA2NSGA-II, four asynchrony functions
are tested, and each combination of SA2NSGA-II and an asynchrony
function is represented as SA2NSGA-II/func, e.g., SA2NSGA-II/step.

5.2 Evaluation criteria
In this experiment, we compare the variants of NSGA-II from the
viewpoint of the computational time to achieve a certain quality of
Pareto optimal solutions (POS) and the �nally achieved POS. In par-
ticular, this paper employs the Hypervolume (HV) [29] indicator to
evaluate the quality of achieved POS. For each benchmark problem,
we measure the computational time to achieve a certain percentage,
95% of HV with true POS in T x%, and compare it with one mea-
sured in CSNSGA-II. Concretely, the percentage of how CANSGA-II,
SANSGA-II and SA2NSGA-II shorten the computational time than
CSNSGA-II is calculated as follows:

∆x%
t ime = 100 × *

,
1 −

T x%
method

T x%
CSNSGA−I I

+
-
, (9)

and we evaluate that the compared methods are e�ective if∆x%
method

is greater than 0, while if ∆x%
method is less than 0, it indicates that the

compared methods need more computational time than CSNSGA-II.
On the other hand, HV of the achieved POS a�er the maximum
number of evaluations is also compared to evaluate the convergence
ability of all variants of NSGA-II. In this experiment, the achieved
HV is compared with HV of true POS and the remaining percentage
of HV achieved by the semi-asynchronous NSGA-II is calculated as
follows:

∆HV = 100 ×
(
1 − HVmethod

HVtrue

)
, (10)

where HVmethod and HVtrue indicate HV of the achieved POS by
the variants of NSGA-II and the true POS, respectively.

Our experiment and the examined methods are implemented
by using jMetal framework [17], and 25 independent trials are
conducted for each combination of the benchmark problem, the
variance of cv , and the variants of NSGA-IIs.

6 RESULT
Table 1 shows the percentage of how SANSGA-II and SA2NSGA-
II shorten the computational time than CSNSGA-II calculated by
equation (9). In this table, each row indicates the variance of the
evaluation time, i.e., cv . Each column indicates the result of the
best case of SANSGA-II and SA2NSGA-II with di�erent asynchrony
functions. In SANSGA-II, the best case is shown and its asynchrony
parameter is denoted within the parentheses. �e negative values,
i.e., the worse performance than CSNSGA-II, are colored by gray
in this table, while the best case for each problem and each cv
value is denoted as bold style. �e Wilcoxon rank sum test is
conducted as the statistical test. If the results of SA2NSGA-IIs and
the best case of SANSGA-II are signi�cantly be�er than CSNSGA-II
with 5% signi�cance level, it is marked with “M”, while if they are
signi�cantly worse, it is marked with “H”.

From Table 1, it is con�rmed that SANSGA-II, which uses con-
stant asynchrony value, has worse performance than the synchro-
nous NSGA-II when the variance cv is small, though it is e�ective
when the variance cv is large. SA2NSGA-IIs with Step or ISig func-
tions achieve be�er or equivalent performant in comparison with
the synchronous NSGA-II when the variance cv is low, while they
greatly outperform the synchronous one when the variance cv is
high, though their performance are a li�le worse than SANSGA-II.
On the other hand, SA2NSGA-IIs with Linear or Exp functions do
not achieve be�er performance regardless the variance cv . �is
is because these two functions has possibility to adapt the asyn-
chrony α to the middle value like 0.5 or 0.25, but such values are
not e�ective in any variance of the evaluation time. In SA2NSGA-II
with ISig function, it is indicated that when the variance cv = 0.05,
SA2NSGA-II has worse performance than SANSGA-II and CSNSGA-
II. �is is caused by the same reason of SA2NSGA-IIs with Linear
or Exp functions, which means ISig function adapts α value to the
middle value when cv is close to 0.05. �erefore, its performance
decreases when the variance cv = 0.05.

Focusing on the benchmarks ZDT4, WFG4, WFG7, and WFG9, it
is indicated that SANSGA-II outperforms the synchronous NSGA-
II even when the variance cv is low. In such case, it is hard for
SA2NSGA-IIs in this paper to achieve such performance because
they are designed to adapt the asynchrony α to high, mostly 1.0,
when the variance cv is low. To achieve the best performance of
SANSGA-II in SA2NSGA-II, it is revealed that the adaptation should
be designed by considering not only the variance of evaluation time
of solutions, but also the balance between the idling time and the
search performance.

From these results, it is indicated the e�ectiveness of SA2NSGA-
II with the asynchrony functions like Step and ISig, which rapidly
change the asynchrony value depending on the variance of eval-
uation time of solutions. In addition, further improvement of the
asynchrony adaptation should be tackled by consider other indica-
tor excluding the variance.

7 CONCLUSION
�is paper proposed the concept of the self-adaptive semi-asynch-
ronous EA (SA2EA) that adapts the asynchrony parameter, which
decides how many evaluations are waited to generate new solu-
tions, depending on the variance of evaluation time of solutions in

1817

A Study of Self-Adaptive Semi-Asynchronous EA on MOOP GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 1: �e percentage of how the semi-asynchronous, and the self-adaptive semi-asynchronousNSGA-IIs shorten the compu-
tational time than the synchronous one in each benchmark problems (∆x%

t ime). �e best improvement greater than 0 is denoted
as bold style for each variance of the evaluation time, i.e, cv . If SA2NSGA-IIs and the best case of SANSGA-II are signi�cantly
better than CSNSGA-II with 5% signi�cance level, it is marked with “M”, while if they are signi�cantly worse, it is marked with
“H”.

ZDT1 (∆95%
t ime) ZDT2 (∆95%

t ime)
cv SA best (α) step linear isig exp SA best (α) step linear isig exp
0.0 -2.5% (0.5)H 1.1% 0.7% 2.5% -3.5%H -4.9% (0.05)H 1.8% -1.5% -0.7% -3.5%H
0.02 -2.7% (0.02)H 0.7% -0.2% 0.8% -4.1%H -1.9% (0.25) 0.7% 1.7% 0.9% -0.5%
0.05 -0.5% (0.05) -1.2% -2.8%H -3.1%H -4.3%H 2.7% (0.01) 3.3% -4.8%H -9.2%H -4.6%H
0.07 3.1% (0.01)M 1.3% -4.9%H -3.3%H -6.9%H 9.5% (0.04)M 8.5%M 1.3% 4.2% -2.3%
0.1 8.9% (0.04)M 8.4%M -4.6%H 6.7%M 4.3%M 13.4% (0.01)M 11.4%M -3.8%H 11.2%M 7.4%M
0.2 23.2% (0.01)M 22.7%M 21.5%M 21.5%M 22.5%M 29.0% (0.02)M 24.2%M 25.8%M 26.5%M 23.5%M

ZDT3 (∆95%
t ime) ZDT4 (∆95%

t ime)
cv SA best (α) step linear isig exp SA best (α) step linear isig exp
0.0 -2.3% (0.5)H -1.3% -2.8% 3.0% -2.1% 3.2% (0.05) -0.8% 1.4% 2.1% 3.4%
0.02 -1.6% (0.04)H 5.8%M -0.7% 7.4%M 3.3% 6.1% (0.04)M -3.4% -2.6% -4.0% -2.8%
0.05 4.2% (0.05) -0.4% -0.5% -1.9% -5.3%H 6.8% (0.04)M 5.2% -0.1% 3.8% 3.9%
0.07 3.3% (0.01) 1.1% -3.4% -0.1% -3.9% 14.1% (0.01)M 13.3%M 6.0%M 8.6%M 3.5%
0.1 6.3% (0.05)M 6.6%M -7.7%H 4.5%M -16.6% 18.4% (0.04)M 17.5%M 5.3%M 17.9%M 10.5%M
0.2 26.9% (0.01)M 21.4%M 19.9%M 21.8%M 22.3%M 32.0% (0.01)M 29.7%M 32.2%M 28.6%M 29.0%M

ZDT6 (∆95%
t ime) WFG2 (∆95%

t ime)
cv SA best (α) step linear isig exp SA best (α) step linear isig exp
0.0 -4.0% (0.5)H 0.5% 1.2% 0.4% -2.9%H -2.8% (0.25) 2.2% 0.4% -2.8% -8.8%H
0.02 -5.1% (0.01)H -0.7% -0.2% -1.4% -6.6%H -2.9% (0.02) 1.2% -1.7% -7.4% 3.8%
0.05 -0.1% (0.01) 0.7% -5.8%H -5.8%H -5.9%H 4.8% (0.25) 1.0% -4.7% -1.3% 0.5%
0.07 5.1% (0.01)M 4.6%M -5.1%H 1.1% -4.2%H 1.4% (0.04) -3.6% -9.8% -2.6% -10.8%
0.1 9.9% (0.05)M 8.9%M -2.1% 10.0%M 7.0%M 10.6% (0.05)M 9.1%M -1.7% 10.5%M 1.6%
0.2 24.8% (0.01)M 24.0%M 24.5%M 24.4%M 23.2%M 29.0% (0.04)M 18.7%M 18.3%M 22.8%M 17.2%M

WFG3 (∆85%
t ime) WFG4 (∆95%

t ime)
cv SA best (α) step linear isig exp SA best (α) step linear isig exp
0.0 -6.0% (0.04) -2.3% -2.5% 1.7% -2.7% 5.0% (0.05) 1.1% 2.3% 5.3%M 4.6%
0.02 -0.7% (0.25) -1.2% -0.6% -2.6% 2.6% 7.3% (0.01)M 4.3% 2.9% 4.6% 8.6%M
0.05 6.4% (0.05) 4.4% 2.2% -0.3% -1.7% 6.7% (0.02) 6.3% -2.3% -7.4% -0.1%
0.07 1.8% (0.25) -0.7% -5.0% -0.4% -11.6%H 12.0% (0.01)M 12.0%M 0.8% 7.5%M 11.1%M
0.1 11.4% (0.01)M 10.8%M -5.1% 7.0%M 6.3%M 12.4% (0.02)M 9.8%M -1.1% 13.3%M 9.1%M
0.2 24.4% (0.01)M 16.9%M 19.1%M 22.7%M 18.0%M 22.9% (0.02)M 21.8%M 24.1%M 20.5%M 23.8%M

WFG5 (∆80%
t ime) WFG6 (∆80%

t ime)
cv SA best (α) step linear isig exp SA best (α) step linear isig exp
0.0 -2.9% (0.5) 0.6% -0.4% 3.2% -9.4%H -5.4% (0.2) -35.1% -17.4% -47.8%H -22.8%
0.02 -5.2% (0.5)H 0.8% -0.2% -1.1% -5.0%H 33.4% (0.02) 0.1% 18.9% 24.4% 22.3%
0.05 -2.5% (0.01) -3.1% -4.8% -8.0%H -3.9% -0.8% (0.25) -1.8% -39.0% -14.3% -11.5%
0.07 6.3% (0.02)M -0.6% -3.2% 0.8% -1.1% 33.8% (0.02) 36.5%M 35.5% 26.4%M -22.2%
0.1 7.1% (0.02)M 6.1%M -5.5%H 6.9%M 4.9%M 32.5% (0.04)M 14.5%M 14.3% 26.6%M 32.5%M
0.2 23.0% (0.05)M 17.0%M 20.3%M 20.4%M 22.8%M 35.1% (0.2)M 36.2%M 30.7%M 13.3%M 25.9%M

WFG7 (∆95%
t ime) WFG9 (∆95%

t ime)
cv SA best (α) step linear isig exp SA best (α) step linear isig exp
0.0 1.1% (0.05) 0.3% -0.8% -3.1% -1.4% 79.4% (0.01)M -12.4% 55.9% 58.6% 13.6%
0.02 3.1% (0.01) -3.4% -8.7%H -3.0% 0.8% 3.7% (0.01)M 1.6% -19.0%M -4.3%M 32.1%M
0.05 4.8% (0.02) 1.9% -0.3% 1.3% -1.7% 72.7% (0.02)M 69.8%M 70.0% 73.7% 75.4%
0.07 12.1% (0.01)M 10.4%M -3.7% 2.9% 3.6% 40.5% (0.02)M 50.3%M -17.1%M 11.4%M 17.4%M
0.1 15.9%M (0.04) 8.1%M -1.4% 10.3%M 12.0%M 58.5%M (0.25) 8.1%M 39.6% 60.4%M 61.8%
0.2 29.7% (0.02)M 26.2%M 24.3%M 27.9%M 24.3%M 67.1% (0.5)M 45.4%M 33.5%M 68.2%M 32.3%M

1818

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Tomohiro Harada and Keiki Takadama

the parallel computational environment. �is paper also discussed
SA2NSGA-II as an application of SA2EA, and designed four types of
adaptation functions, Step, Linear, Inverted Sigmoid, and Exponen-
tial. To investigate the e�ectiveness of SA2NSGA-II, this paper con-
ducted the experiment on multi-objective optimization problems,
and compare it with the synchronous and the semi-asynchronous
NSGA-II. �e experimental result revealed that SA2NSGA-II with
the asynchrony functions of Step and Inverted Sigmoid achieves
be�er performance not depends on the variance of evaluation time
of solutions, though the asynchrony functions of Linear and Expo-
nential are not work well when the variance is small.

What should be noted here is that since the experiment in this
paper was conducted on the pseudo-parallel environment, the veri-
�cation of the results on the actual parallel environment should be
tackled soon. In addition, as mentioned above, we will design more
e�ective asynchrony function or adaptation method that considers
not only the variance of evaluation time of solutions but also other
indicator like improvement of quality of achieved solutions.

REFERENCES
[1] Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Mul-

tiobjective selection based on dominated hypervolume. European Journal of
Operational Research 181, 3 (2007), 1653 – 1669. DOI:h�p://dx.doi.org/10.1016/j.
ejor.2006.08.008

[2] Christina Bonnington. 2011. Teen’s iOS App Uses Complex Algorithms to Sum-
marize the Web. h�p://www.wired.com/2011/12/summly-app-summarization/.
(Dec 2011).

[3] A. Carlisle and G. Dozier. 2001. An O�-�e-Shelf PSO. In PSO Workshop. Indi-
anapolis, IN. h�p://antho.huntingdon.edu/publications/O�-�e-Shelf PSO.pdf

[4] Jui-Fang Chang, Shu-Chuan Chu, John F. Roddick, and Jeng-Shyang Pan. 2005.
A parallel particle swarm optimization algorithm with communication strategies.
Journal of Information Science and Engineering (2005), 809–818.

[5] A Chipper�eld and P Fleming. 1996. Parallel genetic algorithms. Parallel and
distributed computing handbook (1996), 1118–1143.

[6] Kalyanmoy Deb and Ram B. Agrawal. 1995. Simulated Binary Crossover for
Continuous Search Space. Complex Systems 9 (1995), 115–148. citeseer.ist.psu.
edu/deb95simulated.html

[7] Kalyanmoy Deb and Mayank Goyal. 1996. A Combined Genetic Adaptive Search
(GeneAS) for Engineering Design. Computer Science and Informatics 26 (1996),
30–45.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions
on 6, 2 (apr 2002), 182–197. DOI:h�p://dx.doi.org/10.1109/4235.996017

[9] M Depolli, R Trobec, and B Filipic. 2013. Asynchronous Master-Slave Paralleliza-
tion of Di�erential Evolution for Multi-Objective Optimization. EVOLUTIONARY
COMPUTATION 21, 2 (2013), 261 – 291.

[10] Juan J. Durillo, Qingfu Zhang, Antonio J. Nebro, and Enrique Alba. 2011. Distri-
bution of Computational E�ort in Parallel MOEA/D. In Learning and Intelligent
Optimization, Carlos A. Coello Coello (Ed.). Lecture Notes in Computer Sci-
ence, Vol. 6683. Springer Berlin Heidelberg, Berlin, Heidelberg, 488–502. DOI:
h�p://dx.doi.org/10.1007/978-3-642-25566-3 38

[11] Tomohiro Harada and Keiki Takadama. 2017. Performance Comparison of Paral-
lel Asynchronous Multi-Objective Evolutionary Algorithm with Di�erent Asyn-
chrony. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation
(CEC 2017). to appear.

[12] Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston. 2005. A Scal-
able Multi-objective Test Problem Toolkit. Springer Berlin Heidelberg, Berlin,
Heidelberg, 280–295. DOI:h�p://dx.doi.org/10.1007/978-3-540-31880-4 20

[13] Byung-Il Koh, Alan D George, Raphael T Ha�ka, and Benjamin J Fregly. 2006.
Parallel asynchronous particle swarm optimization. International journal for
numerical methods in engineering 67, 4 (07 2006), 578–595. DOI:h�p://dx.doi.
org/10.1002/nme.1646

[14] Andrew Lewis, Sanaz Mostaghim, and Ian Scriven. 2009. Asynchronous Multi-
Objective Optimisation in Unreliable Distributed Environments. In Biologically-
Inspired Optimisation Methods, Andrew Lewis, Sanaz Mostaghim, and Marcus
Randall (Eds.). Studies in Computational Intelligence, Vol. 210. Springer Berlin
Heidelberg, 51–78. DOI:h�p://dx.doi.org/10.1007/978-3-642-01262-4 3

[15] Sidney R. Maxwell III. 1994. Experiments with a Coroutine Model for Genetic
Programming. In Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, Vol. 1. IEEE Press, Orlando, Florida, USA, 413–417a. DOI:h�p:

//dx.doi.org/doi:10.1109/ICEC.1994.349915
[16] A. Milani and V. Santucci. 2010. Asynchronous Di�erential Evolution. In Pro-

ceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC 2010). 1–7.
DOI:h�p://dx.doi.org/10.1109/CEC.2010.5586107

[17] Antonio J. Nebro, Juan J. Durillo, and Ma�hieu Vergne. 2015. Redesigning the
jMetal Multi-Objective Optimization Framework. In Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation (GECCO Companion ’15). ACM, New York, NY, USA, 1093–1100.
DOI:h�p://dx.doi.org/10.1145/2739482.2768462

[18] Shigeru Obayashi, Shinkyu Jeong, Koji Shimoyama, Kazuhisa Chiba, and Hi-
royuki Morino. 2010. Multi-Objective Design Exploration and its Applications.
International Journal of Aeronautical and Space Sciences 4, 4 (Dec 2010). DOI:
h�p://dx.doi.org/10.5139/IJASS.2010.11.4.247

[19] Tea Robič and Bogdan Filipič. 2005. DEMO: Di�erential Evolution for Multiobjec-
tive Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, 520–533. DOI:
h�p://dx.doi.org/10.1007/978-3-540-31880-4 36

[20] Sergio Santander-Jiménez and Miguel A. Vega-Rodrı́guez. 2016. Asynchronous
Non-Generational Model to Parallelize Metaheuristics: A Bioinformatics Case
Study. IEEE Transactions on Parallel and Distributed Systems PP, 99 (2016), 1–1.
DOI:h�p://dx.doi.org/10.1109/TPDS.2016.2645764

[21] Sergio Santander-Jiménez and Miguel A. Vega-Rodrı́guez. 2016. Performance
Evaluation of Dominance-based and Indicator-based Multiobjective Approaches
for Phylogenetic Inference. Inf. Sci. 330, C (Feb. 2016), 293–314. DOI:h�p:
//dx.doi.org/10.1016/j.ins.2015.10.021

[22] Eric O. Sco� and Kenneth A. De Jong. 2015. Evaluation-Time Bias in Asyn-
chronous Evolutionary Algorithms. In Proceedings of the Companion Publi-
cation of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO Companion ’15). ACM, New York, NY, USA, 1209–1212. DOI:
h�p://dx.doi.org/10.1145/2739482.2768482

[23] Eric O. Sco� and Kenneth A. De Jong. 2015. Understanding Simple Asynchro-
nous Evolutionary Algorithms. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII (FOGA ’15). ACM, New York, NY, USA,
85–98. DOI:h�p://dx.doi.org/10.1145/2725494.2725509

[24] D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N. Vrahatis. 2004. Parallel
di�erential evolution. In Evolutionary Computation, 2004. CEC2004. Congress on,
Vol. 2. 2023 – 2029 Vol.2. DOI:h�p://dx.doi.org/10.1109/CEC.2004.1331145

[25] Simon Wessing, Günter Rudolph, and Dino A. Menges. 2016. Comparing
Asynchronous and Synchronous Parallelization of the SMS-EMOA. Springer
International Publishing, Cham, 558–567. DOI:h�p://dx.doi.org/10.1007/
978-3-319-45823-6 52

[26] Evgeniya Zhabitskaya and Mikhail Zhabitsky. 2013. Asynchronous Di�eren-
tial Evolution with Restart. In Numerical Analysis and Its Applications, Ivan
Dimov, Istvn Farag, and Lubin Vulkov (Eds.). Lecture Notes in Computer Science,
Vol. 8236. Springer Berlin Heidelberg, 555–561. DOI:h�p://dx.doi.org/10.1007/
978-3-642-41515-9 64

[27] E. Zitzler, K. Deb, and L. �iele. 2000. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation 8, 2 (2000), 173–195.

[28] E. Zitzler, M. Laumanns, and L. �iele. 2001. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. TIK Report 103. Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Zurich, Switzerland.

[29] Eckart Zitzler and Lothar �iele. 1998. Multiobjective optimization using evo-
lutionary algorithms — A comparative case study. Springer Berlin Heidelberg,
Berlin, Heidelberg, 292–301. DOI:h�p://dx.doi.org/10.1007/BFb0056872

[30] Alexandru-Ciprian Z�voianu, Edwin Lughofer, Werner Koppels�ter, Gnther
Weidenholzer, Wolfgang Amrhein, and Erich Peter Klement. 2015. Performance
comparison of generational and steady-state asynchronous multi-objective evo-
lutionary algorithms for computationally-intensive problems. Knowledge-Based
Systems 87 (2015), 47 – 60. DOI:h�p://dx.doi.org/10.1016/j.knosys.2015.05.029
Computational Intelligence Applications for Data Science.

1819

http://dx.doi.org/10.1016/j.ejor.2006.08.008
http://dx.doi.org/10.1016/j.ejor.2006.08.008
http://antho.huntingdon.edu/publications/Off-The-Shelf_PSO.pdf
citeseer.ist.psu.edu/deb95simulated.html
citeseer.ist.psu.edu/deb95simulated.html
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/978-3-642-25566-3_38
http://dx.doi.org/10.1007/978-3-540-31880-4_20
http://dx.doi.org/10.1002/nme.1646
http://dx.doi.org/10.1002/nme.1646
http://dx.doi.org/10.1007/978-3-642-01262-4_3
http://dx.doi.org/doi:10.1109/ICEC.1994.349915
http://dx.doi.org/doi:10.1109/ICEC.1994.349915
http://dx.doi.org/10.1109/CEC.2010.5586107
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.5139/IJASS.2010.11.4.247
http://dx.doi.org/10.1007/978-3-540-31880-4_36
http://dx.doi.org/10.1109/TPDS.2016.2645764
http://dx.doi.org/10.1016/j.ins.2015.10.021
http://dx.doi.org/10.1016/j.ins.2015.10.021
http://dx.doi.org/10.1145/2739482.2768482
http://dx.doi.org/10.1145/2725494.2725509
http://dx.doi.org/10.1109/CEC.2004.1331145
http://dx.doi.org/10.1007/978-3-319-45823-6_52
http://dx.doi.org/10.1007/978-3-319-45823-6_52
http://dx.doi.org/10.1007/978-3-642-41515-9_64
http://dx.doi.org/10.1007/978-3-642-41515-9_64
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1016/j.knosys.2015.05.029

	Abstract
	1 Introduction
	2 Related Works
	2.1 Asynchronous evolutionary algorithm
	2.2 Computational time model in a parallel environment SSAMSPS

	3 Semi-asynchronous Evolutionary Algorithm
	3.1 Overview
	3.2 Computational time model generalized with consideration of asynchrony
	3.3 Effectual and ineffectual asynchrony
	3.4 Relation between the variance of evaluation time and asynchrony

	4 Self-adaptive Semi-asynchronous Evolutionary Algorithm (SA2EA)
	4.1 Adaptation of asynchrony parameter
	4.2 Self-adaptive semi-asynchronous NSGA-II: An example

	5 Performance Comparison
	5.1 Experimental settings
	5.2 Evaluation criteria

	6 Result
	7 Conclusion
	References

