
 
Abstract—Iterative schemes play central role in solving large scale 
simulations in science and engineering. Development of such 
methods over the past few hundreds of years faces inevitable 
difficulty of manual design. Herein, we report, for the first time, 
iterative schemes that are automatically evolved by genetic 
programming (GP) and outperform the well-known iterative 
methods. To cope with the diversity of the systems of linear 
equations, the proposed technique is applied on a sparse system in 
1D and 2D domains and on a non-sparse asymmetric system. Our 
proof-of-principle experiments demonstrate GP evolved schemes 
that converge up to 4 times faster than the conventional Gauss-
Seidel scheme. Our work paves the way towards automatic design 
of efficient iterative solvers for large scale systems of linear 
equations. 

Keywords—genetic programming, iterative solvers, sparse 
linear algebra 

I.  INTRODUCTION 
The field of computational science and engineering deals with 
various applications ranging from physics to engineering and life 
sciences. At its base there are often mathematical models that 
require efficient numerical methods to compute a reasonable 
solution. One class of models leads to the solution of partial 
differential equations. Here, large and typically sparse linear 
systems have to be solved. This is often done iteratively, i.e. one 
starts with some initial guess for the solution (a large vector) and 
then tries to improve the solution in several steps. Classical iterative 
methods can be understood as a function that takes as input the old 
solution from one or all former steps and outputs a new, improved 
approximation to the solution. Unfortunately, this function in 
general depends on the system matrix and thus is highly problem-
dependent. Nevertheless, in practice a small number of such simple 
functions (also called iteration matrices when the functions are 
linear) are used for many years [3]. Standard methods are then 
manually adopted to solve more complicated problems [4]. 

In the field of Genetic programming, evolutionary algorithms are 
used to automatically generate programs that solve problems [5][6]. 
Human competitive results and patentable inventions are amongst 
the successful discoveries using GP [7].  

In this manuscript we will try to find good iteration matrices 
automatically by a genetic programming approach. We concentrate 
on linear systems that have a unique solution. Furthermore, we are 
mainly interested in sparse linear systems.  

In section II our MATLAB framework for genetic programming is 
introduced and the supported tree operations are described. 

We start the section III with presenting our first proof-of-principle 
experiment on enhancement of the conventional iterative solvers. To 
demonstrate the versatility of our method, we then experiment with 
non-sparse and sparse systems in 1D and 2D domains. We show that 
solving these systems using our evolved expressions reduce the 
computational cost up to 4 times. Our promising results opens a new 
chapter in designing novel iterative numerical methods.  

II. FRAMEWORK DESCRIPTION 
Here, a tree-based genetic programming framework [9][10][10], is 
developed in MATLAB to search for an improved iterative scheme.  

Let’s formulate the linear system of interest as	࢞࡭ ൌ ࡭ where ,࢈ ∈
	Թேൈே is the system matrix, ࢞ ∈ 	Թே is the unknown vector and ࢈ ∈
	Թே is the right hand side vector. Note that ࡭ can be a non-square 
system matrix but in the experiments here it is a square matrix. We 
denote the iteration matrix with  ࡹ ∈	Թேൈே and it is represented as 
a tree in our framework. The approximated solution in the n+1 
iteration is obtained using the old solution and the iteration matrix 
using the relation		࢞௡ାଵ ൌ   .௡࢞ࡹ	

A tree in any stage of the framework is a valid expression based on 
the defined matrix operations i.e. the nodes of the tree are selected 
such that the generated tree is consistent in terms of dimensions and 
the generated expressions are secured to be computable. 

A. Nodes 
1) Terminal set 
The terminal set is composed of arbitrary symbolic matrices. In 

the search for an iteration matrix, the following elements are common 
and used in the experiments done in this work: system matrix A, right 
hand side vector b, the diagonal of A, inverse of the diagonal of A, 
A minus its diagonal, lower triangular part of A, inverse of the lower 
triangular part of A and upper triangular (1st diagonal) part of A. Note 
that the set of terminals can be extended. 

2) Operation set 
The operation set consists of addition, subtraction and 
multiplication.  
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B. Growing a tree 
A tree in our framework represents an iteration matrix that will 

be applied on the approximated solution vector ࢞ iteratively. 
Dimensions of ࢞ and	࢈ set constraints on the dimension of the 
iteration matrix and the root node of the tree that represents this 
matrix. Initially the dimension of the root is taken from the dimension 
of the desired iteration matrix. Starting from the root, a node in any 
depth less than the tree depth can be a terminal or an operator. This 
node can be a terminal with the probability of 1/3 or an operator with 
the probability of 2/3. Note that the nodes at the tree depth can only 
be a terminal.  

When the tree is growing deeper and deeper, the dimension of 
the nodes has to be compatible with the operations and the terminals 
in the upper layer. Therefore, a node is selected to be a terminal it can 
only take a specific dimension based on its position in the tree. 
Therefore, this node will be a random terminal out of all terminals 
that have this specific dimension. 

C. Fitness Evaluation 
The symbolic matrix corresponding to the genetic expression of an 
individual is simplified using the symbolic Math Toolbox of 
MATLAB and then evaluated to get the numerical version of the 
iteration matrix.  

An iterative scheme converges to the solution of a linear system if 
and only if the spectral radius of the iteration matrix is less than one. 
The spectral radius of a matrix is the maximum absolute value of 
Eigen values of the matrix. As the spectral radius decreases from 1 
to 0, the iterative scheme converges faster to the final solution. 

 Let r be the spectral radius of the numerical iteration matrix of an 
individual then, the fitness function f for r < 1 is defined as ࢌሺݎሻ ൌ

ଵ
ሺଵି௥మሻ

 and for ݎ	 ൒ 	1 is defined as ࢌሺݎሻ ൌ 	ܽ଴ 	൅	ܽଵ	ݎ where a0 and 

a1 are arbitrary penalty parameters larger than 1. The fitness 
function here is designed to non-linearly favor the iteration matrices 
with lower spectral radius.   

D. Selection 
Candidate individuals are selected using the fitness proportionate 
selection. 

E. Recombination 
Crossover is used to exchange genes between a pair of selected 
individuals to produce an offspring. Initially dimensions of all the 
nodes in the selected trees (parents) are inspected and a pool of 
possible crossover points are formed.  

A random crossover point is take out of the pool and the genes of 
one of the parents are substituted with the genes of the other parent. 

F. Gene variation 
In this step, a pool of all the genes of all the individuals in the 
population is formed. The probability of the mutation of a gene of 
an individual in the pool is equal to the mutation rate in the 
experiment. 

The gene selected to undergo mutation is removed along with its sub 
nodes from the tree. The last step of the gene variation step is to 
complete the tree (from where it is cut in the previous step) using 
the growing tree procedure. 

III. EXPERIMENTAL RESULTS 
The first experiment is the Poisson equation (PE) in 1D. PE is 
broadly used in science and engineering to describe various 
phenomena such as heat transfer and electrostatics. This simple case 
allows us to print the GP-evolved symbolic expressions of interest. 
The next two experiments are the Poisson equation in 2D for two 
different number of inner points. The last experiment demonstrates 
the applicability of the framework on a non-sparse asymmetric 
system.  

For an expression	ࡹ, the relaxation error in the nth iteration is 
defined as||࢞ࡹ௡ିଵ||ଵ. Early results have shown that the starting 
value does not affect the results, therefore a vector of ones is taken 
as the initial value of	࢞૙. The relaxation error of the iteration 
schemes are then plotted versus the iteration number in each 
experiment.  The stopping limit of the iteration is when the ݈ଵ-norm 
of the error is less than 1e-9. 

In each experiment a fine tuning on the experimental parameters is 
done to achieve an observable improvement in the fitness value of 
the individuals. 

A. Experiment 1: Poisson equation in 1D 
In this experiment the Poisson equation in 1D is taken for 1 inner 
point with operators discretized using finite differences. The system 
matrix and vectors are given in the following:  

࡭ ൌ 	 ൥
2 െ1 0
െ1 2 െ1
0 െ1 2

൩ , ࢈ ൌ ൥
4
0
െ2

൩ and	࢞ ൌ ൥
2.5
1.0
െ0.5

൩. 

The iteration matrix of the Gauss Seidel (GS) method has the 
spectral radius of 0.5.  

The proposed GP framework is used on this system with the 
following setup: population size of	ݏ ൌ 30, tree depth of	݀ ൌ 3, GP 
iteration number	݊ ൌ 5	, crossover rate of ܿ ൌ 	 .1 and mutation 
rate	݉ ൌ 	 .1.  

Among the population evolved in the GP search, individuals were 
found with expressions of spectral radii 0.3125 and 0.1250. The 
evolved expressions are symbolic and they are then simplified to 
obtain the final iteration matrices. 

The row vectors of the evolved iteration matrix ࡹ (with	ݎ ൌ
		0.3125) are 

૚ࡹ ൌ ሾ
௔భభ
మ 	ା	ଵ

௔భభ
ర , 0, 0ሿ,	

૛ࡹ ൌ ሾെ
௔మభ൫௔భభ

మ ௔మమ
మ ା	௔భభ

మ 	ା	௔భభ௔మమ
య 	ା	௔మమ

మ ൯

௔భభ
ర ௔మమ

య ,
௔మమ
మ 	ା	ଵ

௔మమ
ర , 0ሿ, 

૜ࡹ ൌ ሾ
൫௔యయ

మ 	ା	ଵ൯ሺ௔మభ௔యమ	ି	௔మమ௔యభሻ

௔భభ
మ ௔మమ௔యయ

య 	൅
ሺ௔భభ௔యయ	ା	ଵሻሺ௔మభ௔యమ	ି	௔మమ௔యభሻ

௔భభ
ర ௔మమ௔యయ

	൅

௔మభ௔యమሺ௔మమ௔యయାଵሻ

௔భభ
మ ௔మమ

య ௔యయ
, െ

௔యమ൫௔మమ
మ ௔యయ

మ ା௔మమ
మ ା௔మమ௔యయ

య ା௔యయ
మ ൯

௔మమ
ర ௔యయ

య ,
௔యయ
మ 	ା	ଵ

௔యయ
ర 	ሿ  

, where ܽ௜௝ is the (i, j) element of the matrix	࡭.  

The row vectors of the evolved iteration matrix ࡹ (with	ݎ ൌ
		0.1250) are 

૚ࡹ ൌ 	 ሾ
௔మమ௔యయି௔భభ௔భమ௔మభ௔యయା௔భభ௔భయ௔మభ௔యమି௔భభ௔భయ௔మమ௔యభ

௔భభ
య 	௔మమ௔యయ

,
௔భమ௔యయି௔భయ௔యమ
௔భభ௔మమ௔యయ

, ܽଵଷ/ሺܽଵଵܽଷଷሻሿ, 

૛ࡹ ൌ ሾെ
௔మయ௔యభ௔మమ

మ ି௔మభ௔మయ௔యమ௔మమା	௔మభ௔యయ
௔భభ௔మమ

య ௔యయ
,
௔యయି௔మమ௔మయ௔యమ

௔మమ
య ௔యయ

,
௔మయ

௔మమ௔యయ
, 
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૜ࡹ ൌ ሾ
௔మభ௔యమ	ି	௔మమ௔యభ

௔భభ௔మమ௔యయ
య 	

, െ
௔యమ

௔మమ௔యయ
య 	
,
ଵ

௔యయ
య 	
ሿ. 

 
Fig. 1. The GS method hits the stopping limit in 32 iterations while the GP 
evolved expressions hit the limit in 23 and 11 iterations respectively. 

The GP evolved expression with the spectral radius of about the half 
of that of the GS method hits the stopping limit with a 3rd number of 
iterations that GS expression does.  

B. Experiment 2: Poisson equation in 2D with 3 
inner points 

Here, a 2D domain with 3 inner points is solved for the Poisson 
equation. The boundary value at a boundary point ሺݔ,  ሻ isݕ
݃ሺݔ, ሻݕ ൌ cosሺݔߨሻ ൅ 	cos	ሺݕߨሻ. The system matrix is  

࡭ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
4 െ1 0 െ1 0 0 0 0 0
െ1 4 െ1 0 െ1 0 0 0 െ1
0 െ1 4 0 0 െ1 0 0 0
െ1 0 0 4 െ1 0 െ1 0 0
0 െ1 0 െ1 4 െ1 0 െ1 0
0 0 െ1 0 െ1 4 0 0 െ1
0 0 0 െ1 0 0 4 െ1 0
0 0 0 0 െ1 0 െ1 4 െ1
0 0 0 0 0 െ1 0 െ1 4 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 and the 

column vectors are [1.4 ,0.7,0.0- ,0.0 ,0 ,0.7 ,1.4- ,0.0 ,1.7] = ࢈ and 
࢞ =	 [53, 9, -31, 33, 15, 5, -6, 12, 39] e-1.  

 The solution x in 2D is plotted in the following figure. 

 
Fig. 2. The solution of the Poisson equation in 2D with total points of 5 
and 3 inner points in each dimension. The colorbar shows the value of  the 
solution of the Poisson equation at a specific grid point. The boundary 
values are calculated from the function g. Note that how column vectors ࢞ , 
 .are filled to represent the 2D problem ࡭ and the system matrix ࢈

The iteration matrix of the Gauss Seidel method has the spectral 
radius of 0.5. The proposed GP framework is used on this system 
with the following setup: s=30, d=3, n=5, c= .1 and m= .1. An 
evolved expression for the iteration matrix with spectral radius of 
0.06 is found. The symbolic expressions of the matrix elements are 

very long and therefore the raw vectors of its numerical version are 
given in the following: 

 ,૛ = [-9, -6, 0, 0, 0, 0, 0, 0ࡹ , ૚ = [-6, 0, 0, 0, 0, 0, 0, 0, 0]e-2ࡹ
0]e-2 , ࡹ૜ = [-3, -9, -6, 0, 0, 0, 0, 0, 0]e-2 , ࡹ૝ = [-9, 0, 0, -6, 0, 0, 
0, 0, 0]e-2 , ࡹ૞ = [-5, -9, 0, -9, -6, 0, 0, 0, 0]e-2 , ࡹ૟ = [-2, -5, -9, -
2, -9, -6, 0, 0, 0]e-2 , ࡹૠ = [-3, 0, 0, -10, 0, 0, -6, 0, 0]e-2 , ࡹૡ = [-
2, -3, 0, -5, -10, 0, -10, -6, 0]e-2 , 3- ,10- ,5- ,2- ,3- ,2- ,1-] = ૢࡹ, -
10, -6]e-2.  

 
Fig. 3. The GS method hits the stopping limit in 34 iterations while the 
GP evolved expression hits it in 12 iterations. 

This experiment is designed to demostrate the applicability of the 
framework to a real 2D application where the GP evolved 
expression needs only a 3rd number of iterations of what the GS 
expression needs to hit the same error. 

C. Experiment 3: Poisson equation in 2D with 4 
inner points 

In this experiment the Poisson equation is solved in 2D for a domain 
of 4 inner points and in total 16 points including the boundary points. 
The system matrix has the same pattern as the one in the last 
experiment, and the same boundary condition is used to fill the 
column vector	࢈. 

The iteration matrix of the Gauss Seidel method has the spectral 
radius of 0.6545. The proposed GP framework is used on this 
system with the following setup: s=40, d=4, n=10, c= .1 and m= .1. 
An evolved expression for the iteration matrix with spectral radius 
of 0.1636 is found and plotted in the following figure to compare 
with that of GS method.  
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Fig. 4. The iteration matrices, (a) for GS method with the spectral radius 
of 0.6545 and (b) for the GP evolved expression for the iteration matrix 
with the spectral radius of 0.1636. The colorbars show the absolute values  
of the entries of the matrices and are scaled individually to the sub figures. 

 
Fig. 5. The GS method hits the stopping limit in 56 iterations while the 
GP evolved expression hits it in 13 iterations. 

Only one inner point is added to the domain in this experiment 
compare to the previous experiment and the GS method now 
requires double the iteration number to hit the stopping limit while 
the GP evolved expression reaches the stopping limit in the same 
number of iterations as before. 

D. Experiment 4 A non-sparse assymetric system 
In this example the proposed GP framework is applied on the 
following non-sparse asymmetric system with raw vectors 

 ,૝ = [2࡭ ,૜ = [3, 4, 8, 3, 3]࡭ ,૛ = [2, 7, 5, 3, 2]࡭ ,૚ = [8, 2, 7, 2, 2]࡭
 ,108 ,105] = ࢈ ૞ = [2, 3, 5, 1, 8] and the column vector࡭ ,[3 ,8 ,3 ,1
100, 56, 82]. 

The iteration matrix of the Gauss Seidel method has the spectral 
radius of 0.4574. The proposed GP framework is used on this system 
with the following setup: s=40, d=4, n=10, c= .1 and m= .1. The row 
vectors of the evolved iteration matrix ࡹ (with	ݎ ൌ 		0.1385	) are 

૚ࡹ  ൌ 	 ቂ
ଵ

௔భభ
, 0, 0, 0, 0ቃ,	ࡹ૛ ൌ ቂ0,

ଵ

௔మమ
, 0, 0,					0ቃ,	ࡹ૜ ൌ

ቂ0, 0,
ଵ

௔యయ
, 0, 0ቃ,	ࡹ૝ ൌ ቂ0, 0, 0,

ଵ

௔రర
, 0ቃ,	ࡹ૞ ൌ ቂ0, 0, 0, 0,

ଵ

௔ఱఱ
ቃ.  

The evolved expression is a common and very simple pre-
conditioner. Note that ܽ௜,௝ (for	݅	 ൌ ݆) are diagonal elements of the 
system matrix and the GP evolved expression is just the inverse of 
the diagonal of the system matrix. 

 

 
Fig. 6. The GS method hits the stopping limit in 28 iterations while the 
GP evolved expression hits it in 11 iterations. 

The GP evolved expression converges three times faster than the GS 
scheme. This experiment for a non-sparse assymetric system matrix 
shows that not only the GP evolved expression is a very well-known 

preconditioner but also it is very sparse and computationally 
efficient.  

IV. DISCUSSION AND FUTURE WORK 
The experiments in this work confirmed that the GP evolved solvers 
can outperform the well-known methods and converge up to 4 times 
faster comparatively. However, although current results are 
promising we are just at the beginning of the research in this area.  

What we plan next is to investigate larger system matrices and to 
incorporate the GP framework into the ExaStencils solver 
framework (www.exastencils.org), where we develop a domain 
specific language for the numerical solution of partial differential 
equations[1][2].  
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