

Abstract—Iterative schemes play central role in solving large scale
simulations in science and engineering. Development of such
methods over the past few hundreds of years faces inevitable
difficulty of manual design. Herein, we report, for the first time,
iterative schemes that are automatically evolved by genetic
programming (GP) and outperform the well-known iterative
methods. To cope with the diversity of the systems of linear
equations, the proposed technique is applied on a sparse system in
1D and 2D domains and on a non-sparse asymmetric system. Our
proof-of-principle experiments demonstrate GP evolved schemes
that converge up to 4 times faster than the conventional Gauss-
Seidel scheme. Our work paves the way towards automatic design
of efficient iterative solvers for large scale systems of linear
equations.

Keywords—genetic programming, iterative solvers, sparse
linear algebra

I. INTRODUCTION
The field of computational science and engineering deals with
various applications ranging from physics to engineering and life
sciences. At its base there are often mathematical models that
require efficient numerical methods to compute a reasonable
solution. One class of models leads to the solution of partial
differential equations. Here, large and typically sparse linear
systems have to be solved. This is often done iteratively, i.e. one
starts with some initial guess for the solution (a large vector) and
then tries to improve the solution in several steps. Classical iterative
methods can be understood as a function that takes as input the old
solution from one or all former steps and outputs a new, improved
approximation to the solution. Unfortunately, this function in
general depends on the system matrix and thus is highly problem-
dependent. Nevertheless, in practice a small number of such simple
functions (also called iteration matrices when the functions are
linear) are used for many years [3]. Standard methods are then
manually adopted to solve more complicated problems [4].

In the field of Genetic programming, evolutionary algorithms are
used to automatically generate programs that solve problems [5][6].
Human competitive results and patentable inventions are amongst
the successful discoveries using GP [7].

In this manuscript we will try to find good iteration matrices
automatically by a genetic programming approach. We concentrate
on linear systems that have a unique solution. Furthermore, we are
mainly interested in sparse linear systems.

In section II our MATLAB framework for genetic programming is
introduced and the supported tree operations are described.

We start the section III with presenting our first proof-of-principle
experiment on enhancement of the conventional iterative solvers. To
demonstrate the versatility of our method, we then experiment with
non-sparse and sparse systems in 1D and 2D domains. We show that
solving these systems using our evolved expressions reduce the
computational cost up to 4 times. Our promising results opens a new
chapter in designing novel iterative numerical methods.

II. FRAMEWORK DESCRIPTION
Here, a tree-based genetic programming framework [9][10][10], is
developed in MATLAB to search for an improved iterative scheme.

Let’s formulate the linear system of interest as	࢞࡭ ൌ ࡭ where ,࢈ ∈
	Թேൈே is the system matrix, ࢞ ∈ 	Թே is the unknown vector and ࢈ ∈
	Թே is the right hand side vector. Note that ࡭ can be a non-square
system matrix but in the experiments here it is a square matrix. We
denote the iteration matrix with ࡹ ∈	Թேൈே and it is represented as
a tree in our framework. The approximated solution in the n+1
iteration is obtained using the old solution and the iteration matrix
using the relation		࢞௡ାଵ ൌ .௡࢞ࡹ	

A tree in any stage of the framework is a valid expression based on
the defined matrix operations i.e. the nodes of the tree are selected
such that the generated tree is consistent in terms of dimensions and
the generated expressions are secured to be computable.

A. Nodes
1) Terminal set
The terminal set is composed of arbitrary symbolic matrices. In

the search for an iteration matrix, the following elements are common
and used in the experiments done in this work: system matrix A, right
hand side vector b, the diagonal of A, inverse of the diagonal of A,
A minus its diagonal, lower triangular part of A, inverse of the lower
triangular part of A and upper triangular (1st diagonal) part of A. Note
that the set of terminals can be extended.

2) Operation set
The operation set consists of addition, subtraction and
multiplication.

rmission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
GECCO '17 Companion, July 15-19, 2017, Berlin, Germany
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM ISBN 978-1-4503-4939-0/17/07…$15.00
http://dx.doi.org/10.1145/3067695.3082502.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
GECCO '17 Companion, July 15-19, 2017, Berlin, Germany
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM ISBN 978-1-4503-4939-0/17/07…$15.00
http://dx.doi.org/10.1145/3067695.3082502.

Genetic Programming meets Linear Algebra
How genetic programming can be used to find improved iterative numerical methods

Reza Gholami M.
MAOT, FAU Erlangen-Nürnberg

91052 Erlangen, Germany
reza.gholami.mahmoodabadi@gmail.com

Harald Köstler

Department Computer Science
Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstr. 11, 91058 Erlangen, Germany
Harald.koestler@fau.de

1403

B. Growing a tree
A tree in our framework represents an iteration matrix that will

be applied on the approximated solution vector ࢞ iteratively.
Dimensions of ࢞ and	࢈ set constraints on the dimension of the
iteration matrix and the root node of the tree that represents this
matrix. Initially the dimension of the root is taken from the dimension
of the desired iteration matrix. Starting from the root, a node in any
depth less than the tree depth can be a terminal or an operator. This
node can be a terminal with the probability of 1/3 or an operator with
the probability of 2/3. Note that the nodes at the tree depth can only
be a terminal.

When the tree is growing deeper and deeper, the dimension of
the nodes has to be compatible with the operations and the terminals
in the upper layer. Therefore, a node is selected to be a terminal it can
only take a specific dimension based on its position in the tree.
Therefore, this node will be a random terminal out of all terminals
that have this specific dimension.

C. Fitness Evaluation
The symbolic matrix corresponding to the genetic expression of an
individual is simplified using the symbolic Math Toolbox of
MATLAB and then evaluated to get the numerical version of the
iteration matrix.

An iterative scheme converges to the solution of a linear system if
and only if the spectral radius of the iteration matrix is less than one.
The spectral radius of a matrix is the maximum absolute value of
Eigen values of the matrix. As the spectral radius decreases from 1
to 0, the iterative scheme converges faster to the final solution.

 Let r be the spectral radius of the numerical iteration matrix of an
individual then, the fitness function f for r < 1 is defined as ࢌሺݎሻ ൌ

ଵ
ሺଵି௥మሻ

 and for ݎ	 ൒ 	1 is defined as ࢌሺݎሻ ൌ 	ܽ଴ 	൅	ܽଵ	ݎ where a0 and

a1 are arbitrary penalty parameters larger than 1. The fitness
function here is designed to non-linearly favor the iteration matrices
with lower spectral radius.

D. Selection
Candidate individuals are selected using the fitness proportionate
selection.

E. Recombination
Crossover is used to exchange genes between a pair of selected
individuals to produce an offspring. Initially dimensions of all the
nodes in the selected trees (parents) are inspected and a pool of
possible crossover points are formed.

A random crossover point is take out of the pool and the genes of
one of the parents are substituted with the genes of the other parent.

F. Gene variation
In this step, a pool of all the genes of all the individuals in the
population is formed. The probability of the mutation of a gene of
an individual in the pool is equal to the mutation rate in the
experiment.

The gene selected to undergo mutation is removed along with its sub
nodes from the tree. The last step of the gene variation step is to
complete the tree (from where it is cut in the previous step) using
the growing tree procedure.

III. EXPERIMENTAL RESULTS
The first experiment is the Poisson equation (PE) in 1D. PE is
broadly used in science and engineering to describe various
phenomena such as heat transfer and electrostatics. This simple case
allows us to print the GP-evolved symbolic expressions of interest.
The next two experiments are the Poisson equation in 2D for two
different number of inner points. The last experiment demonstrates
the applicability of the framework on a non-sparse asymmetric
system.

For an expression	ࡹ, the relaxation error in the nth iteration is
defined as||࢞ࡹ௡ିଵ||ଵ. Early results have shown that the starting
value does not affect the results, therefore a vector of ones is taken
as the initial value of	࢞૙. The relaxation error of the iteration
schemes are then plotted versus the iteration number in each
experiment. The stopping limit of the iteration is when the ݈ଵ-norm
of the error is less than 1e-9.

In each experiment a fine tuning on the experimental parameters is
done to achieve an observable improvement in the fitness value of
the individuals.

A. Experiment 1: Poisson equation in 1D
In this experiment the Poisson equation in 1D is taken for 1 inner
point with operators discretized using finite differences. The system
matrix and vectors are given in the following:

࡭ ൌ 	 ൥
2 െ1 0
െ1 2 െ1
0 െ1 2

൩ , ࢈ ൌ ൥
4
0
െ2

൩ and	࢞ ൌ ൥
2.5
1.0
െ0.5

൩.

The iteration matrix of the Gauss Seidel (GS) method has the
spectral radius of 0.5.

The proposed GP framework is used on this system with the
following setup: population size of	ݏ ൌ 30, tree depth of	݀ ൌ 3, GP
iteration number	݊ ൌ 5	, crossover rate of ܿ ൌ 	 .1 and mutation
rate	݉ ൌ 	 .1.

Among the population evolved in the GP search, individuals were
found with expressions of spectral radii 0.3125 and 0.1250. The
evolved expressions are symbolic and they are then simplified to
obtain the final iteration matrices.

The row vectors of the evolved iteration matrix ࡹ (with	ݎ ൌ
		0.3125) are

૚ࡹ ൌ ሾ
௔భభ
మ 	ା	ଵ

௔భభ
ర , 0, 0ሿ,	

૛ࡹ ൌ ሾെ
௔మభ൫௔భభ

మ ௔మమ
మ ା	௔భభ

మ 	ା	௔భభ௔మమ
య 	ା	௔మమ

మ ൯

௔భభ
ర ௔మమ

య ,
௔మమ
మ 	ା	ଵ

௔మమ
ర , 0ሿ,

૜ࡹ ൌ ሾ
൫௔యయ

మ 	ା	ଵ൯ሺ௔మభ௔యమ	ି	௔మమ௔యభሻ

௔భభ
మ ௔మమ௔యయ

య 	൅
ሺ௔భభ௔యయ	ା	ଵሻሺ௔మభ௔యమ	ି	௔మమ௔యభሻ

௔భభ
ర ௔మమ௔యయ

	൅

௔మభ௔యమሺ௔మమ௔యయାଵሻ

௔భభ
మ ௔మమ

య ௔యయ
, െ

௔యమ൫௔మమ
మ ௔యయ

మ ା௔మమ
మ ା௔మమ௔యయ

య ା௔యయ
మ ൯

௔మమ
ర ௔యయ

య ,
௔యయ
మ 	ା	ଵ

௔యయ
ర 	ሿ

, where ܽ௜௝ is the (i, j) element of the matrix	࡭.

The row vectors of the evolved iteration matrix ࡹ (with	ݎ ൌ
		0.1250) are

૚ࡹ ൌ 	 ሾ
௔మమ௔యయି௔భభ௔భమ௔మభ௔యయା௔భభ௔భయ௔మభ௔యమି௔భభ௔భయ௔మమ௔యభ

௔భభ
య 	௔మమ௔యయ

,
௔భమ௔యయି௔భయ௔యమ
௔భభ௔మమ௔యయ

, ܽଵଷ/ሺܽଵଵܽଷଷሻሿ,

૛ࡹ ൌ ሾെ
௔మయ௔యభ௔మమ

మ ି௔మభ௔మయ௔యమ௔మమା	௔మభ௔యయ
௔భభ௔మమ

య ௔యయ
,
௔యయି௔మమ௔మయ௔యమ

௔మమ
య ௔యయ

,
௔మయ

௔మమ௔యయ
,

1404

૜ࡹ ൌ ሾ
௔మభ௔యమ	ି	௔మమ௔యభ

௔భభ௔మమ௔యయ
య 	

, െ
௔యమ

௔మమ௔యయ
య 	
,
ଵ

௔యయ
య 	
ሿ.

Fig. 1. The GS method hits the stopping limit in 32 iterations while the GP
evolved expressions hit the limit in 23 and 11 iterations respectively.

The GP evolved expression with the spectral radius of about the half
of that of the GS method hits the stopping limit with a 3rd number of
iterations that GS expression does.

B. Experiment 2: Poisson equation in 2D with 3
inner points

Here, a 2D domain with 3 inner points is solved for the Poisson
equation. The boundary value at a boundary point ሺݔ, ሻ isݕ
݃ሺݔ, ሻݕ ൌ cosሺݔߨሻ ൅ 	cos	ሺݕߨሻ. The system matrix is

࡭ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
4 െ1 0 െ1 0 0 0 0 0
െ1 4 െ1 0 െ1 0 0 0 െ1
0 െ1 4 0 0 െ1 0 0 0
െ1 0 0 4 െ1 0 െ1 0 0
0 െ1 0 െ1 4 െ1 0 െ1 0
0 0 െ1 0 െ1 4 0 0 െ1
0 0 0 െ1 0 0 4 െ1 0
0 0 0 0 െ1 0 െ1 4 െ1
0 0 0 0 0 െ1 0 െ1 4 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 and the

column vectors are [1.4 ,0.7,0.0- ,0.0 ,0 ,0.7 ,1.4- ,0.0 ,1.7] = ࢈ and
࢞ =	 [53, 9, -31, 33, 15, 5, -6, 12, 39] e-1.

 The solution x in 2D is plotted in the following figure.

Fig. 2. The solution of the Poisson equation in 2D with total points of 5
and 3 inner points in each dimension. The colorbar shows the value of the
solution of the Poisson equation at a specific grid point. The boundary
values are calculated from the function g. Note that how column vectors ࢞ ,
 .are filled to represent the 2D problem ࡭ and the system matrix ࢈

The iteration matrix of the Gauss Seidel method has the spectral
radius of 0.5. The proposed GP framework is used on this system
with the following setup: s=30, d=3, n=5, c= .1 and m= .1. An
evolved expression for the iteration matrix with spectral radius of
0.06 is found. The symbolic expressions of the matrix elements are

very long and therefore the raw vectors of its numerical version are
given in the following:

 ,૛ = [-9, -6, 0, 0, 0, 0, 0, 0ࡹ , ૚ = [-6, 0, 0, 0, 0, 0, 0, 0, 0]e-2ࡹ
0]e-2 , ࡹ૜ = [-3, -9, -6, 0, 0, 0, 0, 0, 0]e-2 , ࡹ૝ = [-9, 0, 0, -6, 0, 0,
0, 0, 0]e-2 , ࡹ૞ = [-5, -9, 0, -9, -6, 0, 0, 0, 0]e-2 , ࡹ૟ = [-2, -5, -9, -
2, -9, -6, 0, 0, 0]e-2 , ࡹૠ = [-3, 0, 0, -10, 0, 0, -6, 0, 0]e-2 , ࡹૡ = [-
2, -3, 0, -5, -10, 0, -10, -6, 0]e-2 , 3- ,10- ,5- ,2- ,3- ,2- ,1-] = ૢࡹ, -
10, -6]e-2.

Fig. 3. The GS method hits the stopping limit in 34 iterations while the
GP evolved expression hits it in 12 iterations.

This experiment is designed to demostrate the applicability of the
framework to a real 2D application where the GP evolved
expression needs only a 3rd number of iterations of what the GS
expression needs to hit the same error.

C. Experiment 3: Poisson equation in 2D with 4
inner points

In this experiment the Poisson equation is solved in 2D for a domain
of 4 inner points and in total 16 points including the boundary points.
The system matrix has the same pattern as the one in the last
experiment, and the same boundary condition is used to fill the
column vector	࢈.

The iteration matrix of the Gauss Seidel method has the spectral
radius of 0.6545. The proposed GP framework is used on this
system with the following setup: s=40, d=4, n=10, c= .1 and m= .1.
An evolved expression for the iteration matrix with spectral radius
of 0.1636 is found and plotted in the following figure to compare
with that of GS method.

1405

Fig. 4. The iteration matrices, (a) for GS method with the spectral radius
of 0.6545 and (b) for the GP evolved expression for the iteration matrix
with the spectral radius of 0.1636. The colorbars show the absolute values
of the entries of the matrices and are scaled individually to the sub figures.

Fig. 5. The GS method hits the stopping limit in 56 iterations while the
GP evolved expression hits it in 13 iterations.

Only one inner point is added to the domain in this experiment
compare to the previous experiment and the GS method now
requires double the iteration number to hit the stopping limit while
the GP evolved expression reaches the stopping limit in the same
number of iterations as before.

D. Experiment 4 A non-sparse assymetric system
In this example the proposed GP framework is applied on the
following non-sparse asymmetric system with raw vectors

 ,૝ = [2࡭ ,૜ = [3, 4, 8, 3, 3]࡭ ,૛ = [2, 7, 5, 3, 2]࡭ ,૚ = [8, 2, 7, 2, 2]࡭
 ,108 ,105] = ࢈ ૞ = [2, 3, 5, 1, 8] and the column vector࡭ ,[3 ,8 ,3 ,1
100, 56, 82].

The iteration matrix of the Gauss Seidel method has the spectral
radius of 0.4574. The proposed GP framework is used on this system
with the following setup: s=40, d=4, n=10, c= .1 and m= .1. The row
vectors of the evolved iteration matrix ࡹ (with	ݎ ൌ 		0.1385) are

૚ࡹ ൌ 	 ቂ
ଵ

௔భభ
, 0, 0, 0, 0ቃ,	ࡹ૛ ൌ ቂ0,

ଵ

௔మమ
, 0, 0,					0ቃ,	ࡹ૜ ൌ

ቂ0, 0,
ଵ

௔యయ
, 0, 0ቃ,	ࡹ૝ ൌ ቂ0, 0, 0,

ଵ

௔రర
, 0ቃ,	ࡹ૞ ൌ ቂ0, 0, 0, 0,

ଵ

௔ఱఱ
ቃ.

The evolved expression is a common and very simple pre-
conditioner. Note that ܽ௜,௝ (for	݅	 ൌ ݆) are diagonal elements of the
system matrix and the GP evolved expression is just the inverse of
the diagonal of the system matrix.

Fig. 6. The GS method hits the stopping limit in 28 iterations while the
GP evolved expression hits it in 11 iterations.

The GP evolved expression converges three times faster than the GS
scheme. This experiment for a non-sparse assymetric system matrix
shows that not only the GP evolved expression is a very well-known

preconditioner but also it is very sparse and computationally
efficient.

IV. DISCUSSION AND FUTURE WORK
The experiments in this work confirmed that the GP evolved solvers
can outperform the well-known methods and converge up to 4 times
faster comparatively. However, although current results are
promising we are just at the beginning of the research in this area.

What we plan next is to investigate larger system matrices and to
incorporate the GP framework into the ExaStencils solver
framework (www.exastencils.org), where we develop a domain
specific language for the numerical solution of partial differential
equations[1][2].

ACKNOWLEDGMENT
The authors would like to thank Jonas Schmitt for the valuable
comments. The project ExaStencils is part of the DFG Priority
Research Initiative SPPEXA, grant no. LE 912/15-1.

REFERENCES

[1] Lengauer, Christian, et al. "ExaStencils: advanced stencil-code
engineering."European Conference on Parallel Processing.
Springer International Publishing, 2014.

[2] Harald Köstler, Christian Schmitt, Sebastian Kuckuk, Stefan
Kronawitter, Frank Hannig, Jürgen Teich, Ulrich Rüde, and
Christian Lengauer, “A Scala Prototype to Generate Multigrid
Solver Implementations for Different Problems and Target
Multi-Core Platforms,” International Journal of Computational
Science and Engineering (IJCSE), vol. 14(2), pp. 150–163,
2017.

[3] Saad, Yousef, “Iterative methods for sparse linear systems,”
Society for Industrial and Applied Mathematics, 2003.

[4] Barrett, Richard, et al., “Templates for the solution of linear
systems: building blocks for iterative methods,” Society for
Industrial and Applied Mathematics, 1994.

[5] J.R. Koza, “Gentetic Programming: On the Programming of
Computers by Means of Natural Selection,” MIT Press,
Cambridge, 1992.

[6] J.R. Koza, ‘Genetic Programming II: Automatic Discovery of
Reusable Programs,” MIT Press, Cambridge, Massachusetts,
1994.

[7] R. Poli, W. B. Langdon, N. F. McPhee, “A Field Guide to
Genetic Programming,” Published via http://lulu.com and
freely available at http://www.gp-field-guide.org.uk, 2008.
(With contributions by J.R. Koza)

[8] D. E. Goldberg, “Genetic Algorithms in Search,
Optimization,and Machine Learning,” Addison-We. 1989.

[9] L. Davis, ‘Handbook of Genetic Algorithms,’’ 1991.

[10] R. L. Haupt and S. E. Haupt, ”Practical Genetic Algorithms,”
2004.

1406

