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ABSTRACT
A variety of inductive program synthesis (IPS) techniques have

recently been developed, emerging from di�erent areas of com-

puter science. However, these techniques have not been adequately

compared on general program synthesis problems. In this paper we

compare several methods on problems requiring solution programs

to handle various data types, control structures, and numbers of

outputs. �e problem set also spans levels of abstraction; some

would ordinarily be approached using machine code or assembly

language, while others would ordinarily be approached using high-

level languages. �e presented comparisons are focused on the

possibility of success; that is, on whether the system can produce

a program that passes all tests, for all training and unseen test-

ing inputs. �e compared systems are Flash Fill, MagicHaskeller,

TerpreT, and two forms of genetic programming. �e two genetic

programming methods chosen were PushGP and Grammar Guided

Genetic Programming. �e results suggest that PushGP and, to an

extent, TerpreT and Grammar Guided Genetic Programming are

more capable of �nding solutions than the others, albeit at a higher

computational cost. A more salient observation is the di�culty

of comparing these methods due to drastically di�erent intended

applications, despite the common goal of program synthesis.

CCS CONCEPTS
•So�ware and its engineering → Genetic programming;
•�eory of computation→ Evolutionary algorithms;
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1 INTRODUCTION
Since the creation of Inductive Program Synthesis (IPS) in the

1970s [15], researchers have been striving to create systems capa-

ble of generating programs competitively with human intelligence.

Modern IPS methods o�en trace their roots to the �elds of machine

learning, logic programming, evolutionary computation and others.

Some IPS systems, such as MagicHaskeller, were created to be

used as a teaching tool for people learning to program in the Haskell

language. Other IPS systems have been used to perform Automated

Program Repair [19] to �x bugs in human wri�en code.

As IPS systems become be�er at generating the same kinds of

programs humans would generally write, there will likely be many

more applications that have large impacts on the �elds of machine

learning, arti�cial intelligence, and so�ware development.

�e similarities and di�erences of IPS methods have been dis-

cussed [15], but their performance is rarely compared on problem

sets that could provide concrete insight into the capabilities and

limitations of each method.

�is is partially due to how recently many of current methods

have been introduced. TerpreT and the Grammar Guided Genetic

Programming system proposed by Forstenlechner et al. have been

published for less than a year. Flash Fill and Magic Haskeller were

both introduced in the 2010s. PushGP, although �rst published in

2002, has improved greatly on IPS tasks in recent years [6].

A larger reason for the lack of IPS method comparisons is that

these systems o�en cannot be applied to the same problems, due

to various features that are not consistently supported.

Two demonstrative problem sets have been compiled that assess

an IPS method’s ability to work within a range of levels of abstrac-

tion [2], manipulate a variety of data types, utilize complex control

structures and produce an arbitrary number of outputs of various

forms [8].

�is investigation is exclusively considering each method’s abil-

ity to �nd solutions. Other measures, such as runtime or hardware

models, are not thoroughly examined. In order to determine if a
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method can �nd solutions to a problem, the problem must �rst be

phrased in its entirety to the method. �is is not always possible.

It should be noted that we have much more experience using

genetic programming than Flash Fill, MagicHakseller, and TerpreT.

We made our best e�ort to become as familiar as possible with all

methods used in this comparison. �ere is still a chance that these

systems can be used in ways we are unaware of that could change

the results of this experiment.

New tests were run on the PushGP, MagicHaskeller and Flash

Fill systems for this comparison. Results gathered for TerpreT and

Grammar Guided Genetic Programming (G3P) were reported by

the original authors in [2] and [1] respectively. �e source code for

G3P is available online, and more results could be gathered, but due

to how recently the particular G3P technique in [1] was proposed,

no results have been gathered beyond what the original authors

presented. �ere is no open source implementation of TerpreT yet.

�e conclusions drawn from this comparison will speak to the

�exibility of each considered method as well as highlight the issues

encountered when using benchmarks to compare IPS methods.

2 PROBLEMS
We take our problems from two sources of benchmark problems.

�e �rst set of problems exhibit low-level requirements at various

levels of abstraction [2]. �e second problem set requires the system

to perform tasks similar to those we expect human programmers to

perform[8]. �ese problem sets are both intended to benchmark an

IPS system, but ultimately require systems to demonstrate di�erent

capabilities. Each is described in detail below.

2.1 Basic Execution Models Problems
�e �rst set of 8 problems, taken from [2], was designed to demon-

strate TerpreT’s ability to synthesis programs in a variety of exe-

cution models that span multiple levels of abstraction. �ese exe-

cution models are: Turing Machine, Boolean Circuits, Basic Block,

and Assembly Language. As stated by [2], the problems in this

set progress from more abstract execution models towards models

which resemble assembly languages. �ese problems demonstrate

how a system performs across a variety of low-level domains.

�e problems in this set are described below:

Invert:
Given a binary string (binary tape), invert all the bits.

Prepend Zero:
Insert a 0 in the �rst index of a binary string and shi� all

other bits to the right.

Binary Decrement:
Given an input binary string equal to a positive decimal

number, return a binary string equal to the input number

decremented by one.

2-bit Controlled Shi� Register:
Given input bit (r1, r2, r3), return the same bits, except

swap the order of r2 and r1 if r1 == 1.

Full Adder:
Given a carry bit, cin , and two argument bits, a and

b , output a sum bit, s , and carry bit, cout , such that

s + 2cout = cin + a1 + b1.

2-bit Adder:
Given input bits a1, a2, b1, and b2, output s1, s2, and cout
such that s1 + 2s2 + 4cout = a1 + b1 + 2(a2 + b2).

Access:
Given an input array,V , and a positive integer, i , returnVi .
Assume 0 < i < |A|.

Decrement:
Given an input array, V , return a new array, U , such that

Ui = Vi − 1.

In Flash Fill, binary strings were implemented as strings of 1s

and 0s in a single cell that was set to the type “Text”. In all other

systems, the binary strings were implemented using vectors of

boolean values.

�e TerpreT system was originally given between 5 and 16

input-output examples for each of these problems. PushGP,

MagicHaskeller, Flash Fill were also given between 5 and 16 input-

output examples for each problem, with certain edge cases manually

included while other test cases were generated.

2.2 General Program Synthesis Benchmark
Suite

�e second set of problems used in this comparison was designed

as a benchmark suite for general program synthesis [8]. �e 29

problems here require the synthesis of programs with similar char-

acteristics to programs that humans write. Each problem in this

suite was taken from an introductory computer science textbook,

and therefore emulates the type of programming expected of stu-

dents who are learning to program. While these benchmarks were

�rst used in genetic programming, they are designed to be usable in

any inductive program synthesis system that supports the required

data types.

�e problems in this set include those that require a range of data

types, including strings, integers, �oats, characters, and vectors.

Many of the problems require outputs to be printed in the style of

standard output, and one problem requires multiple output values.

Additionally, most of the problems require some level of control

�ow to solve, whether through iteration, recursion, conditional

execution, or list-manipulating higher-order functions.

Where the Basic Execution Models problem set is designed to

test a system’s ability to perform in low-level domains (binary

circuits, assembly language, etc), the General Program Synthesis

Benchmark Suite tests the ability to perform higher-level tasks.

Since we do not have space to describe all 29 problems here, we

will only describe a few problem that have traits we would like to

highlight.

Double Letters:
Given an input string, a solution program must print the

string, doubling every le�er character and tripling every
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exclamation point character. All other non-alphabetic and

non-exclamation characters should be printed a single time

each.

Replace Space with Newline:
In this problem, the input is a string, and the program must

complete two tasks: it must print the input string a�er re-

placing each space character with a newline, and it must

then functionally return the number of non-whitespace

characters in the input string. At minimum, this prob-

lem requires the consideration of strings, characters, and

printing; a solution will also likely include some type of

iteration or string processing.

Even Squares:
Given an integer 0 < n < 10000, print all of the positive

even perfect squares less than n on separate lines.

Count Odds:
Given a vector containing at most 50 integers, return the

number of integers in the vector that are odd.

�ese four problems show the range of requirements presented

in this suite, from the use of multiple data types to various control

�ow techniques. �e other 25 problems are thoroughly described in

the original suite [8]. Speci�c implementation details can be found

in an accompanying technical report [7].

3 CURRENT STATE OF THE ART
Below are descriptions of the �ve inductive program synthesis tech-

niques compared in our experiments. �e techniques are o�en some

of the most well known, and yet still relatively recent, inductive

program synthesis techniques.

3.1 Flash Fill
Flash Fill, recently added to Microso� Excel, uses version-space

algebras to perform program synthesis from examples on string

manipulation tasks [3]. It was designed to help non-programmers

perform repetitive tasks that would otherwise require them to write

Excel macro programs. As such, it is able to quickly create simple

programs for one-o� repetitive tasks in spreadsheet applications

for non-programmers [4, 5, 20, 21].

Building on the use of version-space algebras for programming

by demonstration [18], Flash Fill assumes few example inputs and

must make simplifying assumptions about the problem space. In

particular, the domain-speci�c language used here is designed for

small string manipulation tasks that an end-user may want to per-

form without knowing how to program them. Adapting the tech-

nique for new domains would require a di�erent domain-speci�c

language that is carefully cra�ed to meet problem requirements

while restrictive enough to allow for quick searching. Each di�er-

ent domain-speci�c language would also require a new synthesis

technique; it is unclear whether Flash Fill will even be able to tackle

many general program synthesis problems.

To test Flash Fills performance with our problem set, an Excel

spreadsheet with one column per input and one column for output

was created for each problem. Each spreadsheet included training

data, which had both the input columns and output column popu-

lated, and unseen testing data, which le� the output column cells

empty. Flash Fill is deterministic and analytic, thus it was only run

once per problem on a single data set.

It is not possible to pose tasks to Flash Fill that required multiple

outputs. �is includes problems that require printing values in

addition to returning an output. Asking Flash Fill to generate each

output value in separate cell was considered, but this would be

two separate tasks and would not be comparable to the other IPS

methods.

3.2 MagicHaskeller
MagicHaskeller [10, 12] synthesizes functional Haskell programs

through an exhaustive search of programs with the correct type

signatures. It uses a Monte-Carlo algorithm to remove semantically

equivalent programs from the search space [11]. More recently,

it has also integrated an analytic component based on Igor2 [16],

which allows it to synthesize a greater range of programs than can

be found in reasonable time using exhaustive search [13]. Addi-

tionally, a web interface is available running a time-limited version

of MagicHaskeller intended as a Haskell teaching tool for new

programmers [14].

�ese implementations make great use of Haskell’s functional

instructions, and they perform well on problems that require list

manipulations and structural changes. While MagicHaskeller per-

forms quickly on simple problems without too many examples, it

has trouble with problems that require a large number of examples

to illuminate the relevant edge cases. Additionally, it seems to have

trouble with problems that require conditional control �ow.

MagicHaskeller uses speci�cations in the form of a predicate

consisting of example function calls and their desired outputs. To

then synthesize a function, MagicHaskeller generates a stream of

functions that have the same signature as the example function

calls. �us generated functions have the same number of inputs,

the same input types, and the same output type.

Generated functions are tested against the input predicate, and a

sample of passing functions are presented to the user. �e user can

then ‘Exemplify” the suggested solution functions to see how they

would behave given a variety of other inputs. If the user cannot �nd

an adequate solution function, more functions can be generated

until the entire stream has been processed.

MagicHaskeller was originally applied to a set of problems that

mainly dealt with list manipulation. �ese types of problems are

represeted in the problem set used in this comparison as well, but

are generally more complex than what MagicHaskeller was shown

to solve in [14].

For our experiments, we used the web hosted version of

MagicHaskeller. When using the MagicHaskeller web service, all

MagicHaskeller users share the same dynamic programming table

used for memoization, and the users cannot select which functions

are included when searching. One bene�t of using the publicly

hosted version of MagicHaskeller is that users can suggest new

contributions to the dynamic programming table, which potentially

improves the search space for all users upon the next update of the
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MagicHaskeller system. Due to MagicHaskeller being hosted on

the web, it is di�cult to embed in other systems.

Figure 1 shows an example input predicate. Notice that multiple

nested predicates can be supplied. MagicHaskeller supports the

common primitive data types such as: integers, �oats, strings and

characters. Vectors and tuples are also supported, which greatly

expands the number of problems that were able to be posed to

MagicHaskeller.

MagicHaskeller only allows for the synthesis of functions that

produce a single output value. In order to pose questions that

require multiple outputs, MagicHaskeller was given predicates that

speci�ed a tuple as an output. For problems that specify that these

values should be printed in addition to the output value, it was

considered su�cient if MagicHaskeller could synthesize a program

that produced a single string containing all printed values (including

white-space and newline) as an element of its output tuple.

3.3 TerpreT
TerpreT is a recently developed, probabilistic programming lan-

guage that is designed for inductive program synthesis [2]. Prob-

lems are speci�ed in the TerpreT language, which is then trans-

lated into four di�erent back-end inference algorithms: Forward

Marginals Gradient Descent (FMGD), Integer Linear Programming

(ILP), Satis�ability Modulo �eories (SMT) and SKETCH.

�e TerpreT system a�empts to solve IPS problems using these

back-end algorithms and returns source code containing the suc-

cessful parameters found by the successful back-end algorithm, if a

solution is present.

�e FMGD and ILP back-end algorithms tackle problems through

gradient based learning. �e SMT and SKETCH back-end algo-

rithms consider the IPS tasks to be constraint satisfaction problems.

Note that there is currently no publicly available implemen-

tation of TerpreT and thus only results on benchmark problems

provided by the original authors could be obtained. It would be

extremely valuable to compare TerpreT’s performance on the rest of

the problem set used in this paper once an implementation becomes

available.

3.4 Genetic Programming
Before the 1990s, evolutionary algorithms were generally only used

for optimizing a �xed structure of values. Eventually, this was built

upon in such a way that produced executable programs. �is tech-

nique, named Genetic Programming (GP), is considered inductive

program synthesis because it uses input-output examples (refered

to as test cases in the �eld of GP) to evolve a function. In fact, IPS

was one of the original motivations for early work in GP [17].

Genetic Programming works by generating an initial population

of random programs. �is population then follows the evolutionary

computation cycle of evaluation, selection, and variation until a

solution is found or the run is considered a failure. To evaluate a

program, it is given a set of inputs and executed. �e set of outputs

produced by the program is compared with the desired outputs in

order to produce a set of errors.

�is set of errors is used in the selection phase to pick programs

whose performance merit them to be parents of the next generation

of the population. �is is done via a variety of selection algorithms,

although it has been shown that lexicase selection generally leads

to more solutions for IPS tasks [1, 6, 9].

�e selected parent programs are then recombined using a series

of genetic operators in the variation phase of evolution. �is results

in a new generation of programs that share traits with their parent

programs but are generally never identical.

A�er a program is produced that outputs the desired values on

all input test cases, evolution is stopped and the program is tested

on an entirely separate set of inputs to con�rm generalization. If the

program produces all correct outputs on the second set of inputs, it

is considered a solution.

3.4.1 PushGP. Our �rst comparison genetic programming sys-

tem, PushGP, evolves programs in a Turing complete, stack based

language called Push [22, 23]. Push features separate stacks for

each data type, including code. Push programs are lists of instruc-

tions and literals. Literals are values that get placed on the stack

corresponding to their type. Instructions are built-in functions that

pop values o� the stacks, modify them, and push them back on

the appropriate stacks. Programs are run through an interpreter,

which modi�es the stacks. A�er all instructions and literals have

been processed through the interpreter, the �nal state of the stacks

is the output of the program.

PushGPwas chosen as a comparisonmethod because of its ability

to evolve programs that can do the following:

• Manipulate all basic data types, including vectors.

• Return multiple outputs.

• Utilize iteration, recursion, conditional execution, and

other more complex control structures.

Given that the chosen problem set contains general so�ware tasks

that require all three of the above listed features, most commonly

used Genetic Programming systems would be unable to adequately

a�empt to �nd a solution.

One of Push’s strongest features for program synthesis is the

ability of a program to manipulate its own code as it runs [22]. In

particular, a running Push program’s code exists on a stack just like

every other data type, the exec stack. �us, a program can manipu-

late instructions on the exec stack using a variety of generic stack

manipulation operations, as well as instructions that implement

speci�c control �ow structures such as loops, recursion, if, and

when. �ese instructions allow for a wide range of control strate-

gies that may be useful when presented with a general program

synthesis problem.

Implementations of PushGP systems are available in the Clo-

jure programming language
1
, as well as a new implementation

in Python
2
. �e Basic Execution Models problems were run in

the Python implementation of PushGP and the General Program

Synthesis Benchmark Suite problems were run in the Clojure im-

plementation. In both implementations, the instruction sets and

genetic operators were identically implemented for this compari-

son.

3.4.2 Grammar Guided Genetic Programming (G3P). �e second

genetic programming system used in this comparison is Grammar

Guided Genetic Programming (G3P). It was recently shown by [1]

1
h�ps://github.com/lspector/Clojush

2
h�ps://github.com/erp12/pyshgp
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( ( f [ 1, 2, 3 ] == [ 0, 1, 2 ] ) && ( f [ -1, 1 ] == [ -2, 0 ] ) && ( f [ 7, 5, 4 ] == [ 6, 4, 3 ] ) )

Figure 1: An example predicate that can be supplied to MagicHaskeller. �is particular predicate produces a solution to the
Decrement problem.

that G3P can perform well on general IPS tasks if implemented in a

particular way.

�e G3P system described in [1] requires the speci�cation of a

Grammar and a Skeleton.

�e G3P system’s grammar is composed of a separate context

free grammar for each data type. Supported data types include:

booleans, integers, �oats, strings, lists of booleans, lists of integers,

lists of �oats, and lists of strings. �ere is also an addition grammar

for the structure of the program. �ese grammars are de�ned in

Backus-Naur Form. Together these grammars form a single, general

grammar that can be used to a�empt arbitrary program synthesis

tasks.

Aside from the grammar, the G3P system must be provided a

skeleton. �is skeleton contains the signature of the function that

is going to be evolved. �e signature speci�es the inputs to the

function and the return statement. In order to help avoid runtime

errors, functions that implement protected operations (ie. division

and logarithm) can also be included in the skeleton.

When an individual in the G3P system is to be evaluated, the

code from the individual is placed into the function signature, thus

creating a complete function that can be executed. �e output of

this function on the test cases is compared to the target outputs to

receive an error vector.

As part of the G3P grammar de�nition, it is required to specify

the number of variables usable by the system. Forstenlechner et al.

claim that 3 variables per data type is su�cient for all problems.

4 LIMITATION OF COMPARISON
�e problems described in section 3 were chosen to demonstrate a

system’s ability to be applied to a wide range of program synthesis

tasks. Each system considered in the comparison is designed for

di�erent situations which resulted in a di�cult comparison. �is

section describes the various ways in which our comparison could

be considered limited. �ese limitations speak to the �exibility and

versatility when being applied to general IPS problems.

4.1 Support For Multiple Outputs
�e benchmark problems we consider have di�erent requirements

on their outputs, including some problems that print outputs, some

that functionally return outputs, and some that require multiple

outputs. If a system does not support printing values, it was consid-

ered su�cient to return a single string containing all printed text,

including newlines, in addition to the other output values.

Flash Fill only supports populating cells in a single column at

once. �e only way to produce multiple outputs using Flash Fill

would be to generate each output value separately. Solving a prob-

lem in multiple parts was considered a fundamentally di�erent IPS

task, and thus a variety of problems were considered unable to be

fully posed to Flash Fill.

MagicHaskeller also only supports synthesizing programs that

produce a single output, however MagicHaskeller supports the

tuple data type. Given that elements of a tuple do not have to be

of the same data type, it was deemed adequate for MagicHaskeller

to produce a single tuple containing all outputs for problems that

required multiple outputs. For problems that called for printing

values, one of the elements of the output tuple would be a string

containing all printed text, including newlines.

�e G3P grammars do not contain any methods of printing or

forma�ing output values. �us, any problems that required the use

of printing or outputs given in a particular format (i.e. a string with

values printed on particular lines) must have been implemented in

a way that did not require these behaviors. �is implies that the

G3P system was not posed the exact same IPS tasks, albeit similar

ones.

4.2 Supported Data Types
Many problems in the comparison required the handling of multiple

data types, o�en including vectors.

Excel does not include a native vector or list data structure, and

it is not clear what the best way to phrase problems that require vec-

tors to Flash Fill. A string representation of vectors was a�empted

for some problems. If a problem speci�es an input value will be a

vector of �xed length, the problem can be posed with each element

of the vector in its own cell. If the vector’s length is not �xed, this

cannot be done, because a tabular structure cannot be formed. If a

problem requires a vector output, it cannot be posed to Flash Fill

with elements in their own cell because generating each output

value would be a separate IPS task. Due to this shortcoming of

Flash Fill, there are a number of problems in this comparison that

Flash Fill was unable to a�empt.

G3P supports list types, but the supported list types contain

values of a single data type. In other words, G3P can create and

manipulate integer lists that can only contain integer values. �ere

is no list type that can hold values of arbitrary types. �is limitation,

combined with the previous mentioned lack of printing methods,

resulted in no adequate G3P implementation of the “String Di�er-

ences” problem.

4.3 Number of Training and Test Cases
�e number of nested predicates that can be given to

MagicHaskeller is limited, and if too many predicates are given

the system will produce memory errors. �is is a consequence of

MagicHaskeller being a web hosted service where resources are

shared between all users. Due to this limitation, it was not possible

to give MagicHaskeller the same training dataset as the other IPS

methods. Although this weakens the presented results, it speaks

to the usability and �exibility of the web hosted MagicHaskeller

system.

4.4 Access To Systems
�ere is no publicly available implementation of TerpreT, and thus

it is only known how TerpreT performs on the Basic Execution
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TerpreT Flash Fill MH PushGP

Invert X x X X
Prepend Zero X X X X

Binary Decrement X x x x
2BCSR X x X

Full Adder X x X
2 Bit Adder X x x

Access X x X X
Decrement X x X X

Figure 2: Results of applying TerpreT, Flash Fill,
MagicHaskeller (MH) and PushGP on the Basic Execu-
tion Models problems from [2]. A check denotes the system
could �nd a solution. An x denotes the problem was fully
posed to the system, but a solution was not found. No
symbol denotes the problem could not be fully posed to
the system. It is not yet known how G3P preforms on
this dataset due to how recently the speci�c G3P method
discussed in this paper was presented.

Models problem set. It is unknown how TerpreT would perform on

the General Program Synthesis Benchmark Suite.
Given how recently the G3P system for general program syn-

thesis was presented, it has not been applied to the Basic Execution
Models problem set. �ese results would be informative and likely

be fairly easy to obtain.

Flash Fill is not open-source, whichmakes it impossible tomodify

for new tasks.

5 RESULTS
Although inductive program synthesis is o�en thought of as a single

�eld, it is clear from this comparison that IPS methods are generally

implemented with a narrow domain in mind. �is is made most

evident by the limitations discussed in section 4. A�er making

strong e�orts to overcome these limitations, the results of applying

each IPS method to the problem sets described in section 2 were

compiled into Figure 2 and Figure 3.

Flash Fill performed particularly poorly on the the considered

problems. Being designed for string manipulation, it is not surpris-

ing that it can only solve the “Prepend Zero” problem, where the

input binary string is implemented as a text string of 1s and 0s. On

all other problems, Flash Fill does not produce a solution. �is is

not unexpected because no other problem is solely comprised of

such simple text manipulation.

MagicHaskeller was only able to solve 10 out of the 37 problems

it was applied to. �ese problems tended to mainly involve applying

simple operations to each element of a vector, or simple forms of

aggregation.

�e system that performed the best on the Basic Execution Models
problems was TerpreT, while PushGP failed to solve 2 of the 8

problems. Given the success of TerpreT in this domain, it would

be interesting to know how the system performs on the So�ware
Synthesis Benchmark Suite. �e only system for which there is no

results on the Basic Execution Models problems is G3P. �ese results

would be informative, but given how recently this speci�c G3P

technique was posed these results have not been gathered yet.

Flash Fill MH PushGP G3P

Number IO x X X X
Small Or Large x x X X
For Loop Index x x X X

Compare String Lengths x x X X
Double Le�ers x x X x

Collatz Numbers x x x
RSWN x X x

String Di�erences x x x
Even Squares x x X X

Wallis Pi x x x
String Lengths Backwards X X X

Last Index of Zero x X X
Vector Average X X x

Count Odds x X X
Mirror Image x X X

Super Anagrams x x x X
Sum of Squares x x X X

Vectors Summed X X X
X-Word Lines x x X x

Pig Latin x x x
Negative To Zero X X X

Scrabble Score x x X x
Word Stats x x x
Checksum x x X

Digits x x X x
Grade x x X X

Median x x X X
Smallest x X X X
Syllables x x X x

Figure 3: Results of Flash Fill, Magic Haskeller (MH),
PushGP, and Grammar Guided Genetic Programming
(G3P0) on the So�ware Synthesis Benchmark Suite from [8].
A check denotes the system could �nd a solution. An x de-
notes the problem was fully posed to the system, but a solu-
tion was not found. No symbol denotes the problem could
not be fully posed to the system. When the original bench-
mark paper [8] was published, PushGP had not been able
to �nd solutions to the Checksum problem. Subsequent un-
published work found that expanding the set of test cases
led to the discovery of solutions. TerpreT is not seen in this
�gure, as it has never been applied to these problems to our
knowledge, and there is no publicly available implementa-
tion.

Both genetic programming systems clearly outperformed Flash

Fill and MagicHaskeller on the So�ware Synthesis Benchmark Suite.
PushGP solved 23 out of the 29 problems, and G3P solved 16 of the

29 problems.

�e IPS methods compared in this paper have di�erent charac-

teristics, such as supported data types. �ese characteristics are

summarized in Figure 5. �e di�ering capabilities impacted the

comparison made in this paper, and would likely impact many

other comparisons made between other IPS systems via the use of

benchmark problems. �is highlights an issue in the research area
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Problem Solution
Invert f = (map (\b -> abs(b -1 )))

Prepend Zero f = (0:)
Decrement f = (map (subtract 1))

String Lengths Backwards f = (\a -> reverse (map length a))
Negative To Zero f = (map (\b -> max b 0)

Smallest f = (\a b c d -> min d (min c (min b a)))

Figure 4: Some example solutions produced by MagicHaskeller.

of IPS, in that it is di�cult to adequately compare IPS methods that

cannot be applied to the same benchmark problems.

It must be mentioned that there is an enormous di�erence in run-

time and computation power required for these IPS systems. Flash

Fill and MagicHaskeller produce an output, or report failure, in near

instantaneous time. TerpreT, PushGP and G3P require many hours

to complete a single run and due to their stochastic nature, o�en

require many runs. It is not entirely uncommon to spend weeks of

CPU time on multiple PushGP runs of a single problem and only

encounter a small number of solutions, meanwhile MagicHaskeller

can produce the same solution every time, nearly instantaneously.

Some of the considered IPS methods were designed with other

functionality in mind, aside from solving IPS task. For example,

MagicHaskeller, G3P, and TerpreT produce readable source code.

PushGP produces code in the Push language, but it cannot be used

outside of a Push interpreter and is not easily read by humans. Flash

Fill does not provide any access to the solution program.

Figure 4 gives the source code generated by MagicHaskeller to

solve six of the problems. For example, the solution for Invert takes

each element in the bit string, subtracts 1 from it, and takes the

absolute value. �e solution for Negative To Zero returns a vector

containing either the original number or 0, whichever is greater,

thus replacing all negative elements with zero. �ese examples

make it clear that MagicHaskeller tends to produce small solutions

when it solves a problem, making themmuch simpler to understand

than solutions given by genetic programming. On the other hand,

since it searches the exponential search space of possible programs,

it is not able to solve problems that require larger programs to solve.

6 CONCLUSION
�e comparison presented in this paper highlights the di�culty

of using benchmark problems to compare IPS methods. �e IPS

methods chosen for this experiment were TerpreT, PushGP, G3P,

Flash Fill and MagicHaskeller. �e two distinct problem sets used

in this comparison require the IPS method to produce programs

in low level domains, such as boolean logic, as well as high level

domains that require the synthesis of programs similar to what

humans write.

�e recently unveiled TerpreT system shows e�ectiveness in low

level domains, but there are no results to suggest it can perform

well on di�erent kinds of problems. Flash Fill performs quickly

and adequately on some simple string manipulation task as de-

signed, but did not show any capabilities of operating outside this

narrow domain. MagicHaskeller is capable of performing list com-

prehensions and certain other simple tasks, but consistently fails

to solve problems that require a large number of training instances.

PushGP continues to do reasonably well across a broad range of

problems, but can be quite expensive when compared to Flash Fill

and MagicHaskeller. Grammar Guided Genetic Programming has

the added functionality over PushGP of producing usable source

code in any language, while still �nding solutions to almost as

many problems.

�emost conclusive �nding that has come out of this comparison

is that not all IPS systems can be applied to the same problems. �is

makes comparison extremely di�cult. As access to open source

implementations of these systems becomes available, it will be

easier to extend them to allow for more supported data types, and

other features that make comparison easier.

It is clear that certain IPS systems are not suited for some appli-

cations, depending in part on whether runtime and computational

power are concerns. It does appear that the genetic programming

methods, while signi�cantly more computationally expensive, are

more �exible in regards to the types of problems to which they can

be applied.
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