
Performance Testing of Automated
Modeling for Industrial Applications

Dylan Sherry
Nutonian Inc.

125 Summer Street, Suite 1000
Boston, Massachuse�s 02210
dylan.sherry@nutonian.com

Michael Schmidt
Nutonian Inc.

125 Summer Street, Suite 1000
Boston, Massachuse�s 02210

michael.schmidt@nutonian.com

ABSTRACT
We present a case study of the performance testing of a commer-
cially engineered genetic programming algorithm applied to the
automated modeling of industrial machine learning problems. �is
paper summarizes some of what has been learned over the past �ve
years of working with a large number of industrial machine learn-
ing challenges in a commercial or enterprise se�ing. Automation
and parallelism via cloud computing is used to reduce test time.
Two frameworks for conducting performance tests are discussed,
highlighting the advantages of collecting statistics throughout the
search. A performance test suite of industrial machine learning
problems is described, and examples of performance test results
are shown. Finally, a summary of challenges and open questions is
provided.

KEYWORDS
Genetic programming, machine learning, performance test, bench-
mark, case study
ACM Reference format:
Dylan Sherry and Michael Schmidt. 2017. Performance Testing of Auto-
mated Modeling for Industrial Applications. In Proceedings of GECCO ’17
Companion, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082534

1 INTRODUCTION
1.1 Assessing Performance is Important
A recent critique of machine learning remarked that “models are
opinions embedded in mathematics . . . A key component of any
model . . . is its de�nition of success” [12, p. 21]. �e de�nition
of model quality may vary depending on the problem domain,
and choosing a de�nition can have important philosophical, social
and physical implications [12]. For instance, if a model is to be
used to classify whether or not a young child needs emergency
surgery, it becomes incredibly important that models do not miss
any positive cases and erroneously advocate against surgery for
a child in dire need of it [1, 4]. If a model is intended to predict
the load of a regional electric power grid, increasing the predictive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082534

accuracy by a small percentage could reduce both wasted energy
and unnecessary carbon emissions, and also yield huge monetary
savings [6].

At Nutonian Inc., tracking the performance of our machine learn-
ing so�ware is essential to our users’ success and to our business
goals. Nutonian’s primary product is Eureqa, a so�ware applica-
tion which streamlines data analysis by automating the process of
model building and interpretation, providing a data science work-
�ow which has a high impact and a low barrier of entry for our
customers.

Eureqa has undergone substantial modi�cation and enhance-
ment since its inception. An early version of the algorithm was run
for 30 hours to �nd the physical laws governing a double pendulum
system [15]. Using the current version of Eureqa, that result can be
replicated in seconds. Since one of the technologies used internally
by Eureqa is genetic programming (GP) [9, 15, 16], the journey
to achieve that performance boost has necessitated a focus on es-
tablishing e�ective performance tests of GP on machine learning
problems.

1.2 Assessing Performance is Di�cult
�ere are several a�ributes of the performance of GP which are
important to the experience of Eureqa’s users:

• Low test error: How accurate are the models? How well
do they generalize to other data (avoiding over��ing and
under��ing)?

• Complexity: How simple are the models?
• Interpretability: How easy is it to interpret the models and

understand their structure?
• Speed: How long does it take to obtain good results?
• Consistency and variability: What kinds of models appear

at di�erent points in the search process? Will a similar
trend occur if the search is repeated?

• Cost: How expensive is it to Nutonian to run a search?

�e �rst three elements encapsulate the quality of the models
themselves, and the last three concern the quality of the search
process to Nutonian and to Eureqa’s users. Each of these a�ributes
presents its own set of challenges.

Search algorithms like GP are susceptible to learning over�t or
under�t models which don’t generalize well outside of training
data [2, 14]. Fair performance tests of GP must address this issue.

A search with a high speed to achieve an expected result may do
so at the expense of other desirable a�ributes like model diversity
or consistency. �e measurement of computational speed may
depend on the computational substrate. Servers provisioned via

1605

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Dylan Sherry and Michael Schmidt

cloud computing frameworks may have a variable computation
speed [17, 18].

Assessing performance using industrial machine learning prob-
lems can “require a great deal of domain knowledge, and so seem
unsuitable as GP benchmarks” [19, p. 24]. We question the assertion
that the cost of learning enough of the domain expertise required to
construct an e�ective performance test outweighs the bene�ts. We
have learned enough domain expertise through engagement with
users of Eureqa on select problems to gauge when results represent
a success, and therefore we feel con�dent using them as part of
performance test suites.

�e data and problems faced by machine learning in an indus-
trial se�ing di�er from many previously proposed benchmarks in
the GP community. Industrial machine learning problems typically
have some degree of noise and no known perfect analytic solution.
For some problems a minuscule improvement in accuracy could
represent a huge impact in the problem domain. All of these factors
may place a di�erent pressure on a GP learning algorithm than
synthetic data, where the signal is known a priori and the noise is
arti�cial. It has been observed benchmarks which take this into ac-
count by focusing on measuring model quality on harder problems
would likely prove valuable to the �eld [11]. We describe in this
paper the value these kinds of performance tests have had for us.

1.3 Summary
�is paper details some of the work done at Nutonian to test the
performance of GP. We discuss general methods for conducting
performance tests of a GP search algorithm on machine learning
problems, including the merits of automation and parallelism in
testing. We outline two frameworks we have explored for conduct-
ing performance testing and analyzing the results, and discuss their
relative strengths and weaknesses. Finally we describe some of the
challenges we have encountered and provide thoughts on related
open questions and directions for future work.

x

2 BACKGROUND
2.1 Related Work
Benchmarking has been raised as an important issue for the GP
research community, and one for which there is at present no widely
accepted standard [11, 13].

Prior work includes a discussion of scope and values of per-
formance testing. Zitzler et al. state the performance of a multi-
objective optimization system consists of two primary components:
the quality of the models found during the search process, and the
rate at which the results were obtained [20].

Recent work provides a comprehensive survey of previous e�orts
to de�ne commonly accepted GP benchmarks [11, 19]. Discussion
has found the previously accepted synthetic benchmarks [9, 10]
as being “too easy” and consisting of “simple toy problems” [19,
p. 19]. Assessing performance using industrial machine learning
problems can “require a great deal of domain knowledge, and so
seem unsuitable as GP benchmarks” [19, p. 24].

�e UCI machine learning data repository and UCI KDD archive
are mentioned as two potential sources for non-synthetic data to
be used in benchmarking [19, p. 13].

2.2 Eureqa
Eureqa is a so�ware application which can be used to automate
modeling in machine learning problems. One of the technologies
used internally by Eureqa is a multi-objective GP implementation
[3, 9, 15, 16] which optimizes a tradeo� between model error and
model complexity.

Eureqa has an extensive active user base with applications rang-
ing across numerous industries, including use in a wide variety
of academic se�ings. �e system has been used to improve the
accuracy of scanning electron microscopes [5], help airplane pilots
stay focused and aware during crises [7] and avoid unnecessary
emergency surgery in young children with appendicitis [1, 4].

2.2.1 Data Spli�ing. Eureqa partitions the users’ data into two
regions. �e training data is provided to the GP learning algorithm.
�e validation data is withheld for model selection as a protection
against over��ing. To protect against over��ing on the validation
data, test data is typically also withheld to check the performance
of the models selected using the validation data.

2.2.2 Searches and Models. Searches and models are two of the
fundamental entities in Eureqa. A search consists of a problem type,
a target variable to model, one or more input variables, and a set
of optional advanced parameters with preselected defaults, some
of which correspond to traditional GP parameters. One notable
advanced parameter is the error metric used by GP; another is the
amount of data used for training v.s. that withheld for validation.

As a search runs for a speci�ed time duration, a Pareto front [3]
of candidate models is displayed. When the search completes, the
�nal Pareto front remains visible. At all times, one of the models
on the Pareto front is selected by Eureqa as the “best” solution,
meaning it represents a good tradeo� between model complexity
and minimal error.

�e displayed Pareto front contains the models which were se-
lected from the GP learning algorithm and which represent a Pareto
optimal tradeo� between model complexity and error on the vali-
dation data.

2.2.3 Problem Types. �e most common use cases of Eureqa
are for solving regression and binary classi�cation problems. �e
data can optionally be ordered by a time variable. �e four default
templates for searches in Eureqa are:

• Regression
• Binary classi�cation
• Timeseries regression
• Timeseries classi�cation

�e data can also optionally be separated into multiple distinct
series. One example of a multiseries machine learning problem
would be an experiment where each series encapsulates a single
trial; another example is a dataset containing the sales information
and other a�ributes of a retail business, where each series represents
a distinct retail outlet.

3 PERFORMANCE TESTING
3.1 Goals and Framework
�e goal of the performance tests is to provide quanti�able metrics
for measuring the quality of the searches and models produced

1606

Performance Testing of Automated Modeling for Industrial Applications GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

by Eureqa’s algorithm. �is serves as a proxy to a key part of
the experience of Eureqa’s users. We can then use those metrics
to monitor for accidental or unanticipated changes to Eureqa as
part of the so�ware development lifecycle, thus providing strong
evidence the quality of Eureqa only changes with the knowledge of
the development team. We can also use those metrics to determine
whether a proposed change to the algorithm is bene�cial to model
quality and therefore to Eureqa’s users.

�e general framework of the performance tests is to de�ne a
machine learning problem, and measure the e�ectiveness of the
algorithm at �nding accurate and meaningful models which satisty
the problem. �e problem de�nition consists of the following main
components:

• A dataset with one or more input variables and one target
variable representing the information Eureqa’s users want
to understand and predict.

• One of two types of machine learning problems: classi�ca-
tion or regression.

• Whether or not the data is ordered by time (“timeseries”),
and if so, the variable in the dataset which represents time.

• An error metric to use during training, validation and test-
ing of models.

�e performance test suites are a collection of di�erent permu-
tations of those parameters, designed to cover the various ways in
which users utilize Eureqa. Each test in the suite will use Eureqa’s
algorithm to search for solutions to the problem, doing so over
multiple trials to normalize for the inherent stochasticity of the
search process. �e test suite may collect statistics on the models
and other properties of the algorithm over the course of the search.
A�er all test trials are complete, the results are displayed and ana-
lyzed, and team members can work with that information to make
decisions about how to modify Eureqa’s algorithm.

3.2 Sequential vs Parallel Testing
�e �rst a�empts at performance testing took a straightforward
approach by running test trials sequentially on a single cluster.
�e performance test suites we rely on today run all test trials in
parallel. �is is achieved through the use of a cloud computing
framework like Amazon Web Services Elastic Compute Cloud (AWS
EC2), where virtualized servers can be created and kept running
for an hourly fee. �e parallelized performance tests �rst generate
a large number of clusters, then assign each cluster a test trial to
evaluate independently from the others.

3.3 Automation of Performance Tests
3.3.1 Automated Testing. �e performance test suites can be

automatically queued and run via an automation program called
Jenkins. [8] All performance test results are archived and can be
accessed via Jenkins by any member of the engineering teams.

To detect any unanticipated performance changes introduced
during development, Jenkins was con�gured to run the perfor-
mance tests nightly, and to notify the engineering team if a regres-
sion was detected. �is provided another level of quality assurance
for Eureqa.

4 FIXED ACCURACY TESTS
4.1 Motivation
To achieve our performance testing goals, the �rst implementa-
tion of the performance suite measured the total time to reach an
expected result on synthetic datasets. �e “�xed accuracy” perfor-
mance tests were inspired by prior work on benchmarking GP. We
built a suite of performance tests which were designed to provide
comprehensive coverage of the most common use cases of Eureqa.

4.2 Test Procedure
Several datasets were generated by hand and used to construct
regression and classi�cation problems. �e datasets were generated
using various mathematical functions which represented the a
priori expected solution to the problem. Searches were then run
using those datasets until the a priori solution was found. �e total
elapsed wall clock time, model evaluations and generations were
recorded and the mean value was used as a performance indicator.

A heuristic was chosen to automatically determine when the
best solution had converged on the expected a priori model. To
achieve this, an upper threshold on the test error was selected for
each test. �e thresholds were obtained by runnning the search
several times by hand and observing what the average test error
was once the best solution had converged on the expected form.

Two values were used in the thresholding to determine the stop-
ping point: the error metric used to run the search, and the corre-
lation coe�cient between the model output and expected model
output. �is was done in case the model was nearly identical to
the a priori expected mode, but it wasn’t linear ��ed correctly and
produced a poor R2 or other error metric.

Each performance test iteration was run until the best model
selected from the validation Pareto front achieved a test error less
than or equal to the speci�ed threshold, or until the trial duration
exceeded a max allowed value.

Once the best model of the search reached the test error thresh-
olds and the search was stopped, the elapsed wall clock time, gen-
erations and evaluations were recorded.

4.3 Test Suite Description
�e �xed-accuracy test suite included the following tests:

• Korns-12, Pagie-1 and Vladislavleva-4 from White et al.
[19]

• �ree classi�cation tests: one with balanced classes, one
with a 19:1 ratio from majority to minority class, and one
with a 19:1 ratio and also a 3:1 within-class imbalance in
the input space.

• Regression of a simple timeseries signal with moderate
Gaussian noise added to the target variable.

• An overspeci�ed regression test, where 100K rows were
generated for a simple harmonic function.

• A distractor test, where 1000 random variables were in-
cluded as inputs, along with a single input which had a
nonlinear dependence on the target variable.

• A variety of easy linear and nonlinear functions, with and
without a limited operator set.

1607

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Dylan Sherry and Michael Schmidt

Figure 1: An example of �xed-accuracy performance test
results for a particular test, shown before and a�er a pro-
posed algorithmic change. �e middle points represent the
mean result, and the upper and lower points show the er-
ror bars (standard error). �e box plots show the quartiles
and the violin plots in the background show the density of
results.

• Regression of a periodic function with moderate Gaussian
noise added to the target variable.

• Same as previous, but with the operator set limited to basic
arithmetic to force a Taylor-series expansion.

All the test data was synthetic. �e tests ranged in size from 100
rows to 100K rows, and from 1 input to 1001. Some, like Korns-
12 and the distractor problem, required hundreds of iterations to
achieve reasonable error bars. Others like the basic arithmetic tests
required only about 30 iterations. �e tests used the R2, correla-
tion and area under the ROC curve (AUC) error metrics. �e max
allowed trial duration was 10min.

4.4 Process for Analyzing Fixed Accuracy Test
Results

A�er performance test results were collected, the statistics for each
test were converted to plots showing the distribution of search
durations across trials. Figure 1 shows an example of the plots
generated by the �xed-accuracy performance tests.

In the particular case depicted, the “a�er” is shown to represent
a positive change relative to the previous results because it greatly
reduces the time to reach the expected solution for the performance
test.

5 FIXED TIME TESTS
5.1 Motivation
�e �xed accuracy tests had several de�ciencies. �e measure-
ments were all made at the end of each trial, which meant the tests
provided no information about the intermediate stages of a search.
�ey had a high variance which required sometimes hundreds of

trials to reduce error bars. �ey required fragile calibration to set
the error thresholds for the stopping criterion. �ere was no guar-
antee the stopping criterion was achieving its intended purpose of
ending the search when the correct solution had been found.

Eureqa’s users’ data comes from a wide range of sources span-
ning several industries; the synthetic datasets were not an appropri-
ate re�ection of that diversity. In particular, the synthetic datasets
were mostly noiseless, and where noise was added it was di�cult
to know if it re�ected the kinds of noise and chaos present in users’
data. Many machine learning problems may have no single correct
analytic solution which can be drawn from their data.

�e �xed time performance test suites were created to address
these issues.

5.2 Test Procedure
All of the tests used real world data drawn from customer engage-
ments. Data was selected to cover key problems and usecases. �e
signals and noise in the data re�ected real, potent machine learning
challenges which were meaningful to Eureqa’s user base.

Each trial was run for a �xed time duration. Measurements were
taken periodically throughout the search, approximately every 15
seconds.

�e problems had no known correct solution, so the tests de�ned
machine learning benchmarks rather than synthetically constrained
“toy problems” [11] like the �xed-accuracy test suites. �ese tests
were not searching for an exact form of solution. As such, no thresh-
olds or heuristics were required as part of the test measurements.

Each measurement recorded a variety of qualities, all of which
could be helpful for understanding what impact an algorithmic
change has on search performance:

• Elapsed wall clock time.
• Elapsed model evaluations.
• Elapsed mean generations of the GP training populations.
• Model evaluations and generations per second.
• Number of models on the validation Pareto front.
• Mean, standard deviation, median, min and max of the

following, computed on the validation Pareto front models:
– Complexity
– Training error
– Validation error
– Test error

• Complexity of the validation Pareto front best model.
• Training, validation and test error of the validation Pareto

front best model.

Figure 2 shows an example of the di�erence in collection methods
between the �xed accuracy and �xed time performance tests. �e
�xed accuracy tests only record a data point when the best test
error crosses below the do�ed line, satisfying the stopping criterion.
�e �xed time tests have no such heuristic and will record data
periodically until the search has run for 10 minutes.

5.3 Test Suite Description
�e initial �xed-time performance test suite was composed of seven
problems, as described in Table 1. �e suite was designed to be
representative of Eureqa’s users’ most frequent use cases. Each test

1608

Performance Testing of Automated Modeling for Industrial Applications GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: An example of when the �xed-accuracy and �xed-
time performance test results are gathered. Each solid
black curve represents the test error v.s. time for one trial
of a test. �e points show the moments in wall-clock time
when data was recorded from each trial for �xed time per-
formance tests. �e dotted line represents the threshold
for a hypothetical �xed accuracy performance test, illus-
trating that data is recorded only when each trial curve
crosses the dotted line, or when 10min has elapsed.

was obtained through a speci�c customer engagement and de�nes
a problem of importance to the corresponding customer.

5.4 Process for Analyzing Fixed Time Test
Results

Once the tests have completed, several statistics and plots can be
produced to interpret and understand the results.

�e wall clock time, model evaluations and generations can all
be used as the x axis for plo�ing the other results which target
di�erent aspects of model quality.

When averaged or plo�ed against time, the model evaluations
per second and generations per second provide a good litmus test
for understanding how an algorithmic change e�ects GP and for
con�rming the results were collected without obvious errors. For
instance, observing the model evaluations per second have dropped
for a proposed algorithmic change indicates that the algorithmic
change has slowed model evaluation. If that behavior is not consis-
tent with the expected behavior, further review and understanding
are required.

�e number of models on the validation front and the complexity
statistics measure that the algorithm is populating the Pareto front
with a diverse spectrum of models representing a tradeo� between
model complexity and low error. An example of this is shown in
Figure 3 for complexity vs evaluations. In this case, the proposed
algorithmic change is shown to reduce the complexity of the best
solution from the validation front.

�e average training, validation and test error of the validation
solutions can be plo�ed against time to get a general sense of the

Figure 3: A plot of the complexity of the best model from
the validation front v.s. elapsed evaluations. �e darker
and lighter curves are the results from before and a�er an
algorithm change was applied. �e central curves show
the mean and the envelope around the curves shows the
standard error.

performance of the Pareto front. However we �nd it more con-
vincing to examine the error of the best validation solution, since
Eureqa recommends the best solution of the search to users as a
good model to examine �rst. Figure 4 shows these numbers for
one of the performance tests. In this example the proposed algo-
rithmic change is shown to achieve be�er test error and therefore
outperform the old version.

�e results across all tests can be combined to produce an aggre-
gate performance plot which may concisely summarize a perfor-
mance change across most or all of the tests.

�e procedure for combining results is as follows. First a statistic
is selected to plot on the y axis. A global min and a max normaliza-
tion value normGlobalmin and normGlobalmax are found for that
statistic by computing the min and max value of the statistic, across
all trials of all tests. �at is repeated for each test to �nd min and
max normalization values normmin[i] and normmax [i] for each ith
test. Next the data for the statistic in question is accessed from each
test, and each set of values y[i] from the ith trial is scaled by the
formula:

normRanдeGlobal = normGlobalmax − normGlobalmin (1)

normRanдe[i] = normmax [i] − normmin[i] (2)

yScaled[i] = y[i] − normmin[i]
normRanдe[i] ∗ (normRanдeGlobal)

+normGlobalmin

(3)

1609

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Dylan Sherry and Michael Schmidt

Table 1: �e �xed-time performance test suite. 40 trials of each test were run for 10min each. Classi�cation tests used the
area under the ROC curve error metric; other tests used mean squared error. �e training and validation splits were selected
in order for timeseries searches and randomly for others.

Domain Prob. Type Rows, Inputs % Train/Val/Test Description

Medical Classi�cation 768, 8 34.5 / 34.5 / 31% Determine if patients have a disease. 35%/65% class imbalance

Marketing Classi�cation 10K, 591 33.5 / 33.5 / 33% Determine if household is a potential customer. Evenly
sampled classes.

Manufacturing Regression 84, 7 33.5 / 33.5 / 33% Learn to calibrate a complex machine in 8 dimensions

Regional
Sales

Timeseries
regression

204, 474 52.5 / 22.5 / 25% Multiseries timeseries regression with 7 series of 34 rows.
Each series corresponds to an outlet, and every row repre-
sents one month of sales at a regional outlet

Online
Marketing

Timeseries
regression

154, 153 52.5 / 22.5 / 25% Learn the aggregate daily online engagement of a major
media outlet, over �ve months, as a function of key events,
user behavior, demographics and other information.

Sales
Forecasting

Timeseries
regression

110, 170 59.5 / 25.5 / 15% Learn the weekly total sales of a major retailer, over two
years, as a function of key events, marketing and promotional
events, and other information.

Stock
Prediction

Timeseries
classi�cation

1194, 10 52.5 / 22.5 / 25% Determine if a stock had a positive return next month as a
function of three years of market indicators and other stocks.

Figure 4: A plot of the training, validation and test error of the best validation solution v.s. elapsed evaluations, across all tri-
als of a particular performance test. �e darker and lighter curves are the results from before and a�er an algorithm change
was applied. �e central curves show the mean and the envelope around the curves shows the standard error.

�e result is then plo�ed in the same manner as the single per-
formance test plots exempli�ed in Figure 4.

6 DISCUSSION
6.1 Sequential v.s. Parallel Testing
�e biggest advantage of parallelism in performance testing via
cloud computing was a great reduction in the computation time,
on the order of 10x. �is has accelerated the ability to prototype
and test changes to the algorithm. �e monetary cost per run is
nominal, on the order of several US dollars. As an added bene�t,

the cluster con�guration is identical to that used by our production
systems, which means the performance tests more accurately re�ect
Eureqa’s users’ experiences.

One disadvantage of parallelized tests in this manner is that
AWS does not guarantee the e�ective computational power of each
virtual server will remain constant. By running multiple trials we
hope to average out any subtle constant di�erence in computational
power across servers; yet it is still possible there could be a non-
stationary change in the e�ective computational power of a cluster
during a test.

1610

Performance Testing of Automated Modeling for Industrial Applications GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

6.2 Fixed Accuracy v.s. Fixed Time
Performance Tests

6.2.1 Fixed Accuracy. �e �xed accuracy performance tests
were a direct measure of the aspect of user experience we place
the highest value on, which is the time to get to a veri�ably cor-
rect solution. �ey provided us with basic coverage for catching
any unanticipated changes in the algorithm. �ere is a historical
precedent in the �eld for this method of testing [19, p. 17-18].

�ere were several drawbacks to the �xed accuracy tests. Each
test required the formulation of a synthetic problem. As prior work
has shown [11], it is not easy to construct a synthetic dataset which
has the complexity, noise and asymmetry of real data.

Finding a reliable automated method to determine when each
search had arrived at the expected solution proved di�cult. Each of
the �xed-accuracy tests required the selection of error thresholds
for the stopping criterion heuristic. �e heuristic was imperfect.
If the error thresholds were too high, we observed models which
could satisfy the stopping criterion but not represent a correct
solution; if the thresholds were too low, we observed more searches
would fall short of reaching the threshold and only stop at the max
runtime threshold.

Measuring information only at the end of the search meant the
tests didn’t provide information about the health of the search while
it was running. �is could lead us to inadvertently favor changes
which sacri�ce initial progress. Focusing only on the best solution
presents a similar problem, where a prospective algorithmic change
could improve the time to reach the expected solution while reduc-
ing the diversity and accuracy of other models on the Pareto front.
A good performance test would provide some means to investigate
these kinds of shi�s in algorithm behavior.

Due to the inherent stochasticity of the search process, the �xed
accuracy performance tests had high variance, and for some tests
hundreds of trials were required to reduce the standard error. �ere
was no good way to handle runs which never satis�ed the thresh-
olds and timed out a�er 10 minutes. An increase in the number of
timed out runs may indicate a performance issue, but that is hard
to diagnose further without more detailed information.

Since each trial may run up to a max duration, the total time
required to run the suite is not deterministic, which makes it hard
to plan the quantity of computational resources to allocate and for
how long they should be allocated.

6.2.2 Fixed Time. �e �xed time performance tests are a signif-
icant improvement over the �xed accuracy tests. Performance is
measured continuously throughout the progress of the searches.
�is grants visibility into trends like the training, validation and
test error of the best model from the validation front over time,
which is helpful for ensuring proper protection against over��ing.

�e tests don’t need a messy heuristic for gauging whether or
not a particular form of solution has been found yet. Any dataset
can be used to con�gure a new �xed performance test without any
calibration. It’s easy to interpret whether the runs have converged
or if the test against a particular dataset needs a longer search
time. �e tests can be run for a short duration and still produce an
approximate result containing useful information for analysis.

In practice the �xed time tests require many fewer iterations to
obtain small separable error bars than with the �xed accuracy tests.

�e observed di�erence is on the order of tens of iterations for the
�xed time tests v.s. hundreds for the �xed accuracy tests.

�e �xed time performance tests have no variability in test dura-
tion, which allows reservation of massively parallel computational
resources for a speci�c period of time to avoid waste.

6.3 Future Improvements
�ere are several aspects of the performance testing discussed
herein which yield open questions and which would bene�t from
future exploration and enhancement.

How sensitive is the search algorithm to changes in external
(domain-speci�c) and internal (GP-speci�c) parameters? Is there an
e�cient way to produce performance tests which provide coverage
of the space of algorithm parameters? A performance test suite
could be constructed where parameters are randomly perturbed
and the resulting performance examined to catch regressions.

Could variability in the amount of CPU cycles per unit time of
clusters hosted by a cloud computing service produce unintended
variations in performance measurements? Cloud computing frame-
works like Amazon’s EC2 do not guarantee the amount of CPU
cycles per unit time remains constant. �ey could theoretically be
subject to stationary and non-stationary changes in cycles per unit
time which could impact results. Future work could investigate
how impactful these �uctuations are and explore ways to work
around them. Periodic benchmarking of raw CPU performance
could be used to normalize results for these �uctuations.

How can we measure the consistency of what models appear
in the search? Are searches �nding the same models every time?
�e consistency of search results is an important quality which are
not fully addressed by the current test framework. Covariates and
similar model forms can complicate this issue.

How can we reduce the error bars when comparing performance
test results? Not only can searches produce di�ering results of
similar quality, but they can also arrive at those results at di�erent
rates relative to wall clock time, elapsed evaluations or elapsed
generations.

Is there a robust method for measuring the area under the Pareto
front (AUP)? Future work could explore algorithms for computing
the AUP which are parameter-free and support comparison of the
AUP across di�erent trials and across test results from di�erent
versions of the GP algorithm.

7 CONCLUSION
�is paper has contributed a case study of the construction of
performance tests for a GP algorithm with industrial applications.
We outlined methods for parallelizing and automating performance
testing, and described and discussed two frameworks for testing
and analysis. Finally we summarized some challenges encountered
and examined implications for future work.

ACKNOWLEDGEMENTS
We would like to thank Hongmin Fan for his e�orts in building and
maintaining the performance tests, and Andrew Lamb and the rest
of the engineering and other teams at Nutonian for their tireless
help.

1611

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Dylan Sherry and Michael Schmidt

REFERENCES
[1] Einat Blum�eld, Gopi Nayak, Ramya Srinivasan, Ma�hew Tadashi Muranaka,

Ne�a M Blitman, Anthony Blum�eld, and Terry L Levin. 2013. JOURNAL
CLUB: Ultrasound for Di�erentiation Between Perforated and Nonperforated
Appendicitis in Pediatric Patients. American Journal of Roentgenology 200, 5
(2013), 957–962.

[2] Gavin C Cawley and Nicola LC Talbot. 2010. On over-��ing in model selection
and subsequent selection bias in performance evaluation. Journal of Machine
Learning Research 11, Jul (2010), 2079–2107.

[3] Je�rey Horn, Nicholas Nafpliotis, and David E Goldberg. 1994. A niched Pareto
genetic algorithm for multiobjective optimization. In Evolutionary Computation,
1994. IEEE World Congress on Computational Intelligence., Proceedings of the First
IEEE Conference on. Ieee, 82–87.

[4] Nutonian Inc. 2017. Children’s Appendicitis: Eureqa Helps Researchers to
Uncover the True Strength of Ultrasound as a Tool for Detecting Appendix
Perforation in Children. h�p://nutonian.com/customers/radnostics/. (2017).

[5] Nutonian Inc. 2017. Instrument Image Distortion: Pierce the Veil of Distortion
Over Mission Critical Images. h�p://nutonian.com/customers/air-force/. (2017).

[6] Nutonian Inc. 2017. Kansas City Power and Light Uses Eureqa to Precisely
Match Electric Power Supply to Demand. h�p://nutonian.com/customers/
kansas-city-power-light/. (2017).

[7] Nutonian Inc. 2017. NASA Maximizes Flight Safety With Eureqa. h�p://nutonian.
com/customers/nasa/. (2017).

[8] Kohsuke Kawaguchi. 2014. Meet Jenkins. h�ps://jenkins.io/. (2014).
[9] John R Koza. 1992. Genetic programming: on the programming of computers by

means of natural selection. Vol. 1. MIT press.
[10] John R Koza. 1994. Genetic programming II: Automatic discovery of reusable

subprograms. Cambridge, MA, USA (1994).
[11] James McDermo�, David R White, Sean Luke, Luca Manzoni, Mauro Castelli,

Leonardo Vanneschi, Wojciech Jaśkowski, Krzysztof Krawiec, Robin Harper,
Kenneth De Jong, and others. 2012. Genetic programming needs be�er bench-
marks. In Proceedings of the 14th annual conference on Genetic and evolutionary
computation. ACM, 791–798.

[12] Cathy O’Neil. 2016. Weapons of math destruction: How big data increases inequal-
ity and threatens democracy. Crown Publishing Group (NY).

[13] Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, and Wolfgang Banzhaf.
2010. Open issues in genetic programming. Genetic Programming and Evolvable
Machines 11, 3-4 (2010), 339–363.

[14] Cullen Scha�er. 1993. Over��ing avoidance as bias. Machine Learning 10, 2
(1993), 153–178. DOI:h�p://dx.doi.org/10.1007/BF00993504

[15] Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural laws from
experimental data. science 324, 5923 (2009), 81–85.

[16] Michael Schmidt and Hod Lipson. 2013. Eureqa (version 0.98 beta)[so�ware].
Nutonian, Somerville, Mass, USA (2013).

[17] Kalyan Veeramachaneni, Ignacio Arnaldo, Owen Derby, and Una-May O’Reilly.
2015. FlexGP. Journal of Grid Computing 13, 3 (2015), 391–407.

[18] Kalyan Veeramachaneni, Owen Derby, Dylan Sherry, and Una-May O’Reilly. 2013.
Learning regression ensembles with genetic programming at scale. In Proceedings
of the 15th annual conference on Genetic and evolutionary computation. ACM,
1117–1124.

[19] David R White, James Mcdermo�, Mauro Castelli, Luca Manzoni, Brian W
Goldman, Gabriel Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean
Luke. 2013. Be�er GP benchmarks: community survey results and proposals.
Genetic Programming and Evolvable Machines 14, 1 (2013), 3–29.

[20] Eckart Zitzler, Lothar �iele, Marco Laumanns, Carlos M Fonseca, and Vi-
viane Grunert Da Fonseca. 2003. Performance assessment of multiobjective
optimizers: An analysis and review. IEEE Transactions on evolutionary computa-
tion 7, 2 (2003), 117–132.

1612

http://nutonian.com/customers/radnostics/
http://nutonian.com/customers/air-force/
http://nutonian.com/customers/kansas-city-power-light/
http://nutonian.com/customers/kansas-city-power-light/
http://nutonian.com/customers/nasa/
http://nutonian.com/customers/nasa/
https://jenkins.io/
http://dx.doi.org/10.1007/BF00993504

	Abstract
	1 Introduction
	1.1 Assessing Performance is Important
	1.2 Assessing Performance is Difficult
	1.3 Summary

	2 Background
	2.1 Related Work
	2.2 Eureqa

	3 Performance Testing
	3.1 Goals and Framework
	3.2 Sequential vs Parallel Testing
	3.3 Automation of Performance Tests

	4 Fixed Accuracy Tests
	4.1 Motivation
	4.2 Test Procedure
	4.3 Test Suite Description
	4.4 Process for Analyzing Fixed Accuracy Test Results

	5 Fixed Time Tests
	5.1 Motivation
	5.2 Test Procedure
	5.3 Test Suite Description
	5.4 Process for Analyzing Fixed Time Test Results

	6 Discussion
	6.1 Sequential v.s. Parallel Testing
	6.2 Fixed Accuracy v.s. Fixed Time Performance Tests
	6.3 Future Improvements

	7 Conclusion
	References

