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ABSTRACT

The paper concerns multi-objective methodology applied to paral-

lel Extremal Optimization (EO) used in processor load balancing

in execution of distributed programs. When load imbalance is de-

tected in executive processors then EO algorithms are used to �nd

best tasks migration leading to imbalance reduction and improve-

ment of program execution time. For this a special multi-objective

version of parallel EO is applied. It is based on the EO Guided

Search (EO-GS) approach which employs problem knowledge to

search for the best next solution state in solution improvement. In

this EO version, additional �tness function is used in stochastic se-

lection of next solution state based on computation and communi-

cation assessment of task migration targets. In the multi-objective

EO approach we jointly control three objectives relevant in proces-

sor load balancing for distributed applications. They are: computa-

tional load balance in execution of distributed applications, volume

of communication between tasks on di�erent processors and task

migration parameters which �ght imbalance of processor loads.

The proposed algorithms are assessed by simulated execution of

distributed programs macro data �ow graphs.

CCS CONCEPTS

• Mathematics of computing → Evolutionary algorithms; •

Applied computing→Multi-criterionoptimization and decision-

making; • Computing methodologies → Shared memory algo-
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1 INTRODUCTION

This paper is concerned with advanced optimization methods for

distributed program execution in clusters of processors by apply-

ing a nature-inspired approach called Extremal Optimization (EO)

[1, 2]. EO has small computational complexity and lowmemory re-

quirements which justify using this approach in processor load bal-

ancing in distributed systems. In a series of our previous papers [4–

7]we have proposed and examined howEO could be applied to pro-

cessor load balancing in execution of distributed programs spec-

i�ed as macro data �ow graphs. The discussed algorithms con-

cerned processor load balancing using both sequential and parallel

single objective EO approaches. Based on these algorithms analy-

sis and experimental results we have noticed that a multi-criteria

load balancing approach could improve the algorithms by taking

into account more complex optimization aims. It can be obtained

by search done in a much wider solution space and by using more

sophisticated methods for �nding problem solutions which better

match user expectations.

Good reviews and classi�cations of classic load balancing meth-

ods are presented in [3, 8, 9]. Surveys of load balancing methods

based on evolutionary algorithms including EO are contained in [6,

7, 10]. The proposed load balancing approach is based on iterative

optimization phases which improve program task placement on

processors by periodic migration of tasks among processors. Par-

allel EO is used in iterative load balancing phases which are exe-

cuted in the background in parallel with the application program.
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The EO algorithms are used to discover the tasks which are can-

didates for migration. They are based on a special quality model

used to assess task placement on executive processors. The model

includes computation and communication parameters of parallel

application tasks and features of the executive system components.

In these algorithms, a special parallel EO-GS approach (EOwith

a Guided Search) is applied in which the selection of a new par-

tial solution to be improved is guided by some knowledge of the

problem and that the parallel search of results improves the con-

vergence rate [4]. The EO-GS approach replaces the fully random

processor node selection by the stochastic selection in which the

probability is more problem speci�c.

The algorithms presented in the current paper are improved ver-

sions of the EO-based load balancing algorithms presented in [5–

7] by using a multi-objective optimization approach. Large sur-

veys on general methods of multi-objective optimization can be

found in [14, 15]. Extensive surveys on multi-objective optimiza-

tion methods combined with evolutionary algorithms in general

can be found in [16, 17]. These surveys are too extensive to be dis-

cussed here. Some useful papers which support the general multi-

objective optimization technology are presented in [18–24]. Multi-

objective approach applied to EOhas already been discussed in sev-

eral papers [25–29]. They propose basicmethods ofmulti-objective

optimization and cover di�erent technical aspects of this approach.

However, they are oriented towards generalized optimization prob-

lems and do not cover speci�c multi-objective evolutionary algo-

rithms applied to processor load balancing.

In our previous papers on load balancing using EO approach we

have considered three parameters of program execution in cluster

environments: computational load of processors, inter-processor

communication intensity and the number of taskmigrations. In the

previous papers we have assumed the EO global �tness function

which was a linear weighted combination of some metrics de�ned

based on the three parameters. This approach added the burden of

tuning the weight coe�cients to the program and system features.

In the current paper, we show that a multi-objective approach can

be fruitful continuation of the research on processor load balanc-

ing presented in our previous papers. Consequently, we take a

multi-objective approach and de�ne separate objectives based on

some modi�cations of the three mentioned above functions with

unchanged general load balancing optimization axes. The three ob-

jectives have been included into a generalized EO algorithm itera-

tive parallelized structure. The algorithm delivers the Pareto fronts

of the optimization results and also the �nal compromise solutions

obtained by �nding the solutions which minimize the distance of

the Pareto solutions to an ideal point with respect to a given norm.

In the case of our target of load balancing, we have examined two

norms: the Euclidean distance in a three-dimensional Cartesian

space and the Manhattan distance.

The algorithms were assessed by experiments with simulated

load balancing of distributed program represented as macro data

�ow graphs. The experimental results obtained by simulation com-

pared the compromise solutions obtained using our multi-criteria

parallel EO-GS approach with those of a classical EO-GS algorithm

with the mentioned above singular local and global �tness func-

tions. The superiority of the multi-objective approach against the

mentioned above single-objective one has been demonstrated.

The paper is organized as follows. In Section 2 the EO prin-

ciples are re-called and the proposed multi-objective parallelized

EO-GS algorithm is introduced. Section 3 describes the processor

load balancing approach based on the proposed multi-objective

parallelized EO-GS algorithm. Section 4 presents the experimen-

tal assessment of the proposed load balancing approach applied

for load balancing in simulated execution of distributed programs

represented by macro data �ow graphs.

2 EO ALGORITHM PRINCIPLES

2.1 EO with Guided State Changes

Extremal Optimization was proposed by Boettcher and Percus [1],

following the Bak–Sneppen approach of self–organized dynamic

criticality [11]. It is an attractive nature-inspired optimization met-

hod for NP–hard combinatorial and physical optimization prob-

lems.

EO operates on a single solution S consisting of a given number

of components si , each of which is a variable of the problem and is

thought to be a species of the ecosystem. Once a suitable represen-

tation is chosen, by assuming a predetermined interaction among

these variables, a local �tness value ϕi is assigned to each of them.

Then, at each time step the global �tness Φ(S) is computed and S

is evolved, by randomly updating the worst variable only, to a so-

lution S ′ belonging to its neighbourhood Neigh(S). New solution

is saved if its global �tness value is better than that of the best

solution found so far.

To avoid being stuck in a local optimum, a probabilistic version

of EO can be used. It is based on a parameter τ , i.e., τ–EO, intro-

duced by Boettcher and Percus. According to it, for a minimization

problem, the species are �rst ranked in increasing order of local �t-

ness values, i.e., a permutation π of the variable labels i is found

such that ϕπ (1) ≤ ϕπ (2) ≤ . . .ϕπ (G), where G is the number

of species. The worst species sj is of rank 1, i.e., j = π (1), while

the best one is of rankG. Then, a distribution probability over the

ranks k is considered as follows: pk ∼ k−τ , 1 ≤ k ≤ G for a given

parameter τ . At each update, a generic rank k is selected accord-

ing to pk so that the species si with i = π (k) randomly changes its

state and the solution moves to a neighboring one, S ′ ∈ Neigh(S),

unconditionally. The only parameters are the number of iterations

Niter and the selection coe�cient τ .

We noticed that, when the number of neighbour states of rank

k increases, the algorithm starts struggling with the problem of

many possible moves. The probability of “good” state change de-

creases. To overcome the problem, we have proposed a modi�ed

version of EOalgorithm, called ExtremalOptimizationwithGuided

State Changes (EO–GS).

In our case the term guided means that we incorporate some

problem-speci�c information into the algorithm.τ–EOwith guided

state changes (EO–GS) has been proposed to improve the conver-

gence speed of EO optimization. Some knowledge of the problem

properties is used for next solution selection in consecutive EO it-

erations with the help of an additional local target function ωs . It

is implemented as a local target function ω(s). The value of this
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Algorithm 1 EO algorithm with Guided State Changes (EO–GS)

initialize con�guration S at will

Sbest ← S

while total number of iterations Niter not reached do

evaluate ϕi for each variable si of the current solution S

rank the variables si based on their �tness ϕi
choose the rank k according to the distribution probability

k−τ so that the variable sj with j = π (k) is selected

evaluate ωs for each neighbour s ′ ∈ Neigh(S), generated by

sj change, of the current solution S

rank neighbours s ′ ∈ Neigh(S) based on the value of target

function ωs
choose S ′ ∈ Neigh(S) according to the exponential distribu-

tion Exp(λ)

accept S ← S ′ unconditionally

if Φ(S) < Φ(Sbest) then

Sbest ← S

end if

end while

return Sbest and Φ(Sbest)

function is evaluated for all neighbours Neigh(S) of rank k . Then,

the neighbour solutions are sorted and assigned GS-ranks д with

the use of the function ωs . The new state S ′ ∈ Neigh(S, sπ (k)) is se-

lected in a stochastic way using the exponential distribution with

the selection probabilityp ∼ Exp(д, λ) = λe−λд . Thus, better neigh-

bour solutions are more probable to be selected. The bias to better

neighbours is controlled by the λ parameter. The general scheme

of the EO–GS for minimization problems is shown as Algorithm 1.

2.2 Parallel EO general scheme

In this section we describe a parallel version of the EO algorithm

that has been used in the multi-objective load balancing algorithm

reported in this paper. The general scheme of this algorithm is pre-

sented in Fig. 1. The scheme begins with an initialization of the

EO starting “best” solution based on current loads of all comput-

ing nodes in the distributed application. Next, a parallel part of the

scheme starts, which includes iterative execution of selected ver-

sions of EO algorithms in P parallel branches.

The algorithm is constructed as a hierarchical structure of two

kinds of loops: the outer main control/global data exchange loop

and the inner parallel EO loops nested inside the outer loop. The in-

ner loops are executed in parallel branches of the algorithm scheme.

The inner loop body in Fig. 1 represents a sequential version of an

EO algorithm executed a number of times. These can be any types

of EO algorithm such as EO-GS, classic EO, or multi-objective EO

which is described in the next section.

When all the parallel inner EO loops are terminated, the solu-

tion with the best value Sbest_p among the global �tness function

gathered from all parallel branches is registered as the current best

one found in the current iteration of the outer loop. Next, the al-

gorithm enters the solution exchange phase, in which an initial

starting EO solution from previous iterations is identi�ed for the

next iteration of the outer loop of the algorithm. The solution is

Figure 1: The general scheme of the parallel EO algorithm.

next distributed among P parallel branches of the scheme. Then,

the next parallel EO algorithm outer loop iteration starts.

If the total number of EO iterations to be executed in P par-

allel branches is denoted as Niter then the number of inner loop

iterations in a single parallel branch is equal to Niter/P . Parallel

branches are executed on separate cores of a multicore processor

we use for the algorithm.

2.3 Multi-objective parallel EO-GS algorithm

In our load balancing algorithmwe use amulti-objective algorithm

in which we apply a number of objectives expressed as functions

on the problem variable vectors which belong to a set of feasible

decision vectors. A multi-objective problem can be formulated as

follows: given a set of objective functions and a set of problem fea-

sible problem variable vectors �nd the set of the feasible variable

vectors for which the values of the objective functions are mini-

mal or maximal. The feasible set of variables is usually de�ned by

a set of problem derived constraints. Usually, a feasible solution

that minimizes (or maximizes) all objective functions at the same

time does not exist andwe are satis�ed by �nding a so called Pareto

front of solutions. A Pareto front is composed of feasible solutions

which cannot be improved in any objectives without worsening of

some others. Feasible solutions which belong to a Pareto front are

called Pareto optimal solutions, which are based on Pareto domi-

nance. We say that a feasible solution dominates another feasible

solution if the former one is not worse than the later one in respect

to all objectives but it is better than the dominated one in respect to

at least one objective. The Pareto optimal solutions (i.e. belonging

to the Pareto front) are not dominated by any other known feasible

solutions.
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Algorithm 2 Multi-objective EO algorithm with Guided State

Changes (MOEO–GS)

initialize con�guration S at will

Sbest ← S

DS ← ∅ {the set of non-dominated solutions (Pareto-front)}

while total number of iterations Niter not reached do

C ← set of criteria for evaluation in the current iteration

for all c ∈ C do

evaluate ϕi,c for each variable si of the current solution S

rank the variables si based on their local �tness ϕi,c
choose the rank k according to k−τ so that the variable sj
with j = π (k) is selected

evaluate ωs for each neighbour Sv ∈ Neigh(S, sj ), gener-

ated by sj change of the current solution S

rank neighbours Sv ∈ Neigh(S, sj ) based on the target func-

tion ωs
choose S ′ ∈ Neigh(S, sj ) according to the exponential dis-

tribution

accept S ← S ′ unconditionally

end for

if S is non-dominated then

include S in DS, remove dominated solutions from DS

end if

end while

select Sbest from DS using Φ(S)

return Sbest and Φ(Sbest)

In our case, we want to solve processor load balancing in exe-

cution of distributed programs, given as macro data �ow graphs,

with the use of a multi-objective EO-GS algorithm (MOEO-GS). We

have here the following problem components and data structures:

a) an EO-GS solution vector S composed of elements si,c , which

assign program tasks to processors,

b) a set of EO local �tness functions ϕi,c , to be used to select the

solution elements for EO and MO improvements,

c) a set of EO global functionsΦi (S)which are partial objectives of

the load balancing problem and at the same time MO problem

objective functions,

d) a set of non-dominated solutions NDS composed of feasible so-

lutions which constitute the Pareto front of the MO problem,

e) a compromised MO solution which de�nes the set of task mi-

grations to be done in the set of executive processors to opti-

mally decrease processor load imbalance in the current step of

the load balancing algorithm.

The pseudo-code of our generalized EO-GS-based multi-objective

algorithm MOEO-GS is shown as Algorithm 2. It is iteratively exe-

cuted in parallel branches of the general scheme of the parallel EO

algorithms used in this paper, see Fig. 1.

The algorithm is so designed that the selection and solution im-

provement are performed iteratively for all objectives contained

in the vector C . We operate using three objective functions ori-

ented on supporting the load balancing problem: total computa-

tional load imbalance in execution of application tasks on proces-

sors, total volume of communication between tasks placed on dif-

ferent computing nodes and task migration which aims in �ghting

Figure 2: The general scheme of load balancing based on par-

allel multi-objective EO with guided state changes.

imbalance of processor loads by the possibly small number of possi-

bly the most e�cient task migrations. The way in which contents

of the vector C is designed is a parameter which de�nes the fea-

tures of the algorithm. In our design, C contains a single objective

(a single EO local and a respective single global �tness function)

which is selected in a probabilistic way from the three MO objec-

tives speci�ed for our load balancing problem mentioned above.

The Pareto front is analyzed at the end of the algorithm to de-

liver the Sbest solution. The Sbest solution will be used by the load

balancing algorithm to decrease the load imbalance.

3 LOAD BALANCING BASED ON THE
PARALLEL MULTI-OBJECTIVE EO-GS

3.1 Processor load balancing general scheme

The proposed load balancing method is meant for a cluster of mul-

ticore processors interconnected by a message passing network.

Load balancing actions for a program are controlled at the level of

indivisible tasks which are process threads.

We assume that the load balancing algorithms dynamically con-

trol assignment of program tasks tk ,k ∈ 1 . . . |T | to processors

(computing nodes) n,n ∈ 0, 1, . . . , |N | − 1, where T and N are the

sets of all the tasks and the computing nodes, respectively. The

goal is the minimal total program execution time, achieved by task

migration between processors. The load balancing method is based

on a series of steps in which detection and correction of processor

load imbalance is done, Fig. 2. The imbalance detection relies on

some run-time infrastructure which observes the state of proces-

sors in the executive computer system and the execution states of

application programs. Processors (computing nodes) periodically

report their current loads to the load balancing control which mon-

itors the current system load imbalance. When load imbalance is

discovered, processor load correction is launched. For this a multi-

objective EO-GS algorithm (see Section 2.3) is executed to identify

the tasks which need migration and the processors which will be

migration targets. Next, the required physical task migrations are

performed with the return to the load imbalance detection.
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To evaluate the load of the system two indicators are used. The

�rst is the computing power of a node n: Indpower(n), which is the

sum of potential computing powers of all the active cores on the

node. The second is the percentage of the CPU power available

for application threads on the node n: Time%
CPU
(n), periodically es-

timated on computing nodes. The percentage of the CPU power

available for a single thread is computed as a quotient of the time

during which the CPU was allocated to a probe thread against the

time interval of the measurement. Time%
CPU
(n) value is the sum of

the percentages of CPU power available for the number of probe

threads equal to the number of cores on the node.

System load imbalance LI is a boolean de�ned based on the dif-

ference of the CPU availability between the currently most heavily

and the least heavily loaded computing nodes:

LI = max
n=0, ... |N |−1

(Time%CPU(n)) − min
n=0, ... |N |−1

(Time%CPU(n)) ≥ α

(1)

The load imbalance equal true requires a load correction. The value

of α is set using an experimental approach (during experiments we

set it between 25% and 75%).

An application is characterized by two programmer-supplied

parameters, based on the volume of computations and communica-

tions tasks: COM(ts , td ) is a communication metrics between tasks

ts and td , WP(t) is a load weight metrics introduced by a task t .

COM(ts , td ) and WP(t) metrics can provide exact values, e.g. for

well-de�ned tasks sizes and inter-task communication in regular

parallel applications, or only some predictions, e.g. when the exe-

cution time depends on the processed data.

A taskmapping solutionS is represented by a vector µ = (µ1, . . . , µ |T |)

of |T | integers in the interval {0, 1, . . . |N | − 1}. µi = j means that

S maps i–th task ti onto processor j.

3.2 MOEO-GS local and global �tness functions

In this section we will describe de�nitions of the local and global

�tness functions which are used in the proposed MOEO-GS algo-

rithm for processor load balancing. MOEO-GS is a minimization

algorithm, i.e. lower values of global �tness and lower values of

local �tness are considered as better ones.

The �rst objective is connected to the reduction of the compu-

tational load imbalance among executive processors in the system

during a given phase of distributed program execution i.e. de�ned

by the current MOEO-GS solution S .

The global �tness functions Φ(S) for objective 1 (computa-

tional load imbalance) which will be minimized in the MOEO-

GS algorithm:

Φl (S) = imbalance(S) (2)

The function imbalance(S) represents the numerical load imbal-

ance metrics in the solution S . It is equal to 1 when in S there ex-

ists at least one unloaded (empty) computing node, otherwise it is

equal to the normalized average absolute load deviation of tasks in

S , determined in the de�nition below:

imbalance(S) =

{

1 exists at least one unloaded node
D(S )
Dnorm

otherwise

(3)

where:

Dnorm = (|N | − 2) ∗WP +MINB (4)

is a normalization constant, and

D(S) =
∑

n=0, ... |N |−1 |NWP(S,n)/Indpower(n) −WP|,

WP =
∑

t ∈T WP(t)/
∑

n=0, ... |N |−1 Indpower (n),

MINB =
∑

t ∈T WP(t)/minn=0, ... |N |−1 Indpower (n),

NWP(S,n) =
∑

t ∈T :µt=n WP(t) where NWP(S,n) is the total com-

putational load introduced to processorn by all program tasks allo-

cated ton in the solution S , WP is the total relative load introduced

to all processors by all tasks in respect to the computing power sup-

plied by all processors.

The local �tness function for MOEO-GS algorithm with the ob-

jective 1 is designed as follows:

ϕl (t) = γ ∗ load(µt ) + (1 − γ ) ∗ (1 − ldev(t)) (5)

The function load(n) indicates howmuch the load of noden, which

executes t , exceeds the average load of all nodes. It is normalized

versus the heaviest load among all the nodes. ldev(t) represents the

load deviation compared to the average load of all nodes. It is the

absolute value of the di�erence between the load metrics of the

task t and the minimum load on the node, normalized versus the

highest such di�erence for all tasks on the node [6].

The second objective for the MOEO-GS algorithm is the global

EO-GS �tness function Φ(S) for objective 2 (external communi-

cation):

Φc (S) = a�rExtTotal(S) (6)

The function a�rExtTotal(S) represents the impact of the total

external communication between tasks on the quality of a given

mapping S . By “external” we mean the communication between

tasks placed on di�erent nodes. This function is normalized in the

range [0, 1]. In executive systems with homogeneous communica-

tion links it is a quotient of an absolute value of the total external

communication volume and the total communication volume of

all communications (when all tasks are placed on the same node

a�rExtTotal(S) = 0, when tasks are placed in the way that all com-

munication is external a�rExtTotal(S) = 1); in heterogeneous exec-

utive systems equivalent measures of the communication time are

used:

a�rExtTotal(S) = totalExt(S)/COM (7)

where COM =
∑

s,d ∈T COM(s,d) and

totalExt(S) =
∑

s,d ∈T :µs,µd COM(s,d).

The local �tness function for the objective 2 is as follows:

ϕc (t) = 1 − a�r(t) (8)

where the attraction of the task t to its executive computing node

a�r(t) is de�ned as the amount of communication between task t

and other tasks on the same node, normalized versus the maximal

attraction inside the node [6].

The third objective for the MOEO-GS algorithm is concerned

with task migrations induced by the current EO-GS solution S in

terms of the computational load imbalance. The global EO-GS �t-

ness function forobjective 3 (migration) corresponds to the num-

ber of migrations:

Φm(S) = migrationNum(S) (9)

The functionmigrationNum(S) ∈ {0, 1} is a migration number met-

rics. It is equal to 0 when there is no migration, when all tasks have
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to bemigratedmigrationNum(S) = 1, otherwise 0 ≤ migrationNum(S) ≤

1 so that:

migrationNum(S) = |{t ∈ T : µSt , µS∗t }|/|T | (10)

where: S is the currently considered solution and S∗ is the initial

task placement at the start of the algorithm, µSt is the current node

of the task t in the solution S , and µS∗t is the node of the task t in

the initial solution in the algorithm.

We have tested two variants of the MOEO-GS local �tness func-

tion for the migration objective. The �rst variant of the migration

local objective function LA is based on the assessment of the qual-

ity of migrations. In this case, the de�nition of the local �tness

function ϕm (S) is as follows:

ϕm (t)
LA
= migrationT (t) (11)

The function migrationT (t) is a quality metrics of the migration

of a single task of the application. The bigger value of this func-

tion is, the worse is the migration of the task t in respect to its

current node. The term ”worse” migration means the migration

which causes bigger load imbalance in the system:

migrationT (t) = |
NWP(S, µSt )

Indpower(µ
S
t )
−WP|−|

NWP(S∗, µS∗t )

Indpower(µ
S∗
t )
−WP| (12)

where µSt is the current node of the task t in the solution S , and µS∗t
is the node of the task t in the initial solution S∗ in the algorithm.

An alternative version of the local �tness function LB for migra-

tion objectiveϕm (S) is designed to reduce themigration number re-

gardless its in�uence on total processors imbalance (i.e. regardless

their “quality”). Thus, the total number of migrations is reduced

stronger than in the previous LA variant. The LB variant of the

local �tness function for the objective 3 is as follows:

ϕm (t)
LB
=

{

1 when task t was migrated

0 otherwise
(13)

The LB local �tness function forces the migration of already mi-

grated tasks, thus increasing the probability that �nally more tasks

will occupy their initial computing nodes.

4 MOEO-GS ALGORITHM ASSESSMENT

4.1 Experimental setting

The experimental results have been obtained by simulated execu-

tion of application programs in a distributed system. The simula-

tor used was built following the DEVS discrete event system ap-

proach [12]. The model of the simulated execution environment

corresponds to a message-passing, distributed memory multicore

parallel system, with the MPI library for communication.

During experimentswe used a set of 10 synthetic exemplary pro-

grams, which were randomly generated. Their general structures

resembledMPI-based parallel applicationswhich correspond to nu-

merical programs or physical phenomena simulations. The exem-

plary programswere modeled as Temporal FlowGraphs, TFG, [13].

In the TFG model, an application program consists of a set of pro-

gram modules called phases, Fig 3. A phase is composed of parallel

tasks which constitute process threads, and which can communi-

cate with each other. At the boundaries between phases there is a

global exchange of data possibly among all phases of the program.

The number of tasks in an application varied from 64 to 544. The

communication/computation ratio C/E (the quotient of the com-

munication time to the execution time in our experimental envi-

ronment) for applications was in the range [0.05, 0.20].

We distinguish regular and irregular applications. Regular ap-

plications have regular (�xed) tasks’ execution times. In irregular

applications the execution time of tasks depends on the processed

data. Irregular applications exhibit unpredictable execution time

of tasks and the communication scheme. Thus, load imbalance can

occur in computing nodes even when there are no variations in

computing nodes availability. In regular applications load imbal-

ance can appear due to the non–optimized placement of tasks on

processors or when runtime conditions change.

Except for taskmigrations, load balancing actions are performed

at the background of task execution, including computations and

communication.We assume also that task execution times aremuch

longer than execution times of load balancing actions. Task migra-

tions between processors are performed when there is no on-line

communication between relevant processors involved in the mi-

gration. We assume that programs are instrumented before execu-

tion to enable task migration.

4.2 Experimental results

To study the e�ciency of the presented parallel multi-objective al-

gorithms for load balancing, we used as a reference algorithm a

classic EO-GS optimization algorithm with a single objective con-

cerning the computational load of processors (denoted in the re-

sulting graphs as SO-C). We compared speedups and migration

numbers of programs executed with load balancing based on four

parallelMOEO-GS variants and also on the parallel single objective

EOwhich used as the global �tness function a weighted sum of the

three afore-mentioned optimization criteria, both in non-GS and

GS version (SO-WS, SO-WS-GS). Both versions of the MOEO-GS

algorithms: the “LA” version (MO-LA-GS, see equation 11) and the

“LB” version (MO-LB-GS, equation 13) of local migration �tness

were used in the experiments (see Section 3.2). These two versions

of MOEO-GS used Manhattan distance metrics in the �nal utility

function. Additionally, we also used the versions of MOEO-GS in

which the utility function was de�ned using Euclidean distance

metrics /MO-LA-GS(Eucl.) and MO-LB-GS(Eucl.), respectively/.

Figure 3: The general structure of exemplary applications.
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Figure 4: Speedup for di�erent number of nodes for tested

algorithms.

Load-balanced execution of exemplary applications was studied

in simulated systems containing from 2 to 32 homogeneous pro-

cessor nodes. The following parameters for load balancing control

were applied: α = 0.5, τ = 1.5, and λ = 0.14 for EO–GS. Addi-

tionally, the parameters β = 0.5, γ = 0.75, ∆1 = 0.13, ∆2 = 0.17

were used in the weighted sum of the global �tness function of the

single objective EO-GS [4].

During the experiments described, we assumed the number of

iterations for EO and MOEO Niter = 500 and the exchange rate of

solutions between parallel branches every 25 inner iterations. We

used P = 4 parallel branches, thus, the inner loop count is 25, and

the outer count is 5 (4 × 5 × 25 = 500).

The results correspond to averages of 10 runs of each applica-

tion. For each run 4 di�erent methods of initial task placements

(random, round-robin, METIS, packed) were tested. METIS is a

multilevel graph partitioning technique which in our case creates

partitions with evenly distributed computational loads and min-

imal cross-sections. The packed method consists in round-robin

mapping of equal groups of tasks. In total, 40 runs were executed

for each parameter set to produce an averaged result.

Generally, the di�erences between investigated algorithms in-

crease when the number of computing nodes in the simulated sys-

tem increases. The cause of this phenomenon is more demanding

load balancing optimization for larger executive system (i.e. big-

ger possibility of the computing imbalance and harder selection

of migration targets). The speedup of both parallel EO–based al-

gorithms and the MOEO parallel algorithms as a function of the

number of processors is shown in Fig. 4. The presented results are

the average for irregular and regular exemplary applications. For

these applications the parallel speedup obtained bymulti-objective

algorithms is generally greater (not worse or better) than that of a

classical EO. The improvement obtained by the multi-objective ap-

proach is clearly visible in Fig. 5, which shows the relative speedup

for tested algorithms versus single-objective EO. The best result

over 20% is for the “LB” version of the MOEO-GS algorithm (MO-

LB-GS in Fig. 5). It should be stressed that using the utility function

de�ned as Manhattan distance (MO-LA-GS, MO-LB-GS) gives bet-

ter results than Euclidean distance metrics, especially for a bigger

number of processors (see Fig. 6).

Figure 5: Relative speedup for tested algorithms versus

single-objective EO.

Figure 6: Relative speedup of MOEO for di�erent utility

function versus single-objective EO.

Figure 7: The number of task migrations in application exe-

cution.

Since migration costs can be very di�erent, we decided to ap-

proximate the imposed load balancing costs by the number of task

migrations, Fig. 7. The average cost imposed by multi-objective al-

gorithms is substantially lower than the cost introduced by single-

objective approaches. The reduction of themigrations number over

SO-C is in the range of 25%-38% for classic EO using the weighted
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Figure 8: Relative number of task migrations versus single-

objective EO.

sum in the global �tness function (SO-WS, SO-WS-GS), and in the

range of 40%-56% for the multi-objective approach (MO-LA, MO-

LA-GS, MO-LB-GS), Fig. 8. This con�rms advantages of the pro-

posed load balancing multi-objective algorithms.

5 CONCLUSIONS

The paper has presented a parallelized multi-objective approach

based on Extremal Optimization used for processor load balancing

in execution of distributed programs. Additional approach of EO-

GS is embedded in the EO algorithm used in load balancing which

improves its convergence. In themulti-objective EOapproach, three

objectives relevant in processor load balancing for distributed ap-

plications are simultaneously controlled. These objectives are: to-

tal computational load balance in execution of distributed appli-

cations, total volume of external communication between tasks

placed on di�erent processors and the number of task migrations

which �x imbalance of processor loads. The task selection for EO

improvements for the last objective is governed in two ways: by

the decrease of weighted sum of the normalized computational

loads of processors or by task migration history. The proposed al-

gorithmswere assessed by simulation experiments on EO-controlled

execution of macro data �ow graphs of distributed programs. The

experiments have shown that the multi-objective approach added

to the EO algorithms for load balancing has improved the quality

of obtained results. It concerns the obtained application speedup

improvement and the reduction of the migration number. A statis-

tical algorithm assessment using hypothesis testing is foreseen in

an extended version of this paper.
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