
Asynchronous Parallel Cartesian Genetic Programming
Adam Harter

Natural Computation Laboratory
Department of Computer Science
Missouri University of Science and

Technology
Rolla, MO 65401, USA

athb79@mst.edu

Daniel R. Tauritz
Natural Computation Laboratory
Department of Computer Science
Missouri University of Science and

Technology
Rolla, MO 65401, USA
dtauritz@acm.org

William M. Siever
Department of Computer Science and

Engineering
Washington University
St. Louis, MO 63130, USA

bsiever@wustl.edu

ABSTRACT
�e run-time of evolutionary algorithms (EAs) is typically dom-
inated by �tness evaluation. �is is particularly the case when
the genotypes are complex, such as in genetic programming (GP).
Evaluating multiple o�spring in parallel is appropriate in most
types of EAs and can reduce the time incurred by �tness evaluation
proportional to the number of parallel processing units. �e most
naive approach maintains the synchrony of evolution as employed
by the vast majority of EAs, requiring an entire generation to be
evaluated before progressing to the next generation. Heterogeneity
in the evaluation times will degrade the performance, as parallel
processing units will idle until the longest evaluation has completed.
Asynchronous parallel evolution mitigates this bo�leneck and tech-
niques which experience high heterogeneity in evaluation times,
such as Cartesian GP (CGP), are prime candidates for asynchrony.
However, due to CGP’s small population size, asynchrony has a
signi�cant impact on selection pressure and biases evolution to-
wards genotypes with shorter execution times, resulting in poorer
results compared to their synchronous counterparts. �is paper: 1)
provides a quick introduction to CGP and asynchronous parallel
evolution, 2) introduces asynchronous parallel CGP, and 3) shows
empirical results demonstrating the potential for asynchronous
parallel CGP to outperform synchronous parallel CGP.

CCS CONCEPTS
•�eory of computation→ Parallel computing models; Evo-
lutionary algorithms; Genetic programming;

KEYWORDS
Genetic Programming, Asynchronous Parallel Evolution, Cartesian
Genetic Programming, Evolutionary Computing

ACM Reference format:
Adam Harter, Daniel R. Tauritz, andWilliam M. Siever. 2017. Asynchronous
Parallel Cartesian Genetic Programming. In Proceedings of GECCO ’17
Companion, Berlin, Germany, July 15-19, 2017, 5 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3084210

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3084210

1 INTRODUCTION
Cartesian Genetic Programming (CGP) arranges problem-speci�c
operations as function nodes on a two-dimensional grid [7]. Unlike
the genotypes in most forms of GP, these grids remain a static size
and may need to be quite large to encapsulate complex solutions.
Evaluating the �tness of this structure requires that input be passed
to a set of initial nodes that then produces output for other nodes.
Inputs are propagated from one function node to the next through
the grid; however, not all nodes will necessarily be evaluated. �e
number of evaluated nodes in the genotype heavily in�uences the
�tness evaluation time, therefore the variation in these times can
become signi�cant with large grid sizes. Much like most traditional
evolutionary algorithms (EAs), evaluations of individuals are in-
dependent of each other in CGP and can be performed in parallel.
Classic CGP employs the synchronous model common to the vast
majority of EAs, in which all o�spring in a generation are evalu-
ated before survival selection is executed. Upon parallelization, the
variation of evaluation times can cause classic CGP to excessively
idle while waiting for individuals to be evaluated [6, 8]. To combat
this problem, we are proposing an asynchronous model, in which
survival selection is performed for each o�spring individually im-
mediately a�er evaluation is �nished.

�e contributions of this paper are as follows:

• Demonstrate statistical evidence that our proposed asyn-
chronous parallel CGP (APCGP) may converge faster than
synchronous parallel CGP (SPCGP) in regards to wall-time

• Provide analysis of scalability of APCGP with regards to
problem complexity with comparison to SPCGP

2 RELATEDWORK
Durillo et al. have shown empirical evidence supporting the sig-
ni�cant improvement in terms of various quality metrics when
employing asynchronous parallel EA’s (APEAs) rather than syn-
chronous parallel EAs for NSGA-II [3]. �e APEA master process
creates and sends individuals to be evaluated as the slave proces-
sors become idle. In the generational version, the population is
replaced when enough o�spring have been generated. With the
steady-state alternative, the o�spring are considered as each is re-
ceived. �e researchers employed homogeneous populations as the
test cases during experimentation. Bertels and Tauritz performed
similar experiments, evolving SAT solvers asynchronously and
synchronously, with the asynchronous models outperforming the
synchronous ones [1].

APEAs with heterogeneous populations have been found to be
biased toward individuals with shorter evaluation times [2, 6, 9–11].

1820

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Adam Harter, Daniel R. Tauritz, and William M. Siever

�is is a result of the master process receiving those individuals
sooner and more o�en, �ooding the population. �is potentially
reduces the search space that can be reached within a given runtime.
Yagoubi and Schoenauer a�empt to circumvent this with a duration-
based selection on the received o�spring [10]. �is supposed defect
can also be taken advantage of in various situations, one of which
is evolving genetic programs, which must use a mechanism such
as parsimony pressure or must minimize a size-related objective
value to prevent any individual from becoming too large. �e
bias provided by heterogeneous evaluation times can be used to
produce an implicit time pressure; however, in cases with �at �tness
landscapes, individuals tend to converge to both long and short
evaluation times [8].

3 ASYNCHRONOUS PARALLEL CGP
Synchronous CGP, both serial and parallel, were implemented us-
ing the Standard CGP model, as de�ned by Miller [7], the only
di�erence is that SPCGP evaluates all individuals of a generation
simultaneously, while synchronous serial CGP evaluates only one
individual at a time. SPCGP and APCGP both have a master node
that generates new individuals that are later evaluated by slave
nodes. SPCGP waits for all individuals in a generation to be re-
turned, while APCGP acts on each individual as it is returned. In
the case of APCGP, using the (1+ 4) survival strategy advocated by
Miller [7], the returned individual is compared to the existing best.
If the new individual is be�er than or equal to the current best, it
becomes the current best. Following this, a new individual is gener-
ated from the current best via mutation and the process continues
until termination criteria are met. In this particular implementation,
the evolutionary cycle terminates when the best individual has a
�tness that exceeds a user-de�ned threshold. Although APCGP
intuitively seems faster than SPCGP, the method by which APCGP
explores the search space may lead to more evaluations until con-
vergence. As seen in Figure 1, four individuals from the local search
space of the current best individual are evaluated at each generation
in SPCGP. In contrast to this, APCGP performs survival selection
from only two individuals, and if a high-�tness solution has a long
evaluation time, sub-optimal individuals will produce o�spring to
be evaluated while the high-�tness solution is being evaluated. An
example of such an exploration in illustrated by Figure 2.

4 EXPERIMENTATION
4.1 Problem
�e problem chosen was n-bit parity, a classical digital circuit prob-
lem that CGP has been used to solve in the past [4]. �is was chosen
as it has a known solution, allowing termination once correct. Al-
though more computationally complex problems would bene�t
more from parallelization, CGP su�ers from high variation [4, 5],
which becomes more pronounced as the problem complexity in-
creases. �us, to simulate more computationally complex problems
and to reduce the e�ects of overhead due to parallelization, the
�tness evaluation is con�gured to repeat any number of times.

0Generation 0

Generation 1 1

Generation 2

Figure 1: Exploration of search space in Synchronous CGP.
�ebest individual of the parent and its four children is used
for producing the next generation.

0

(a) �e initial state –
Node 0 produces four
children.

0 1

(b) Node 1 returns
and is better than
or equal to Node
0, Node 1 replaces
Node 0 and produces
a child.

0 1

2

(c) Node 2 returns
and is better than
or equal to Node
1, Node 2 replaces
Node 1 and produces
a child.

0 1

2

(d) One of the children from
Node 0 �nishes evaluating.
It is worse than Node 2, so it
is discarded and Node 2 pro-
duces a child.

0 1

2 3

(e) Node 3 returns and is better than
or equal to Node 2. Node 3 replaces
Node 2 and Node 3 produces a child.
Note that one of the children from
Node 0 is still being evaluated.

Figure 2: Exploration of search space in Asynchronous Par-
allel CGP

4.2 Experiment Design
�e experiment was run with the parameters shown in Table 1, as
recommended by Miller [7]. ni , the number of inputs, was equiv-
alent to n for the n-bit parity problem trying to be solved (2 or 3).
�e function set was the bitwise functions {nand, and, nor, or} and
thus the maximum parity of the functions, a, was two. �e over-
head, or the number of times the �tness evaluation was repeated,
was varied between 1 and 400 to investigate performance based on

1821

Asynchronous Parallel Cartesian Genetic Programming GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Parameter Description Value

nc Number of columns 4000
nr Number of rows 1
n0 Number of outputs 1
l Look back level 4000
µ Population size 1
λ O�spring size 4
µr Mutation rate 0.01

Table 1: Parameters used for experimentation

problem complexity. 2-bit and 3-bit parity problems were run using
a serial synchronous model, a parallel synchronous model, and an
asynchronous parallel model. Each of these experiments was run
thirty times. �e parallel synchronous and parallel asynchronous
models used a master/slave model, with one master thread and
four slave threads. �e implementation was done in Python, while
parallel code was achieved using the multiprocess module.

5 RESULTS
As can be seen in Figure 3, asynchronous parallel and synchro-
nous parallel models clearly have be�er run time averages than
synchronous serial equivalent, while being close to each other in
performance. �e �gure also indicates that asynchronous parallel
takes more evaluations than synchronous parallel and synchro-
nous serial, which are nearly identical in the regard. �e statistical
analysis of the results is shown in Table 2, indicating that there is
statistical evidence that asynchronous parallel runs faster than syn-
chronous parallel, while there does not seem to be strong statistical
evidence that the number of evaluations di�er.

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1387 2272 1598 1197
Standard Deviation 1140 1551 1394 740

Equal Variance Assumed? No No

t Stat -2.5182 1.3915
Two-tailed p-value 0.0148 0.1711

Table 2: Statistical analysis of 3-parity results with an over-
head of 200

Using an overhead of 150, shown in Figure 4 with statistical
analysis shown in Table 3, there is not strong statistical evidence
that the runtime or the number of evaluations di�er. When the
overhead is lowered to 100, shown in Figure 5 with statistical anal-
ysis shown in Table 4, there is no statistical evidence that there is a

Figure 3: Results for 3-parity with an overhead of 200 (lower
is better)

Figure 4: Results for 3-parity with an overhead of 150 (lower
is better)

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1291 1843 1567 1107
Standard Deviation 1299 1404 1646 893

Equal Variance Assumed? No No

t Stat -1.5810 1.3445
Two-tailed p-value 0.1193 0.1856

Table 3: Statistical analysis of 3-parity results with an over-
head of 150

Figure 5: Results for 3-parity with an overhead of 100 (lower
is better)

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1180 1217 2493 1224
Standard Deviation 1060 899 4113 959

Equal Variance Assumed? No No

t Stat -0.1439 1.6453
Two-tailed p-value 0.8861 0.1097

Table 4: Statistical analysis of 3-parity results with an over-
head of 100

di�erence between the convergence time of APCGP and SPCGP,
while there is still not strong statistical evidence that the number
of evaluations di�er.

As demonstrated in Figure 6, the synchronous serial model be-
gins with a high evaluations/second rating, which quickly drops
as the overhead increases. �ese results can be compared to those
in Figure 7, asynchronous parallel and synchronous parallel both
begin with lower evaluations/second, but the rate of decrease is
substantially smaller in asynchronous parallel and synchronous
parallel than in synchronous serial. Furthermore, as demonstrated
by the statistical analysis with an overhead of 175, shown in Table 6,

1822

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Adam Harter, Daniel R. Tauritz, and William M. Siever

(a) Overhead ranging from 1 to
400

(b) Overhead ranging from 75 to
400

Figure 6: Evaluations per second of synchronous serial with
a variety of overheads for 2-bit parity (higher is better)

Figure 7: Evaluations per second of asynchronous parallel
and synchronous parallel with a variety of overheads for 2-
bit parity (higher is better)

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 79 228 187 261
Standard Deviation 62 172 167 238

Equal Variance Assumed? No No

t Stat -4.4609 -1.4025
Two-tailed p-value 0.0001 0.1667

Table 5: Statistical analysis of 2-parity results with an over-
head of 400

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 57 156 241 393
Standard Deviation 46 176 193 440

Equal Variance Assumed? No No

t Stat -2.9725 -1.7320
Two-tailed p-value 0.0055 0.0910

Table 6: Statistical analysis of 2-parity results with an over-
head of 175

there is statistical evidence that APCGP is faster than SPCGP. �is
evidence is only strengthened as the overhead increases, demon-
strated by the statistical analysis with an overhead of 400, showing
strong statistic evidence that ASCGP is faster than SPCGP.

6 CONCLUSION
�is paper has presented statistical evidence showing that APCGP
outperforms SPCGP for computationally expensive tasks, while
both outperform synchronous serial CGP; we hypothesize that the
former is caused by greater heterogeneity in evaluation times. If
the task is computationally inexpensive, then APCGP and SPCGP
perform similarly, but both are inferior to serial CGP. �is provides
evidence that parallelization should only be performed if the task is
computationally expensive, and when performed, an asynchronous
model should be preferred.

7 FUTUREWORK
More advanced versions of CGP exist which exhibit superior perfor-
mance to standard CGP on various important problems; applying
the asynchronous model to them may further increase their perfor-
mance. Although CGP showed improved performance, there are
many forms of GP; these forms may not show the same increase in
performance when using the asynchronous model. Additionally,
the asynchronous model could be applied to di�erent types of EAs,
such as co-evolutionary EAs or multi-objective EAs. Although this
study used CGP’s traditional (1 + 4) population model for parallel
synchronous, changing the number of o�spring could potentially
result in further improvements over synchronous serial. In order to
validate the hypothesis stated in the conclusion, that more compu-
tationally expensive tasks cause greater heterogeneity in evaluation
times, the range of evaluation times should be diligently recorded
and closely analyzed.

REFERENCES
[1] Bertels, A.R., Tauritz, D.R.: Why Asynchronous Parallel Evolution is the Future

of Hyper-heuristics: A CDCL SAT Solver Case Study. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion. pp.
1359–1365. GECCO ’16 Companion, ACM, New York, NY, USA (2016), h�p:
//doi.acm.org/10.1145/2908961.2931729

[2] Churchill, A.W., Husbands, P., Philippides, A.: Tool Sequence Optimization using
Synchronous and Asynchronous Parallel Multi-Objective Evolutionary Algo-
rithms with Heterogeneous Evaluations. In: 2013 IEEE Congress on Evolutionary
Computation (CEC). pp. 2924–2931. IEEE (2013)

[3] Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A Study of Master-Slave Approaches
to Parallelize NSGA-II. In: IEEE International Symposium on Parallel and Dis-
tributed Processing. pp. 1–8. IEEE (2008)

[4] Goldman, B.W., Punch, W.F.: Analysis of Cartesian Genetic Programming’s
Evolutionary Mechanisms. IEEE Transactions on Evolutionary Computation
19(3), 359–373 (Jun 2015)

[5] Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying Cartesian Genetic Pro-
gramming. In: Proceedings of the 9th Annual Conference on Genetic and Evo-
lutionary Computation. pp. 1021–1028. GECCO ’07, ACM, New York, NY, USA
(2007), h�p://doi.acm.org/10.1145/1276958.1277161

[6] Martin, M.A., Bertels, A.R., Tauritz, D.R.: Asynchronous Parallel Evolutionary
Algorithms: Leveraging Heterogeneous Fitness Evaluation Times for Scalability
and Elitist Parsimony Pressure. In: Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation.
pp. 1429–1430. GECCO Companion ’15, ACM, New York, NY, USA (Jul 2015),
h�p://doi.acm.org/10.1145/2739482.2764718

[7] Miller, J.: Cartesian Genetic Programming. Natural Computing Series, Springer-
Verlag, Heidelberg, Berlin (2000)

[8] Sco�, E.O., De Jong, K.A.: Evaluation-Time Bias in Asynchronous Evolutionary
Algorithms. In: Proceedings of the Companion Publication of the 2015 on Genetic
and Evolutionary Computation Conference. pp. 1209–1212. ACM, New York, NY,
USA (Jul 2015)

1823

http://doi.acm.org/10.1145/2908961.2931729
http://doi.acm.org/10.1145/2908961.2931729
http://doi.acm.org/10.1145/1276958.1277161
http://doi.acm.org/10.1145/2739482.2764718

Asynchronous Parallel Cartesian Genetic Programming GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

[9] Sco�, E.O., De Jong, K.A.: Evaluation-Time Bias in �asi-Generational and
Steady-State Asynchronous Evolutionary Algorithms. In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016. pp. 845–852. GECCO
’16, ACM, New York, NY, USA (2016), h�p://doi.acm.org/10.1145/2908812.2908934

[10] Yagoubi, M., Schoenauer, M.: Asynchronous Master/Slave MOEAs and Het-
erogeneous Evaluation Costs. In: Proceedings of the Fourteenth International
Conference on Genetic and Evolutionary Computation Conference. pp. 1007–
1014. ACM (2012)

[11] Yagoubi, M., �obois, L., Schoenauer, M.: Asynchronous Evolutionary Multi-
Objective Algorithms with Heterogeneous Evaluation Costs. In: 2011 IEEE Con-
gress on Evolutionary Computation (CEC). pp. 21–28. IEEE (2011)

1824

http://doi.acm.org/10.1145/2908812.2908934

	Abstract
	1 Introduction
	2 Related Work
	3 Asynchronous Parallel CGP
	4 Experimentation
	4.1 Problem
	4.2 Experiment Design

	5 Results
	6 Conclusion
	7 Future Work
	References

