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ABSTRACT
�is is an extended abstract for an invited keynote presentation at
the 7th Workshop on Evolutionary Computation for the Automated
Design of Algorithms (ECADA). We �rst outline the motivation,
primary mechanisms, and prior results of the evolutionary com-
putation technique called “autoconstructive evolution.” We then
brie�y describe a collection of recent enhancements to the tech-
nique, alongwith a few preliminary results of ongoing experimental
work.
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1 AUTOCONSTRUCTIVE EVOLUTION
Autoconstructive evolution is an evolutionary computation tech-
nique that has been a topic of intermi�ent research and develop-
ment since the year 2000 [1, 2, 11, 12, 16, 17].

Autoconstructive evolution systems can be considered to be
instances of genetic programming systems, insofar as they are em-
ployed to solve computational problems for which the solutions are
executable computer programs, and insofar as they �nd solutions
by processing populations of executable computer programs that
undergo cycles of variation and selection [9].

In contrast to other genetic programming systems, however, in
an autoconstructive evolution system the evolving programs are
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responsible not only for solving a speci�ed computational prob-
lem, but also for producing their own children in the evolutionary
process. �is allows the methods of reproduction and variation
themselves to vary and to evolve. �e way that it does so is roughly
analogous to the ways in which reproductive methods (considered
broadly to include everything from karyotype to mate selection be-
haviors) evolve in biological systems; the reproductive methods are
embodied in the organisms themselves, and may evolve along with
other features of the organisms through variation and selection.

One motivation for research on autoconstructive evolution is
the speculation that it may have the potential to solve problems
beyond the reach of ordinary genetic programming systems, be-
cause evolved methods of reproduction and variation may be more
e�ective than those designed by hand. However, the task faced by
an autoconstructive evolution system is clearly more di�cult than
that faced by an ordinary genetic programming system, because it
must “invent” and re�ne its reproductive mechanisms while also
solving its target computational problem.

Prior research on autoconstructive evolution has explored a va-
riety of options for the aspects of reproduction and variation that
are under the control of the evolving programs, the ways in which
child-production is integrated into the genetic programming gener-
ational loop, and the representations and instruction sets available
to programs for the construction of children. Some of this prior
work was summarized in our paper for the 2016 Workshop on Evo-
lutionary Computation for the Automated Design of Algorithms,
which also introduced the AutoDoG system on which our current
research is based [16].

2 AUTODOG
�e AutoDoG system (named for “Autoconstructive Diversi�cation
of Genomes”) is implemented on the foundation of the PushGP
genetic programming system, which has been used for a variety of
purposes and projects unrelated to autoconstructive evolution (for
example, [3, 4, 6, 7, 15]).

AutoDoG is simply PushGP, which implements a standard gen-
erational genetic programming loop, run in a con�guration that
uses only the single autoconstruction genetic operator in place
of the collection of hand-wri�en mutation and recombination oper-
ators that are normally employed. �e autoconstruction genetic
operator takes two parent genomes as inputs and produces a child
genome by executing the program encoded by one of the parent
genomes, with both parent genomes available as data from which
the child genome can be constructed. Details are available in [16],
but the following are a few of the other key features of AutoDoG
relative to previous autoconstructive evolution systems:
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• �e use of a diversity-maintaining parent selection algo-
rithm (lexicase selection [7, 13]), which may help to pre-
vent the collapse of population diversity as methods for
reproduction and variation evolve.

• �e representation of both parents and children using lin-
ear (Plush) genomes for structured (Push) programs [5],
which permits the use of relatively simple primitive in-
structions for generating and varying children.

• Explicit diversi�cation constraints that prevent the survival
of children that do not produce diverse children themselves,
and are therefore unlikely to contribute to the evolution
of either problem-solving or reproductive functionality.

�e 2016 workshop paper demonstrated that AutoDoG could use
autoconstruction to solve a non-trivial problem, the Replace Space
with Newline problem from our so�ware synthesis benchmark
suite [6]. It also presented evidence that the reproductive methods
used by individuals in AutoDoG populations evolve in signi�cant
ways as runs proceed.

3 RECENT DEVELOPMENTS
Since the 2016 workshop, AutoDoG has been enhanced in several
ways, including:

• Several new diversi�cation tests have been developed. Pre-
viously, a child was permi�ed to survive if and only if
two of its own children (generated only for the purpose
of this test and then discarded) di�ered from their parent
by di�erent, non-zero amounts. Among the new tests that
have been developed are tests that require di�erences more
speci�cally in program sizes and instruction sets, and tests
that require variation over more than one generation of
descendants.

• �e domain-speci�c language for genome manipulation,
which programs use to generate and vary the genomes
of their children, has been enriched. Among the new ele-
ments are high-level instructions that implement compo-
nents of the hand-wri�en genetic operators that are used
in non-autoconstructive runs of PushGP, such as uniform
mutation and alternation [14]. Evolving programs may use
these genetic operator components, with evolved param-
eters, in evolved combinations, and in conjunction with
other genome-manipulation instructions, to construct their
children.

• A mechanism has been added for the application of “en-
tropy,” in the form of random gene deletion, to the results
of autoconstructive production of children. Because we
want variation methods to be encoded in individuals, so
that they may evolve, we do not implement exogenous
mutations upon which the evolutionary process may come
to rely. Exogenous deletions, however, are permissible, be-
cause they cannot introduce new genetic material. Initial
experiments suggest that the presence of entropy favors
individuals that repair or at least add material to their
children, presumably because these behaviors o�set the
random deletions caused by entropy. �is may facilitate
the emergence of meaningful variation.

• New mechanisms have been added to favor individuals
with relativelymore diversifying methods for reproduction
and variation. AutoDoG’s diversi�cation constraints are
binary: children that meet them are allowed to survive,
while those that do not are not. �e new mechanisms
provide more discrimination among those that do survive,
using stochastic screening procedures that are applied to
the population before each parent selection event. With
one method, for example, a degree of parental similarity
is randomly chosen for each parent selection event, and
individuals that are more similar to their parents than the
chosen degree are excluded from consideration. Another
method screens on the basis not of the similarity of parent
and child, but on the similarity of the parent’s and child’s
reproductive behaviors. Yet another mechanism screens
on the basis of genealogical “age,” using a method that we
call “AMPS” for “Age-Mediated Parent Selection.” AMPS
builds on the ideas of ALPS [8] and Age-Pareto Optimiza-
tion [10], providing a mechanism that can be added with
li�le e�ort to standard (parent-selection-based) genetic
programming systems. When used in conjunction with
autoconstructive evolution, AMPS can provide selection
in favor of more-diversifying reproductive methods, by
incorporating child/parent di�erences into the function
that is used to compute the ages of children from those of
their parents.

4 PRELIMINARY RESULTS
Experiments with the methods described above, alone and in vari-
ous combinations, are ongoing. As of this writing, we do not have
su�cient data to draw �rm conclusions about the e�cacy of any
of these techniques, or about the long-term prospects for autocon-
structive evolution using the ideas outlined here. However, we do
have preliminary results that exhibit some points of interest.

For example, we have found that autoconstructive evolution
can sometimes achieve high success rates even within the com-
putational limits that we normally use for non-autoconstructive
genetic programming, expressed in terms of population sizes and
generation limits. �is was a surprise. We have been motivated by
the prospect that autoconstructive evolution could solve problems
not solvable by non-autoconstructive genetic programming, but
we expected it to require signi�cantly greater resources to solve
problems that could also be solved non-autoconstructively, since
it must invent and re�ne its own methods for reproduction and
variation even as it works to solve the target problem.

Prior work accorded with this expectation. We had previously
documented non-autoconstructive genetic programming solving
the Replace Space with Newlines problem in roughly 50% of runs,
with a population size of 1000 and within 300 generations [6]. In
[16] we reported that AutoDoG had also solved this problem, but
that it had done so only in 5–10% of our runs, even though we
allowed runs to continue for more generations.

Using some of the new developments described above, however,
we are now able to �nd solutions to the Replace SpacewithNewlines
problem using autoconstructive evolution at least as frequently as
we previously could with non-autoconstructive evolution, within
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the same resource constraints. For example, 75% of a recent suite
of 20 AutoDoG runs with population size 1000 succeeded within
300 generations.

We have also recently conducted 20 runs of AutoDoG on the
Mirror Image so�ware synthesis problem [6], and achieved 100%
success, with 16 runs (80%) �nding solutions in fewer than 300
generations. �e highest success rate within 300 generations for
non-autoconstructive evolution on this problem documented in [6]
was 78%.

�e numbers of runs described here are too low to claim with
any certainty that autoconstructive evolution performs be�er than
non-autoconstructive genetic programming, on problems that both
can solve, using the same computational resources. But these re-
sults do suggest that the performance of autoconstructive evo-
lution is at least sometimes in the same ballpark as that of non-
autoconstructive genetic programming, which is notable because
of the extra work that an autoconstructive evolution system must
do to bootstrap the evolutionary process.

Recent experiments have also provided what may be the �rst
evidence that autoconstructive evolution can indeed extend the
reach of genetic programming to solve problems that it could not
otherwise solve. No previous run of non-autoconstructive genetic
programming, or of any other program synthesis method of which
we are aware, has solved the String Di�erences problem described
in [6]. However, we have recently found a (single) solution to this
problem with AutoDoG, using some of the enhancements described
above.

�ese results are preliminary and largely anecdotal, and we cau-
tion the reader against concluding anything de�nitive about the
power or potential of autoconstructive evolution on their basis
alone. �ey do, however, serve to illustrate the kinds experiments
that we are conducting, and they provide a preview of the more
complete results that we plan to present at the 7thWorkshop on Evo-
lutionary Computation for the Automated Design of Algorithms.
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