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ABSTRACT
A common aim across evolutionary search is to skillfully navi-
gate complex search spaces, which requires search algorithms that
exploit search space structure. �is paper focuses on evolution-
ary robotics (ER) in particular, wherein controllers for robots are
evolved to produce complex behavior. One productive approach for
probing search space structure is to analyze properties of �tness
landscapes; however, this paper argues that ER may require a fresh
perspective for landscape analysis, because ER o�en goes beyond
the black-box se�ing, i.e. evaluations provide useful information
about how robots behave, beyond scalar performance heuristics.
Indeed, some ER algorithms explicitly exploit such behavioral infor-
mation, e.g. to follow gradients of behavioral novelty rather than
to climb gradients of increasing performance. �us well-motivated
behavior-aware metrics may aid probing search-space structure in
ER. In particular, this paper argues that behavioral conceptions of
deception, evolvability, and rarity may help to understand ER land-
scapes, and seeks to quantify and explore them within a common
ER benchmark task. To help this investigation, an expressive but
limited encoding is designed, such that the behavior of all possible
individuals in the domain can be precomputed. �e result is an
e�cient platform for experimentation that facilitates (1) probing
exact quanti�cations of deception, evolvability, and rarity in the
chosen domain, and (2) the ability to e�ciently drive search through
idealistic ground-truth measures. �e results help develop intu-
itions and suggest possible new ER algorithms. �e hope is that the
extensible open-source framework enables quick experimentation
and idea generation, aiding brainstorming of new search algorithms
and measures.
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1 INTRODUCTION
Broadly across evolutionary computation (EC) it is important to nav-
igate complex search spaces to �nd individuals with rare properties.
Most commonly, evolutionary algorithms (EAs) search for a single
optimal solution, but other paradigms include accumulating points
spanning trade-o�s among competing objectives (multiobjective
optimization) or collecting a diverse set of individuals that instan-
tiate a wide variety of interesting and innovative behaviors (e.g.
as in open-ended evolution or computational creativity). Across
nearly all such use cases, a primary challenge is to discover what
combination of search algorithm and search heuristic will be ef-
fective. Important to this challenge is understanding properties of
the experimental domain and of the genetic encoding, which when
combined instantiate high-dimensional landscapes of �tness; or
similarly, an expansive network of phenotypic behaviors, connected
through genotypic mutations. Discovering important properties of
landscapes, such as deception [1–3] or ruggedness [4] can catalyze
creating new algorithms which be�er exploit their properties.

�is paper focuses on a particular sub�eld of EC called evolution-
ary robotics (ER), wherein controllers for robots are evolved, o�en
with the objective of producing complex and functional behavior.
While landscape analysis has been e�ectively applied across EC as
a whole, ER may provide unique opportunities for analyzing search
space structure [5]. One opportunity in ER is that experimenters
can o�en exploit information beyond only scalar �tness values
concerning the behavior of a robot acting in a domain [6]. Such
behavioral information (e.g. a description of what the robot did)
enables new degrees of freedom for analyzing landscapes or net-
works of behaviors, which may well-inform ER algorithm design. A
further opportunity is that within ER interest is is growing around
algorithms that accumulate a diversity of interesting or high-quality
solutions [1, 7, 8], as opposed to seeking one optimal one. �is dis-
tinct focus suggests that a specialized set of search space features
may be important to understanding how to e�ectively design such
diversity-seeking algorithms.

In particular, this paper investigates the �tness and behavioral
landscapes of a popular benchmark task for novelty search, an algo-
rithm o�en applied in ER and arti�cial life, that explicitly searches
for novel behaviors, instead of for an optimal solution. Interest-
ingly, in deceptive problems, searching for behavioral diversity
alone o�en more e�ectively leads to evolving solutions than does
searching directly for high-quality solutions [1–3]. Hypotheses
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about what types of problems and domains are aided by novelty
search, and how novelty search functions in practice, o�en involve
appeals to properties like deception [1], evolvability [9, 10], and
behavioral rarity [11], although rarely together in the same work.
One contribution of this paper is to analyze all of these properties
in a common computationally-tractable framework (which is open-
sourced with this paper), which can be �exibly extended to include
additional ER domains.

�e approach is to precompute the behaviors of all individu-
als (e.g. not just their �tnesses) in a large-but-tractable ER search
space, evaluated within the benchmark simulator. By evaluating all
individuals once and storing the results, evaluation becomes com-
putationally trivial (e.g. a look-up table), and it becomes possible
to calculate ground-truth quantities, such as the absolute potential
of a particular encoding for evolvability, or how well a particular
�tness measure correlates with actual genomic distance to a goal
behavior. �e hope is not to solve this particular benchmark domain
more e�ectively, but instead to dive into interesting properties of
representative ER search spaces, and also to create an experimental
playground that can be useful for quickly generating and testing
ideas, and building experimenter intuition.

In particular, this paper pairs a maze navigation simulator with
a discretized neuroevolution encoding, and caches the results of
evaluating all individuals in a database, enabling cheap future eval-
uation. �e resulting search space contains over 30 million arti�cial
neural networks (ANNs), and shares important qualitative char-
acteristics with the canonical domain from which it is inspired.
�is enumerated search space allows e�cient calculation of in-
tractable (and novel) generalizations of evolvability and the exact
distribution of speci�c behaviors (e.g. solutions) within the space.
Enough runs to enable statistical signi�cance can be conducted in
minutes on one computer (which would otherwise take days or
sometimes weeks of computation), enabling quick iteration. Fur-
thermore, highly expensive algorithms (e.g. using evolvability itself
as a search heuristic), or impractical ones (e.g. driving search by
how objectively rare a behavior is within the space), can be easily
implemented and e�ciently run, to probe intuitions in a tractable
way.

Results a�rm that the properties of evolvability, deception, and
rarity are important features of this particular ER search space, and
new directions for possible algorithms are suggested. �e conclu-
sion is that landscapes in ER may have intriguing and relatively
unexplored features, and that creating metrics and analyses cra�ed
to ER may result in insights that may guide development of new
algorithms.

2 BACKGROUND
�e next section �rst reviews existing methods for probing the
structure of search spaces, then reviews the novelty search algo-
rithm that provides a se�ing for testing costly hypotheses. Finally,
the concept of evolvability is reviewed, which acts as a concrete
example of an expensive measure that precomputed domains can
render tractable.

2.1 Exploring Search Space Structure
Because understanding search space structure is fundamental to
designing e�ective EC algorithms, there are a range of formal and

informal techniques to quantify or explore it. For example, one line
of research aims to investigate what properties of search spaces
produce unfavorable landscapes for EAs [4, 12, 13], like deception
[13] or ruggedness [4]. �e idea is that if one suspects a problem
of interest has such properties, that understanding can guide algo-
rithmic design or focus future research. Most o�en, mathematical
models or toy domains are used to make analysis tractable, such
as the popular NK model of �tness landscape ruggedness [4], or
constructed bitwise models such as the royal road function [14] or
the trap function [13].

Less formal methods include problem-speci�c human analysis, or
iterative sequences of experimentation, analysis, and tweaking. For
example, researchers o�en embed their knowledge of a domain into
the encoding (e.g. locomoting biped agents might more easily realize
stable cyclic gaits if oscillatory pa�erns are provided as a basic
element [15]), or adjust the �tness function through iterations of
experiments followed by changes aimed at remedying problematic
dynamics [16]. Interactive evolution, or combinations of interactive
evolution and mechanical evaluation can also yield insights into
search spaces by enabling humans to more directly probe them
[17, 18].

�e method proposed here a�empts to enable leveraging the ben-
e�ts both of formal and informal methods more easily. In particular,
it aims to create domains that are tractable to measure ground-truth
formal properties, such as ruggedness or deception, while main-
taining computational e�ciency and relative groundedness to real
problems, thereby enabling fast and �exible idea-generation and
investigation.

2.2 Novelty Search
Novelty search is inspired by natural evolution’s drive towards
novelty, and rewards novel behavior directly instead of progress to-
wards a �xed objective [1]. Tracking novelty requires li�le change
to any evolutionary algorithm aside from replacing the objective-
based �tness function with a novelty metric. Such a metric measures
how di�erent an individual is from other individuals, thereby cre-
ating a constant pressure to produce something new. �e key idea
is that instead of rewarding performance on an objective, novelty
search rewards diverging from prior behaviors. �erefore, novelty
in behavior needs to be measured.

�e novelty metric characterizes how far away the new indi-
vidual is from the rest of the population and its predecessors in
behavior space, i.e. the space of unique behaviors. A good metric
should thus compute the sparseness at any point in the behavior
space. Areas with denser clusters of visited points are less novel
and therefore rewarded less.

A simple measure of sparseness at a point is the average distance
to the k-nearest neighbors of that point. Intuitively, if the average
distance to a given point’s nearest neighbors is large then it is in a
sparse area; if the average distance is small, it is in a dense region.
�e sparseness ρ at point x is given by

ρ (x ) =
1
k

k∑
i=0

dist(x , µi ), (1)

where µi is the ith-nearest neighbor of x with respect to the distance
metric dist, which is a domain-dependent measure of behavioral
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di�erence between two individuals in the search space. Candidates
from more sparse regions of the behavior space thus receive higher
novelty scores.

With �xed probability an individual is entered into the perma-
nent archive that characterizes the distribution of prior solutions in
behavior space. �e current generation plus the archive constitute
a comprehensive sample of where the search has been and where
it currently is; that way, by a�empting to maximize the novelty
metric, the gradient of search is simply towards what is new, with
no other explicit objective. However, even without an explicit objec-
tive, novelty search is still driven by meaningful information; that
is, behaving in a novel way o�en requires learning the structure of
the domain.

Once objective-based �tness is replaced with novelty, the under-
lying EA operates as usual, selecting the most novel individuals to
reproduce. Over generations, the population spreads out across the
space of possible behaviors.

While novelty search imposes no direct pressure to achieve any
particular objective, it has been successfully applied in a range
of domains [1–3]. Note that the experiments here apply novelty
search to evolve arti�cial neural networks (ANNs) that control
the behavior of a simulated robot, as is common in previous such
experiments [1, 9]. In particular, the connection weights of a �xed-
topology ANN are evolved; the setup is later described in more
detail.

2.3 Evolvability in ER
Natural evolution has produced �exible, highly evolvable represen-
tations that facilitate its proli�c discovery of diverse organisms;
yet this �uid evolvability is o�en lacking in EC and ER [9]. �us
metrics for exploring evolvability, or methods to directly search for
it, are important, because they can help isolate how it is distributed
in the search space, which might reveal algorithmic or encoding
changes that encourage it.

While there is no overall consensus on evolvability’s de�nition
or its measurement [20], one common conception is to consider
evolvability as an organism’s phenotypic variability [21–24]; that is,
the capacity of an organism’s lineage to generate novel phenotypic
traits captures some signi�cant part of what enables some lineages
to adapt more quickly than others, although there exist alterna-
tive de�nitions that focus on di�erent or overlapping aspects of
evolvability [20]. �is conception (of evolvability as phenotypic
variability) aligns well with the motivation of novelty search, and
is adopted here to help explore hypotheses about ER search spaces,
in a way similar to previous related studies [9, 25].

�e evolvability measure most o�en used in prior novelty search
studies estimates an individual’s evolutionary potential by counting
the number of unique behaviors exhibited by samples of o�spring
within its immediate mutational neighborhood [9, 10, 25]. �at is,
the measure a�empts to gauge an individual’s phenotypic connec-
tivity. However, such measures are expensive because they depend
on evaluating the behaviors instantiated by many perturbations of
an individual’s genome [10]. As a result, calculating evolvability
exactly, or considering it over longer evolutionary timescales, is
rarely considered. However, the approach here allows tractable ex-
plorations with evolvability metrics by exploiting precomputation.

3 PRECOMPUTED DOMAINS
�e main idea is to precompute the simulated behavior of all possi-
ble genotypes in full-�edged domains, leading to evaluation as a
lookup table (e.g. as in some experiments in [25]). �us many runs
can be quickly completed on consumer hardware, enabling more
easily testing hypotheses that depend on an otherwise exorbitant
number of runs. Furthermore, if all genotypes are enumerated, it
then becomes possible to compute the ground-truth distance from
an individual to the objective of search, or to any other possible
behavior of interest. �us some previously impractical hypotheses
become amenable to direct investigation. Note that this idea of
precomputed domains is not unique to this paper, the contribution
is more speci�c to its application of studying ER landscapes from a
particular angle, and of the uniqueness of the resulting analysis.

3.1 Design Constraints
Precomputing the behavior of all possible genotypes is not gener-
ally possible, because most search spaces are impractically large,
i.e. o�en e�ectively in�nite because of continuous parameters, or
mutations that iteratively extend the length of the genotype. As a
result, the approach taken here is to construct a search space that
stretches tractability towards reasonable limits of computation and
memory. In particular, one explicit design consideration is that
the precomputed search space should �t in RAM on a relatively
modern computer, to maximize computational e�ciency; note that
the discussion section discusses how the search space can be further
stretched by relaxing this in-memory constraint.

�us it is important to examine how such considerations limit
the number of parameters that can realistically be evolved in a
precomputed domain. Assuming a maximum-length discrete rep-
resentation in which each of G genes has A possible alleles, the
resulting search space will contain AG distinct individuals. Because
this quantity is exponential in G, there are strong limits on how
many genes can be added. �ere is a signi�cant cost to added al-
leles as well, as the search space grows with them relative to the
Gth power. As a result, an important design consideration when
adopting an encoding with continuous parameters (e.g. the neural
network encoding adopted in this paper’s experiments) is how few
parameters are necessary, and how granularly those parameters
can be discretized without rendering the search space impassable
or uninteresting

3.2 Implementation
�e released implementation of precomputed domains consists
of: (1) separate in-memory look-up tables for each precalculated
property, e.g. rarity, evolvability, and �tness; (2) a mechanism for
indexing into such tables given an individual, i.e. mapping a particu-
lar genome into a scalar index; (3) a mechanism for enumerating the
mutational neighbors of an individual, i.e. what is the connectivity
of the search space; and (4) a metric of distance between genomes.
�ese rough tools provide an interface for implementing landscape
analyses over the entire search space, and for implementing search
algorithms driven to explore within the space.

Given the same notation as in the previous section, a genome is
a list of G genes with integer values 0 through A − 1. We can treat
this list as aA-ary number to calculate its scalar index. For example,
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given two genes with three alleles, the genome 21 interpreted as a
base three number yields an index of 7 in decimal. �e mutation
operator adopted here perturbs one allele of the genome to any
of its A values. �e resulting mutuational neighborhood of an
individual thus contains all genomes di�erent in one allele, and
leads to a genomic distance metric that counts in how many alleles
two genomes di�er.

3.3 Precalculating Landscape Properties
�e next sections motivate the particular properties of interest (e.g.
deception, rarity, and evolvability) and describe how they are are
e�ciently calculated.

3.3.1 Calculating Deception. Deception is the idea that some-
times following the gradient of the heuristic guiding search can
actively lead search away from a solution. It provides an important
motivation for diversity-driven algorithms in ER; the main idea
is that as problems grow more ambitious, the heuristic of goal-
oriented �tness becomes increasingly deceptive [26]. Diversity-
driven algorithms can avoid this pathology by exploiting behavioral
information. �us measuring deception is useful to validate that
domains in which novelty search succeeds are indeed deceptive.

�e quantitative measure of deception adopted here, called �t-
ness distance correlation (FDC; [12]), calculates the correlation
between the �tness of an individual and the minimal genomic dis-
tance from it to a solution. In other words, an ideal �tness function
would incentivize moving in the genotypic space towards a solution,
e.g. an easy non-deceptive problem has a large and negative FDC
(because distance to solution should decrease with higher �tness).
While for full-�edged domains it is generally intractable to calculate
the minimal distance to a solution, precalculated domains provide
complete knowledge of the search space, enabling identifying all
solutions, and measuring shortest-path distances from all individ-
uals to solutions. We calculate such shortest-path distance using
an iterative depth-�rst search, which starts from the set of solution
individuals (which can be identi�ed through a simple query of the
precomputed database).

3.3.2 Calculating Evolvability. Evolvability is a desirable prop-
erty for ER, because greater evolvability means a greater range of
variation for evolution to select from. Previous work has argued that
diversity-driven algorithms encourage greater evolvability than tra-
ditional goal-oriented EAs [9, 10]. �us it is useful to probe whether
this is robust across a range of di�erent evolvability metrics.

As reviewed in the background, one popular evolvability es-
timate in ER is to measure how many distinct behaviors occur
among a random sample of an individual�s o�spring [9, 10, 25].
To calculate this quantity exactly (i.e. using the entire mutational
neighborhood and not a random sample), behaviors are �rst dis-
cretized, by superimposing a regular grid over the space of possible
behaviors, where all behaviors contained by a grid square are con-
sidered the same. All individuals in the search space can then be
mapped into such distinct behavior bins. Next, for each distinct
behavior, from each individual the minimal-distance to another in-
dividual demonstrating that behavior is calculated, using the same
iterative depth-�rst search procedure above. �us the products are
look-up tables that store the minimum number of mutations needed
for any given individual to demonstrate any given behavior.

�is approach enables easily calculating generalizations of the
1-step (e.g. the mutational neighborhood considering 1 mutation)
evolvability measure used for e�ciency reasons. E.g. k-step evolv-
ability is calculated by querying how many behaviors are within
k mutations of a given individual. Intuitively, the larger the k , the
longer the time-scale across which evolvability is considered. Fi-
nally, the same tables enable calculating a highly idealized metric
of evolvability, everywhere evolvability: the average distance to
everywhere, i.e. how many mutations are required on average to
reach any behavior, which is a novel contribution of this paper.

3.3.3 Calculating Rarity. Behavioral rarity, i.e. the proportion of
genotypes in the search space that yield a particular behavior when
evaluated, is also an intriguing property in ER. �e motivation is
that rarity is concept closely adjacent to behavioral novelty, i.e. the
reward scheme in novelty search. Note that behavioral novelty is
rarity relative to what has been previously observed in a particular
search. One hypothesis is that novelty search may approximately
follow many divergent gradients of increasing rarity, exhausting
one line when rarity gradients lead to a local optimum, staying until
novelty is exhausted. For this reason, understanding the structure
of rare behaviors may be useful to understanding or improving
diversity-driven algorithms like novelty search. While previous
work has a�empted to estimate behavioral rarity [11], here we
can calculate it exactly through simple queries of the precomputed
database. �at is, once behaviors are discretized as above, the counts
of each distinct behavior can be easily summed.

4 PRECOMPUTED MAZE NAVIGATION
�is paper adopts a common maze-navigation domain benchmark
that is o�en used to evaluate diversity-driven search algorithms
such as novelty search, behavioral diversity, and MAP-ELITES
[1, 7, 10, 19].

4.1 Domain Details
In the maze navigation domain, a simulated wheeled robot (�gure
1) is embedded in a two-dimensional maze (�gure 2). �e objective
for the robot is to traverse the maze and arrive at a �xed goal
point. �us, the objective-based �tness function f of an individual
for objective-based search is f = −dд , where dд is the distance
of the robot to the goal at the end of the evaluation. For novelty
search evolution instead requires a characterization of behavior.
Because ending location is a critical factor in navigating mazes,
the behavior of a robot is de�ned as its location in the maze at
the end of the evaluation [1, 7]. For measuring evolvability, each
grid square within a regular grid (20x20) superimposed over all
ending locations acts a discrete niche. O�spring are mapped into
the niche that contains the behavior they exhibit when evaluated.
�e precomputed domain mirrors the canonical setup introduced
in Lehman and Stanley [1].

�is domain’s canonical setup uses the NEAT neuroevolution
encoding [27], which features continuous-valued evolvable weights
and mutations that add new neurons and connections to the ANN.
Because such features manifest a search space containing e�ectively
in�nite individuals, NEAT is incompatible with precomputing the
behavior of all individuals. �us a discretized and bounded ANN
encoding is adopted in the experiments here. In particular, weights
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Rangefinders Bias

(a) Neural Network

Rangefinder
Sensors

Heading

(b) Sensors

Figure 1: AMaze-Navigating Robot. �e arti�cial neural net-
work that controls themaze navigating robot is shown in (a).
�e layout of the sensors is shown in (b). Both arrows out-
side of the robot’s body in (b) are range�nder sensors that
indicates the distance to the closest obstacle in that direc-
tion. �e solid arrow indicates the robot’s heading. Note
that the sensors of the robot are reduced from the setup in
Lehman and Stanley [1] to limit the size of the search space,
and that the neural network has a �xed topology, instead of
an evolved topology as when using the NEAT algorithm.

(a) Hard Maze
(a) Medium Maze

Figure 2: Maze Navigation Maps. In both maps, the larger
circle represents the starting position of the robot and the
smaller circle represents the goal. To solve the task, the
robot must navigate around obstacles, which requires the
evolution of non-trivial behavior. �e (a) medium map has
a series of cul-de-sacs that instantiate local optima with
objective-based �tness, while the (b) hard map has a highly
deceptive cul-de-sac that requires signi�cant further navi-
gation before a robot can achieve a higher objective-based
�tness score.

take on the discrete values of −1, 0, and 1, and a feed-forward
two-layer fully-connected topology with two hidden neurons is
employed (�gure 1a). Further, the agent’s sensors are reduced to a
minimal set, to restrict the size of the search space, which grows ex-
ponentially in the number of connections. In particular, the agent’s
pie-slice radar sensors are removed, and the number of range-�nder
sensors is reduced from six to two, as shown in �gure 1. �is re-
duction of sensor information increases the di�culty of navigation,
as the agent can no longer discern directly in which direction the
goal lies; to partially o�set such di�culty, the evaluation time in
each maze is extended from 400 timesteps to 600.

�e resulting encoding consists of 16 connections that can each
take on 3 distinct weight values, realizing a search space with 316

individuals (34 million). Each of these individuals were separately
evaluated in both mazes, and their behavior (the point within the
maze they ended upon) and whether they solved the maze, was

recorded in a binary data �le. Evaluation was conducted on a single
multi-core laptop, and took approximately one hour to complete
when parallelized over eight threads. Because �tness in this case
can be calculated as a byproduct from an individual’s behavior,
there was no need to separately store such information.

4.2 Validating the Precomputed Domain
In contrast to the original NEAT setup, the precomputed encoding
is discretized, motivating validation experiments to probe whether
qualitative similarity is preserved. To do so, in similar experiments
to the domain’s introduction [1], 100 runs each of objective-based
search, novelty search, and random search were run for 250 gener-
ations with a population size of 500 individuals. �e EA is a simple
generational model that uses tournament selection, protects the
champion with elitism, and has no crossover or diversity mainte-
nance. Mutation is performed on 80% of o�spring, and replaces a
the weight of a randomly chosen connection with a value chosen
at random. Due to evaluation as a look-up table, these 600 runs
(100 for each method across two mazes) took under 12 minutes on a
modern laptop using a single core; all other experiments described
in this paper required similarly trivial runtime.

�e results are shown in �gure 3 for both mazes. Novelty search
signi�cantly out-performs the other methods on both mazes, while
objective-based search performs worse than random search in both
domains (Fisher’s exact test; p < 0.05). A divergence from results
in the canonical (i.e. non-precomputed) domain from [1] is that,
there, objective-driven �tness search o�en does solve the medium
maze, although its performance is worse than novelty search, as
it is also here. Follow-up experiments in the precomputed domain
revealed that the precomputed encoding rendered the initial cul-
de-sac signi�cantly more deceptive than in the canonical setup;
one cause may be a lack of diversity maintenance in the EA, al-
though preliminary experiments that reduced selection pressure or
rewarded genotypic diversity did not outperform random search.
A reasonable hypothesis is that removing pie-slice sensors entirely
and reducing the number of range�nders makes the problem more
di�cult in general. �alitative behavior of evolved solutions is
roughly consistent with previous results. From a high-level how-
ever, the results are broadly consistent: the medium maze is easier
for all methods than is the hard maze, and novelty search outper-
forms the competing methods in both domains. In this way, the
results of evolution in the precomputed encoding are coherent and
share signi�cant qualitative traits with the original setup, implying
that it can serve as a useful, although not perfect, proxy.

5 RESULTS
�e next sections present analyses of �tness and behavioral land-
scapes, as well as novel search heuristics driven by precalculated
quantities.

5.1 Exact�anti�cation of Deception,
Evolvability, and Rarity

Interestingly, solutions to either maze are very rare within the
search space; only 320 solutions to the medium maze, and 59 solu-
tions to the hard maze exist within the 34 million total individuals
in each maze. How objective-based �tness and distance to solution
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(a) Medium Maze (b) Hard Maze

Figure 3: Precomputed Maze Navigation Validation. �e
number of successful runs out of 100 is shown in (a) the pre-
computed medium maze domain, and (b) the precomputed
hard maze domain. Consistent with previous results, nov-
elty search performs the best in both domains, and the per-
formance of both methods decreases when evaluated in the
hard maze relative to the medium maze.

(a) Medium Maze (b) Hard Maze

Figure 4: Fitness Distance Correlation in Precomputed
Mazes. How objective-based �tness values relate to true ge-
nomic distance to a solution is shown for the (a) Medium
Maze and (b) Hard Maze. Fitness scores are discretized into
��y uniformly-size intervals; the mean �tness value is plot-
ted as a solid line, and the surrounding red �ll encompasses
95% of the distribution within each interval. �e conclusion
is that objective-based �tness o�ers only weak signal in the
medium maze, and is actively deceptive in the hard maze
until a navigator is already very close to the goal.

correlate in both mazes is shown in �gure 4. FDC (the chosen mea-
sure of deception), calculated as the Pearson correlation coe�cient
between �tness score and solution distance, is slightly negative
in the medium maze (r = −0.001), indicating a near-lack of corre-
lation between �tness and distance to goal, while the hard maze
has a larger positive correlation (r = 0.043), validating the natural
intuition that the hard maze is the more deceptive map. Results are
very similar when using Kendall’s Tau, a correlation metric that
does not assume linearity.

One intuitive expectation of evolvability is that increasingly
evolvable individuals will on average tend to be closer to solutions
than less evolvable ones. Figure 5 probes this intuition graphically,
across a range of evolvability metrics, showing how increasing
evolvability correlates with distance to the solution in the medium
maze (results are similar in the hard maze), while �gure 6 demon-
strates the intuitive notion that in both mazes longer time-scale
evolvability highly correlates with being near to a solution.

Intuitively, behavioral rarity would be expected to be higher for
behaviors requiring more complicated navigation. Indeed, �gure

7 validates this intuition by showing the distribution of behavior
density in both mazes.

5.2 Driving and Instrumenting Search through
Ideal Measures

One advantage of precomputed domains is that expensive and ideal
measures can also be precomputed, and then can e�ciently either
instrument search (e.g. does novelty search encourage everywhere
evolvability?) or drive search (e.g. does directly optimizing behav-
ioral rarity itself instantiate an e�ective search algorithm?). While
many possible permutations of measures and drives could be ex-
plored within this framework (indeed, this diversity of experimental
possibilities is a keystone of the value that it provides), this section
shows only a few examples to highlight its potential.

First, search algorithms are explored that are driven by the mea-
sures described in the previous section. Behavioral rarity, exact
k-step evolvability, and everywhere evolvability are calculated for
each genotype, and are then used as incentives to drive the same
simple evolutionary algorithm applied to validate the precomputed
domain. Driving search by directly incentivizing measures of evolv-
ability are instantiations of evolvability search [10], while driving
search through rarity has some relation to work on quantifying
impressiveness [11].

How successful such methods are at evolving solutions is shown
in �gure 8; re�ecting its ideal characteristic and strong correla-
tion with solution distance, searching for everywhere evolvability
solves both tasks quickly, as does optimizing 4-step evolvability. As
evolvability is considered within smaller mutational neighborhoods,
its success rate declines, suggesting that e�cient approximations
of longer-range evolvability could increase the potential of the
evolvability search method, which maximizes an estimate of 1-step
evolvability. Rarity search is less consistently successful, although
it outperforms objective-based search and is competitive with nov-
elty search in the hard maze; preliminary follow-up experiments
(and instrumentation results discussed next) support the intuitive
hypothesis that rarity search can converge to behaviors that are
exceedingly rare yet do not solve the task.

A �nal experimental exploration instruments search algorithms
by two of the ideal metrics, i.e. behavioral rarity and everywhere
evolvability. �e idea is to explore how quickly di�erent search
algorithms discover rare behaviors, and to probe whether previous
results showing that novelty search encourages evolvability (as
measured by heuristic estimates of 1-step evolvability) [9, 19] gen-
eralize to an ideal measure of evolvability. Fi�y runs are conducted
for each approach. Figure 9a instruments search with rarity, and
echoes the result of Lehman and Stanley [9] where novelty search
quickly discovers rare behavior; it also suggests support for the
hypothesis that there is a strong conceptual connection between
novelty and rarity (given that both algorithms demonstrate similar
performance by this metric). Figure 9b instruments search with
everywhere evolvability, and supports the case that novelty search
may encourage holistic evolvability, i.e. increased evolvability is
not speci�c to the 1-step heuristic measures used in the past.
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(a) 1-step (b) 2-step (b) 4-step (b) Everywhere

Figure 5: Generalized Evolvability Measures in the Medium Maze. �e relationship between solution distance and (a) 1-step,
(b) 2-step, (c) 4-step, and (d) everywhere evolvability is shown for the mediummaze. �e solid line indicates the mean solution
distance, and the red �ll spans the top and bottom quartiles. �e conclusion is that across all evolvability measures, increasing
evolvability decreases distance to a solution.

(a) Medium Maze (b) Hard Maze

Figure 6: Correlation Coe�cients between Evolvability and
Solution Distance. �e negation of the Pearson correlation
coe�cient between evolvability measures and solution dis-
tance is shown for the (a) Medium Maze and (b) Hard Maze
(e.g. higher means that increased evolvability is associated
with being genotypically nearer to a solution). �e Evo-k la-
bel indicates k-step evolvability, while Evo-All indicates Ev-
erywhere evolvability. All measures demonstrate relatively
strong correlation, and in general correlation increases with
the size of the mutational neighborhood considered. �e
conclusion is that considering evolvability over longer time-
scales provides stronger signal about an individual’s poten-
tial.

(a) Medium Maze (b) Hard Maze

Figure 7: Rarity of Behaviors in theMaze Domain. How rare
behaviors are in the enumerated search space is shown for
the (a) Medium Maze and (b) Hard Maze. �e coloration of
a point indicates how many individuals instantiate that be-
havior. �e scale is logarithmic, i.e. 12 indicates e12, or ap-
proximately 160, 000 individuals. �ere are 34 million indi-
viduals in total. �e conclusion is that behaviors requiring
more complex functionality tend to be rarer.

(a) Medium Maze (b) Hard Maze

Figure 8: Driving Search through Ideal Measures. �e num-
ber of successful runs out of 100 is shown for variations
of evolvability search and rarity search in the (a) Medium
Maze and (b) HardMaze. Longer-term evolvabilitymeasures
(k ≥ 3 and Everywhere evolvability) are never statistically
outperformed, but interestingly, rarity search performs as
well as novelty search in the Hard Maze (Fisher’s exact test).
�e conclusion is that optimizing or encouraging longer-
term notions of evolvability may be useful, and that rarity
search may be an interesting algorithm for further study.

6 DISCUSSION
�e results show the promise of precomputed domains to investi-
gate properties of ER landscapes and to explore costly hypotheses.
For example, calculating ideal evolvability metrics such as the av-
erage distance to everywhere can reveal interesting properties of
search spaces, and can aid researchers in a�empts to �nd tractable
approximations of them, and to investigate how well common
search algorithms align with such metrics. It also enables explor-
ing compelling (if unrealistic) best-case scenarios, such as whether
directly incentivizing multi-step evolvability would indeed lead
to e�ective search, which might motivate trying to adjust current
algorithms such that they somehow be�er-align with the hard-to-
compute metric (e.g. perhaps MCTS-like roll-outs [28] of mutated
genotypes can provide approximate estimates of multi-step evolv-
ability).

Additionally, having a true measure of how far a given individ-
ual is to a goal behavior enables direct ground-truth observation
of deception, i.e. when increasing �tness demonstrably moves a
population further away in the search space from any solution
individuals. In this way, having the true connectivity of the space
allows for a deeper understanding of how well the assumptions of
ER algorithms hold up in practice. For example, the experiments
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(a) Rarity (b) Everywhere Evolvability

Figure 9: Instrumenting Search through Ideal Measures. In-
strumentation of evolution over generations by (a) behav-
ioral rarity (lower is more rare), and (b) everywhere evolv-
ability (higher means more evolvable), is shown for ex-
periments in the Hard Maze. In both plots, Rnd is ran-
dom search, Nov is novelty search, Evo-k indicates evolvabil-
ity search with k-step evolvability, Evo-All indicates every-
where evolvability, and Rar indicates rarity search. Both in-
strumentations record the score of the most rare (e.g. lowest
occurrence) or most evolvable individual in the population.
�e solid lines indicate themean value across the 50 indepen-
dent runs, while the �lled-in areas include the lowest and
highest quartiles. �e conclusion is that seeking novelty is
qualitatively connected to seeking rarity, and that novelty
search encourages everywhere evolvability.

with rarity search hint at the potential importance of rarity gradi-
ents for novelty search, and at a potentially interesting algorithm
(e.g. driving search through a direct estimate of behavioral rarity).
Precomputed domains could easily be adapted for multiobjective
optimization or quality diversity algorithms [29], or to investigate
the importance of population-level evolvability [30] (the focus in
this paper was on individual-level evolvability).

�e current implementation is open-source and the precomputed
database for the maze domain is available for experimentation
(h�ps://github.com/jal278/precomputed er). Future work aims to
release other domains, e.g. a version of biped locomotion simulation
that has previously been explored with NEAT [1], to investigate
the generality of the results presented here.

7 CONCLUSIONS
�is paper applied precomputed domains as a means to explore
�tness and behavioral landscapes in ER. By limiting the encoding
in a well-motivated way and precomputing all individuals, the
bene�t is ground-truth and extremely fast runs. �e conclusion
is that precomputed domains provide an interesting experimental
playground for developing intuitions and testing hypotheses about
complex search spaces, especially in areas such as diversity-driven
search and ER, where evaluation is expensive, and the �eld is young
enough that the space of possible search algorithms likely remains
relatively unexplored.
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