Comparing Hyper-heuristics with Blackboard Systems

Kevin Graham
University of Stirling
kgr@cs.stir.ac.uk

ABSTRACT

This paper aims to draw a comparison between the traditional
view of hyper-heuristics and a lesser known type of multi-agent
system known as a blackboard system. Both approaches share
many similarities in both implementation and philosophy but also
have several important differences in terms of characteristics and
approach, such as a difference in control scheme. To investigate
the consequences of the perceived differences, both approaches
are decomposed into their constituent parts and compared with a
focus on the perceived strengths and weaknesses of adopting one
methodology over the other.

CCS CONCEPTS

«Computing methodologies — Search methodologies; Multi-
agent systems;

KEYWORDS
hyper-heuristics, blackboard systems

ACM Reference format:

Kevin Graham and Leslie Smith. 2017. Comparing Hyper-heuristics with
Blackboard Systems. In Proceedings of GECCO ’17 Companion, Berlin, Ger-
many, July 15-19, 2017, 5 pages.

DOI: http://dx.doi.org/10.1145/3067695.3082055

1 INTRODUCTION

Hyper-heuristic techniques have become a successful methodology
for the combination of existing heuristic techniques into a single
framework, allowing each to apply its various strengths towards
searching the space of possible solutions to a given problem. Hyper-
heuristics have gained a strong community of researchers since
its introduction by Cowling et al. in [7]. A far less recent type of
system, a multi-agent system initially developed for speech recog-
nition, has slowly been regaining momentum as a general approach
to problem solving after a decline in further research occurring in
the 1990s. On the surface, both approaches appear to share many
similarities, such as; the separation of domain-knowledge into a
well-defined set of ‘active entities’ and the use of a single, glob-
ally accessible workspace on which solution objects and related
information reside, etc. There are also several differences, some
superficial, and others not so.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07...$15.00

DOI: http://dx.doi.org/10.1145/3067695.3082055

1141

Leslie Smith
University of Stirling
Ls.smith@cs.stir.ac.uk

In [12], the authors have stated the need for new hyper-heuristic
techniques that are capable of making better use of richer forms of
domain knowledge - a characteristic that is exemplified in black-
board systems. It is hoped that through the comparison of the
various differences drawn between these two types of system, that
other possible benefits in using components and concepts from one
system as part of the other can be uncovered and discussed.

2 BACKGROUND
2.1 Hyper-heuristics

As opposed to metaheuristics that search within the space of solu-
tions to a given problem, hyper-heuristics are a high-level method-
ology that search within a space of lower-level heuristics - it is these
heuristics that then search a problems solution-space. According
to Burke et al. [3], the term hyper-heuristic was first coined in
by Cowling et al. in a 2001 conference paper [7] which was then
further developed for scheduling problems in operation research.
These publications described hyper-heuristics as high-level tech-
niques that when given an appropriate set of heuristics and a target
problem instance, can select and execute an appropriate heuristic
from the set at each decision point [3]. However, Burke et al. [4]
define hyper-heuristics more generally as, “... a search method or
learning mechanism for selecting or generating heuristics to solve
computational search problems”.

From this standpoint, hyper-heuristic techniques can be seen to
fall into one of 2 main categories; (i) selective hyper-heuristics, and
(ii) generative hyper-heuristics. Selective hyper-heuristics, simply
select from a set of pre-implemented heuristics - these heuristics
can be further delineated as constructive or perturbative depending
on whether a heuristic constructs a solution from candidate partial-
solutions or perturbs elements of a complete solution to generate a
new candidate. On the other hand, generative hyper-heuristics use
techniques for generating new heuristics by combining components
of previously decomposed existing heuristics [4].

In terms of structure, a basic hyper-heuristic can be thought of
being comprised of 3 main components: The Hyper-heuristic layer,
the problem layer and the set of low-level heuristics to apply within
the problem layer. In more complex hyper-heuristics, this structure
can also include a feedback layer that encapsulates various forms
of online or offline learning. This structure can be seen in Fig. 1
- as derived from [13] - where {i, j, k} represents a 3-tuple vector,
interpreted in the problem layer as: apply heuristic i to the solution
Jj from the list of solutions and store the resulting solution Si in
the list at index k. The label f(s;) represents the fitness of the new
solution s [13].

2.1.1 Hyper-heuristic layer
The hyper-heuristic layer is responsible for the storage and organ-
isation of all required domain-independent knowledge, such as: the
number of heuristics in the heuristic set, the use of one objective

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Hyper-heuristic
(High-level Strategy)

Decide which heuristic € {0, ... ,n} to
apply to which solution j, and where to
store it in list of solutions k&

Accept or reject solution 53 according
to objective function f{’s;)

Gjik) Domain Barrier / Interface

®Heunstlc 1
Set
@ ' Problem Domain
.

Jtsy)

& Problem Representation
¢ Problem Instances

* Objective function f{s;)
Solution List

...

Figure 1: Basic structure of a hyper-heuristic set-up [13]

function over another, the distance between two solutions etc. [2].
The hyper-heuristic layer possesses no knowledge of the problem
domain, meaning that a hyper-heuristic can tackle new problems
by simply replacing the heuristic set and objective function [2].

2.1.2 Domain Barrier
The domain barrier defines an interface between the hyper-heuristic
layer and the supplied set of heuristics. The barrier represents the
fact that the hyper-heuristic layer should maintain no knowledge
of the domain in question and should only be aware of the set
of low-level heuristics that can be used against a given problem
instance [2].

2.1.3 Problem Domain Layer

The problem domain in a hyper-heuristic system can be viewed as
the workspace on which solutions are placed or modified collabo-
ratively by the supplied set of heuristics in order to solve a given
problem instance. This layer also represents the storage area for
all knowledge pertaining to the domain, including but not limited
to: problem representation, problem instances, list of solutions and
the objective function or functions [13].

2.1.4 Heuristic Set

The set of domain specific heuristic maintained in the problem
layer can be thought of as 2 distinct subsets: those that build full
solutions piece-wise from partial solutions - referred to as construc-
tive heuristics - and those that modify existing complete solutions
in order to generate new complete solutions - perturbative heuris-
tics. As such, the set of heuristics can be considered as the ‘active
agents’ in a hyper-heuristic that create new solution objects within
the problem layer.

Depending on the hyper-heuristic approach used, selective vs.
generative, heuristics exhibit varying levels of mutual indepen-
dence. In a purely selective scheme, heuristics have the most inde-
pendence from other heuristics as they maintain their own internal
state and are self contained entities that do not require the assis-
tance of other heuristics in making changes on the problem layer.

1142

K. Graham & L. Smith

On the other hand, in a generative hyper-heuristic, decomposed
heuristic components are no longer self contained in the sense that
they can no longer produce any useful work without first being
combined with other heuristic components. In terms of system
independence, all heuristics tend to be driven entirely from the
point of view of the hyper-heuristic layer - only becoming active
as the result of a direct call to execute from the hyper-heuristic
layer. As will be discussed in section 4.2.1, this style of controlling
a systems active agents is at odds with the control philosophy of
blackboard systems.

2.2 Blackboard Systems

Blackboard systems are a type of multi-agent problem solving sys-
tem arising from the ideas presented as part of the Hearsay-II speech
understanding system [8]. In the years since Hearsay-II, blackboard
systems have been used successfully to solve a variety of complex
and under-specified problems for which the solution strategy is not
well defined.

The blackboard model of problem solving derived from Hearsay-
1I is comprised of 3 primary components, namely: a blackboard
data-structure, knowledge sources (agents) and a main control shell
(often referred to as the control component).

Ablackboard system maintains a collection of knowledge sources
and a globally accessible user-defined ‘blackboard’ data structure
which contains all information pertaining to the state of the search
process as well as other types of information that may help to
guide the search process. Knowledge sources communicate solely
through the addition or modification of ‘blackboard objects’ on the
blackboard - in doing so, other knowledge sources can be guided
to contribute to the solution in progress. Fig.2 shows the basic
structure of a blackboard system as derived from the Hearsay-II
system.

2.2.1 The Blackboard

The blackboard is a user-defined data structure that holds the
state of problem solving as well as other information useful in
guiding the search process. As shown in Fig.2, the blackboard is
often delineated into a number of levels known as the abstraction
hierarchy, where each level contains the objects and information
pertaining to different levels of problem analysis. Given that the
solution to a large problem may involve many blackboard objects,
the blackboard structure also provides an efficient means of locating
and retrieving information on the blackboard as related objects can
be grouped together on the same level.

2.2.2 Knowledge Sources

Knowledge sources (or KSs) represent the domain knowledge of
a system and are the entities which create or make changes to
blackboard objects. Each KS consists of a condition-action pairing
where the KS is considered ‘triggered’ based on an event on the
blackboard satisfying its condition part allowing it then to execute
its action part involving the creation or modification of one or
more objects on the blackboard. KSs are independent entities in the
sense that each KS does not require the assistance from any other
KS in making its contribution, further, the internal representation,
state and implementation details are unavailable to other KSs [6].
This independence of knowledge and representation highlights a

Comparing Hyper-heuristics with Blackboard Systems

Blackboard Data Structure

activation .
Activations

Control Shell

Figure 2: Basic Components of a Hearsay-II Style Black-
board System - derived from Corkill in [6]

strength of the blackboard model - that heterogeneous operators
are able to co-exist and collaborate together on a problem within a
blackboard system.

2.2.3 The Control Shell

The control shell, or control component as it’s sometimes known,
is responsible for organising the flow of problem solving processes
and computational resources by allowing KSs to respond oppor-
tunistically to blackboard events but controlling when each KS can
execute its action part on the basis of the state of the blackboard
and/or immediate focus-of-attention [6]. The control shell must be
able to carry out this responsibility without possessing any of the
diverse knowledge contained within the set of KSs.

As a common control scheme, the control shell can collect and
prioritise the events from a currently executing KS which it then
uses to trigger the condition parts of other KSs. These triggered
KSs are then ranked and the most appropriate KS based on the
triggering events priority is allowed to execute [6].

3 PROPERTIES OF BLACKBOARD SYSTEMS

The following paragraphs describe several of the more desirable
defining properties of blackboard systems, that combine to produce
powerful and flexible problem solving systems.

Modularity. The loose-coupling between the knowledge sources
and the control in a blackboard system means that new control
strategies and knowledge sources can be added to the system, even
during runtime, without the need to modify the representation
of domain knowledge or the internal implementation of existing
components [9].

Interoperability of Operators (KSs) and Solution Represen-
tations. Blackboard systems are built on the principle of syntactic
interoperability, which is defined as the ability of multiple systems
or sub-systems to communicate and exchange information through
the use of a pre-determined format defined at design time. This
syntactic interoperability is facilitated through the use of a stan-
dardised format for the objects on the blackboard. Without KSs
being required to understand the internal mechanics of every other
KS in the system, they are able to collaborate with others in building
a shared solution representation [9].

-/ N/ AV4 \
2 pecung | K% L
KS i — N
A KS; Y Y ke
/ ;{ -\ YA\ A\)
Best KS Set
) IS s et
blackboard
events
Triggered
new K5 KS

1143

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Persistence of Blackboard Objects. In contrast to traditional
hyper-heuristic approaches, objects and partial solutions placed on
the blackboard at any point during runtime remain there until the
system terminates. Even when objects are modified or new solu-
tions or partial solutions are built from existing ones, a copy of the
original object(s) remain. This is facilitated by the way knowledge
sources typically build solutions on the blackboard - where new
solutions are constructed by forming links between other solution
objects on the blackboard, often from different abstraction levels,
leaving the linked objects intact and still allowing them to be fur-
ther linked to other new objects at any point during the systems
execution. The consequence of this is that solution objects found
to be of little interest during the beginning stages of the search
process can become useful and subsequently exploited as the search
progresses.

Support for the Dynamic Introduction of Knowledge. When
new and relevant sources of knowledge become available during
runtime, such as machine learning processes on the state of the
search trajectory that may take time and resources to compute -
these can be ‘hot-plugged’ into the system via the introduction of
new blackboard objects subsequently triggering KSs that can make
use of this new information [9].

Distributed Blackboard Systems. As KSs in a blackboard sys-
tem are not limited in terms of their heterogeneity, each can consist
of an entire system or sub-system that may even be running of
separate hardware, including both local and remote.

Support for Concurrency. The traditional blackboard system
supports a form of pseudo-concurrency, in the sense that KSs ac-
tions are interleaved as the control shell prioritises their potential
contribution against the current search focus. Although it is in-
deed true that the blackboard model does not disallow the notion
of implementing true concurrency, other researchers have been
studying the use of parallel blackboard systems [5] ! - by exploiting
the distributed nature of the model.

Multi-level Search. The blackboard model facilitates support
for multi-level search through the delineation of the blackboard into
a number of levels. Many problems exist that can be broken up into
sub-problems that may be solved individually to arrive at a complete
solution - the Travelling Salesman Problem (TSP) being one obvious
example. Booch et al. in [1] describe a blackboard system developed
to solve a relatively trivial cryptanalysis problem, where a collection
of KSs have expertise at different abstraction levels representative
of the sub-problems to be solved - specifically KSs with expertise
at the letter substitution level, the word substitution level and at
the level of sentence structure [9].

Supports Injection of Rich Domain Knowledge. As stated by
Ozcan et al. in [12], there is currently a need for new hyper-heuristic
approaches that can operate on wider, more enriched sources of
domain knowledge. This idea is reiterated in [11] which also pro-
vides two examples of hyper-heuristic systems which can make use
of arbitrary domain knowledge, namely the blackboard system of
Swan et al [13] and the multi-agent system by Martin et al [10]. In

!Even since the publication of this paper, the parallelisation of blackboard systems
still remains an under-researched topic

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

conjunction with the support for the dynamic introduction of new
knowledge and the fact that blackboard systems are well suited
to the application of this knowledge, blackboard systems also ex-
emplify representational flexibility - in that the blackboard model
places no restriction to the type and scale of the information that
can be represented in the blackboard data structure. 2

4 BLACKBOARD SYSTEMS VS.
HYPER-HEURISTICS

Despite being developed decades apart, blackboard systems and
hyper-heuristics share many similarities but also have several dif-
ferences. Presented here is a discussion of several of these simi-
larities, beginning with some of the various similarities between
approaches.

4.1 Similarities

Similarities between the two types of system include: the use of
a high-level control strategy, domain knowledge separated into a
set of heuristics/KSs, use of a single, globally accessible workspace
and the ability to inject online and offline feedback into the search
process.

4.2 Differences

Many of the differences between these two systems are cosmetic,
such as the use of different terminology for what can essentially be
considered as the same thing e.g, heuristics vs. KSs, the problem
level vs. the blackboard data structure - however a couple of dif-
ferences exist that not only show a difference of approach but may
also highlight potential benefits of one system over the other.

4.2.1 Difference of Control
Where hyper-heuristics maintain direct control of its active enti-

ties, including when they are called, where they should be applied
and where the result of any computation should be placed. Black-
board systems, on the other hand, allow their active entities (KSs)
to react to different situations on the blackboard data structure at
any time and simply prioritise their potential contributions based
on the immediate search strategy and focus of attention employed.

Metaphorically, one can imagine a situation where in the one
hand a group of experts are told what to do, where to do it and
when to do it from a manager who dictates his or her own ideas in
building a solution to a problem - with good to nearly incomplete
knowledge of the abilities of the experts and when is the most op-
portune time to apply them to the problem. Conversely, a different
manager with the same group of experts decides instead to chair
the problem solving process - allowing experts to indicate their
interest in contributing to the problem at any point but allowing
only the most appropriate contribution at any given time to be
posted. The experts who lost out on the chance to contribute in one
given problem solving iteration can have the opportunity at a later
time to apply their contribution should it still be valid.

These metaphorical situations highlight several benefits or dis-
advantages for the use of these different control philosophies.

2While this is true, it is also important in a blackboard system to ensure that all infor-
mation placed on the blackboard can be mutually understood by all KS by enforcing a
shared representation. This requirement does not necessarily have to limit the richness
of domain knowledge - only the format in which it is posted to the blackboard

1144

K. Graham & L. Smith

Since our first manager, representing the hyper-heuristic level, is
able to effectively direct the experts to solve a problem in this way -
it is clear that the manager is either making use of a general strategy
that he or she is applying or that the manager is maintaining a
concise body knowledge about the abilities of each expert. 3 In the
latter situation - the manager is maintaining concise knowledge,
our manager with all of his/her expert knowledge is useful in only a
handful of situations where the use of this particular set of experts
is to be expected - if a new expert is added, the manager will need
time to adapt to and learn this new source of knowledge. On the
other hand, if the former is adopted - as is the case with most
hyper-heuristics - the chosen strategy, being derived solely from
the managers perspective, will likely not be able to exploit all the
particular benefits of applying the experts to the problem at crucial
points in the process - resulting in final solutions, which although
may be considered as ‘good’ on average, could have been make
better with the injection of more domain knowledge. There are
certainly strengths and drawbacks from adopting any one position,
but there may be benefits in combining the best from both worlds.

A possible starting point to this end may be found by consider-
ing our second metaphorical manager - representing the control
methodology of the control shell in blackboard systems. By allow-
ing the experts to guide the process of solving a given problem,
each with more perspective on how and when it can be applied
effectively, the manager can remain separated from the domain
knowledge - as with our hyper-heuristic manager - but still have
the benefits of increased domain perspective based on control data
about what parts of the problem the experts are showing an interest
in. In practice, this would mean that the heuristic KSs within a
blackboard system would be largely in control of when they are
applied and to what task or focus in the search they are to be
employed e.g. exploration and exploitation. Although this type
of separation between a hyper-heuristic layer and its lower-level
heuristics is present in some hyper-heuristic systems, e.g., adap-
tive hyper-heuristics where heuristics are able to adjust their own
internalised model of the search process, a blackboard systems
knowledge sources, in addition to supporting this kind of adap-
tion, do not require a pre-existing and detailed high-level control
scheme e.g., ‘apply heuristic x for 10 iterations, then, apply heuristic
y for 20 iterations...etc.’, but instead each knowledge source simply
makes itself known to the control shell which then prioritises them
based on what contributions appear to be relevant given the cur-
rent search focus e.g., exploration vs. exploitation or a focus on
one particular partial solution that appears interesting. Without a
pre-existing high-level control scheme, except from a simple sched-
uling scheme®, some generality in the control shell can be gained
between application domains.

From a practical standpoint, separation between knowledge and
control is often a desirable trait in any system - a trait both types
of system share to varying degrees - not only in terms of reusabil-
ity but also in reducing the complexity of the resulting system.
However, like the blackboard control shell, having related items
of knowledge encapsulated together and applied to the problem

31t is arguable whether or not a human manager can manage all the relevant knowledge
about the expertise of everyone else, although in this paper the latter is assumed.
4Which can actually be a simple as adopting a simple scheme like FIFO, shortest-job-
first or oldest first

Comparing Hyper-heuristics with Blackboard Systems

reactively in the presence of changes to the search trajectory re-
lieves the burden on the developer of designing a robust search
strategy that incorporates the abilities of each heuristic - likely with
incomplete knowledge of how best to search the space of solutions.
To clarify, heuristics in a hyper-heuristic system often encapsulate
some domain knowledge about the problem being solved, such as
what a solution to the problem would look like, whether there are
constraints on solutions and some, like tabu search, have some
awareness of the search trajectory, however, many other hyper-
heuristics make some of this domain knowledge available in the
hyper layer meaning that this layer cannot always be transferred
from one problem to another. This is less of a problem for the black-
board control shell, that contains almost no domain knowledge -
only knowledge of the representations to expect from knowledge
sources as part of registering to contribute to a solution. It is worth
noting however that it is not yet clear whether the use of one
control scheme over the other is useful in terms of performance
and quality of solutions - only that there are differences in control
philosophy that can affect the manageability and reusability of a
system - although, this can not be ruled out.

4.2.2 Differences Between the Active Entities
In a blackboard system, the KSs are considered as independent
agents capable of reacting to changes in solution state in the black-
board data structure. They each encapsulate a condition-action
pairing that allows a KS to (i) determine whether it is in a posi-
tion to make a contribution to the ongoing solution and (ii) how
changes should be made and to what objects. Conversely, heuris-
tics within a hyper-heuristic system are not reactive to the state of
the ongoing solution - this knowledge of when and where to act
resides at the hyper-heuristic level - although heuristics of course
know how changes should be made. Also mentioned in Sub-section
4.2.1, this main difference is centred around the level of control
the active entities have between systems. The benefit of using this
event-driven approach, at least within a blackboard system, is to
reduce the need for or the complexity of positioning metrics used
to insert and retrieve objects on the blackboard data structure - of
which, depending on the application, may contain many hundreds
of different objects spread across multiple blackboard levels.
Another difference related to the varying levels of control, is
that since heuristics in a hyper-heuristic system do not require
detailed control knowledge such as; event handling - in the event
of solution state change - and knowledge about how to calculate its
perceived contribution benefit to send to a control shell: heuristics
tend to be far less complex than their KS counterparts that do have
this knowledge implemented. Furthermore, a heuristic written for
addressing one problem instance or instance type is often more
reusable against other problems whereas KSs are generally more
problem specific with dependencies ranging from solution repre-
sentation to the specific implementation of the blackboard data
structure. In a set of KSs many of these considerations will have to
be addressed on an individual basis, where other specificities can
be rendered mostly non-existent through the use of inheritance
and abstraction during implementation.

1145

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

5 CONCLUSIONS

We have discussed a couple of differences between the traditional
view of hyper-heuristic approaches and that of blackboard systems.
We have found that there are differences in the way both systems
treat their control responsibilities, with emphasis on the level of
domain knowledge used. As others share the view that increased
domain-knowledge at the hyper-heuristic level will likely be of
benefit, the use of a blackboard style of control merits further
investigation. A difference in the behaviour, implementation and
scale of the active entities between the two systems - as a result of
these control differences - has been identified.

REFERENCES

[1] Grady Booch. 2006. Object Oriented Analysis & Design with Application. Pearson
Education India.

Edmund K Burke, Tim Curtois, Matthew Hyde, Graham Kendall, Gabriela Ochoa,
Sanja Petrovic, and José Antonio Vazquez-Rodriguez. 2009. Hyflex: A flexible
framework for the design and analysis of hyper-heuristics. In Multidisciplinary
International Scheduling Conference (MISTA 2009), Dublin, Ireland. 790-797.
Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Ozcan, and Rong Qu. 2013. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013), 1695-1724.
Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan,
and John R Woodward. 2010. A classification of hyper-heuristic approaches. In
Handbook of metaheuristics. Springer, 449-468.

D D Corkill. 1988. Design alternatives for parallel and distributed blackboard
systems. Proceedings of the AAAI-88 Workshop on Blackboard Systems (1988),
99-136.

Daniel D Corkill. 1991. Blackboard systems. Al expert 6, 9 (1991), 40-47.

Peter Cowling, Graham Kendall, and Eric Soubeiga. 2000. A hyperheuristic
approach to scheduling a sales summit. In International Conference on the Practice
and Theory of Automated Timetabling. Springer, 176-190.

Lee D Erman, Frederick Hayes-Roth, Victor R Lesser, and D Raj Reddy. 1980. The
Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve
Uncertainty. ACM Computing Surveys (CSUR) 12, 2 (1980), 213-253.

Kevin Graham, Jerry Swan, and Simon Martin. 2015. TheBlackboard Pattern’for
Metaheuristics. In Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 1265-1267.

Simon Martin, Djamila Ouelhadj, Pieter Smet, Greet Vanden Berghe, and Ender
OZcan. 2013. Cooperative search for fair nurse rosters. Expert Systems with
Applications 40, 16 (2013), 6674-6683.

Jerry Swan, Patrick De Causmaecker, Simon Martin, and others. 2016. A re-
characterization of hyper-heuristics. Recent Developments of Metaheuristics
(2016).

Jerry Swan, Patrick De Causmaecker, Simon Martin, and Ender Ozcan. 2016 (to
appear). A re-characterization of hyper-heuristics. In Recent Developments of
Metaheuristics, F. Yalaoui L. Amodeo, E-G. Talbi (Ed.). Springer.

Jerry Swan, John Woodward, Ender Ozcan, Graham Kendall, and Edmund Burke.
2014. Searching the hyper-heuristic design space. Cognitive Computation 6, 1
(2014), 66-73.

[2]

[9

(10]

(1]

[12

(13

	Abstract
	1 Introduction
	2 Background
	2.1 Hyper-heuristics
	2.2 Blackboard Systems

	3 Properties of Blackboard Systems
	4 Blackboard Systems vs. Hyper-heuristics
	4.1 Similarities
	4.2 Differences

	5 Conclusions
	References

