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ABSTRACT
Advancement in miniaturization of autonomous sensory agents
can play a profound role in many applications such as the explo-
ration of unknown environments, however, due to their miniature
size, power limitations poses a severe challenge. In this paper, and
inspired from biological instinctive behaviour, we introduce an
instinct-driven dynamic hardware reconfiguration design scheme
using evolutionary algorithms on behaviour trees. Moreover, this
scheme is projected on an application scenario of autonomous sen-
sory agents exploring an inaccessible dynamic environment. In
this scenario, agent’s compression behaviour -introduced as an
instinct- is critical due to the limited energy available on the agents.
This emphasises the role of optimization of agents resources through
dynamic hardware reconfiguration. In that regard, the presented
approach is demonstrated using two compression techniques: Zero-
order hold and Wavelet compression. Behavioural and hardware-
based powermodels of these techniques, integratedwith behaviour
trees (BT), are implemented to facilitate off-line learning of the op-
timum on-line behaviour, thus, facilitating dynamic reconfigura-
tion of agents hardware.
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1 INTRODUCTION
Evolutionary algorithms (EAs) are widely used in hardware cir-
cuit design and synthesizing different analog and digital computa-
tional circuits for wide range of applications such as controllers
and filters [2] [3]. However, in many of these applications the
output of the EA module is a design fitted for a specific problem
and does not facilitate dynamic hardware reconfiguration. Further-
more, to facilitate on-line reconfiguration, other presented work in
literature propose an intrinsic approach where the EA module is
implemented on the hardware [5]. However, this is not feasible
with Miniature autonomous sensory agents (MASA) due to hard-
ware resources limitations. In this work we propose a scheme
which uses EA to design hardware that facilitates dynamic recon-
figuration in changing environments. Furthermore, this adaptive
behaviour doesn’t require real time complex processing or tedious
learning cycles. We dub this evolved behaviour as an instinct. In
other words, an instinct is a an adaptive behaviour learned off-line
through evolutionary process. MASA offer a robust solution to
many applications such as monitoring leaks and ruptures of the in-
frastructure such as underground water supplies, oil and gas pipes.
Moreover, MASA are suitable for resource explorations oil in cold
heavy oil production with sand (CHOPS) [8].

1.1 Problem Statement
One of the key aspects in the design of autonomous sensory agents
for complex objectives such as the exploration of unknown envi-
ronments, is the fact that the mathematical representation, associ-
ating different low level hardware design variables with high level
defined objectives, is either not available or limited. The reason be-
hind the unavailability is the huge design distance between such
lower level variables and higher level objectives, on the other hand,
limitations are caused by the existence some mathematical repre-
sentation for sub-objective(s) that are independent from the other
available sub-modules in the agent’s hardware architecture. This
leads to the first design objective:

1727



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany A. Hallawa et. al.

Objective 1.1. The learning process of the behaviour must rely
primarily on the behaviour performance metrics, i.e. its fitness, and
on the assumption that only limited, if any, access to the mathemati-
cal formulation relating available tunable variables with the defined
objectives is available.

Empirically, it is assumed that it is infeasible to know a pri-
ori which agent will be where in the environment and when, at
least with reliable probabilistic certainty. Therefore, the learned
behaviour shall be used with all agents and must function effec-
tively everywhere in the environment:

Objective 1.2. The evolved behaviour must be universal, i.e. fit
to be used by any agent at any point on the spatial and temporal
dimensions.

Moreover, this evolved behaviour will be implemented in hard-
ware, consequently, it must be integrable with it. Hence, even if
its actions optimize the use of the available hardware to achieve
user’s defined objectives, the behaviour’s control flow itself trig-
gering these actions must also be efficient and should minimize
the use of hardware resources:

Objective 1.3. The learning process of the agent’s behaviourmust
attempt to find the control flow that achieves its functionality with
least possible consumption of hardware resources.

1.2 Biological Instincts
In biological systems, any behaviour is considered instinctive if it
is performed without being based upon prior self experience but
rather on hereditary bases. This means that the learning process is
done on the genetic level, i.e. the learning experience is accumu-
lated genetically. Such learned behaviours found in nature may
include a simple, low level and fast or a complex and multi-system
reaction(s) to a given stimulus.

This instinctive behaviour is of exceptional interest to presented
problem statement, as mimicking it can play an important role in
the behaviour learning scheme of the agents. On one hand, instinc-
tive behaviour is genetic based, thus, learning is conducted on the
genetic level, which gives the power to achieve solving a problem
without — or with very limited — understanding to its mathemati-
cal formulation and only based on its performance on that environ-
ment (Objective 1.1). Furthermore, in many species this behaviour
is fast, reflex-like, and doesn’t require extensive computation to be
conducted, which is particularly suited for our problem due to the
agent’s resource limitations (Objective 1.3). For all these reasons
and more, biological instincts are adopted as our design methodol-
ogy, and the presented design in this paper is an attempt to mimic
it.

For the rest of the paper, instinct will refer to the agents’ be-
haviour. One of the first challenges in adopting the instinct con-
cept is how to represent this instinct in a way that fits the problem
statement and achieve its defined objectives. In the next section, a
representation method called Behaviour Trees (BTs) is introduced.

1.3 Behaviour Trees
As an alternative to FSM, BTs were introduced in the gaming in-
dustry mainly to offer a more modular, flexible and readable rep-
resentation scheme. And because of these reasons, many famous

games now use it for developing their AI. In addition, they have
become widely popular in robotics and unmanned air vehicles.

Formally, a BT is depth-first acyclic directed graph. Any node
in this tree is either a parent, i.e. connected to lower level nodes
dubbed as a child nodes, or a leaf node which has no child nodes.
Moreover, each BT has one unique parent node named root which
can not have a parent and has only a single child.

Each node can have one of three possible states: Success, fail-
ure or running. Furthermore, all nodes, except the root node, fall
under two main categories: control flow nodes or execution (leaf)
nodes. Control flow nodes are further sub-categorised to: compos-
ites nodes and decorative nodes, each include wide range of possi-
bilities such as selector and parallel nodes. On the other hand, the
execution (leaf) nodes have only two possibilities: action or condi-
tion nodes. Themost commonly used nodes and their functionality
can be described as follows:

• Leaf Nodes
– Action node: Returns running when the given ac-

tion is still running, success when it is done and fail-
ure otherwise.

– Condition node: Returns success when the condi-
tion is fulfilled and failure otherwise.

• Composite Nodes
– Selector node: Sequentially ticks its children nodes,

starting from the out-most left node, and returns the
state of the first non-failing child, i.e. either success
or running. Otherwise, it returns failure.

– Sequencenode: Sequentially ticks its children nodes,
starting from the out-most left node, and returns the
state of the first non-succeeding child, i.e. either fail-
ure or running. Otherwise, it returns success.

As for the execution process of BTs, it starts from the root ticking
its only child node, which consequently start ticking its children
signalling the permission to start their functional properties, and,
consequently, return their respective state to the parent that ticked
them. Figure 1 shows a BT example without the root node.

Figure 1: BT: an example

Given this description, it important to highlight why BT is an
appropriate scheme for representing instincts. Firstly, adding and
removing nodes can be easily done without any changes in ei-
ther their parent nodes or child nodes. Furthermore, since it is
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an acyclic graph with a root node, it facilitates hierarchical expan-
sion. Moreover, the availability of dedicated nodes for actions and
conditions gives the user design flexibly. And since it is a tree by
structure, its complexity in representation can be a quantitatively
measured, which is in agreement with Objective 1.3. One impor-
tant aspect is handling parallelism, with the ticking method, all
deadlock avoidance algorithms are not needed, thus minimizing
complexity which is reflected positively on hardware resources.

Finally, having a dedicated nodes for actions and conditions
gives the user significant flexibility and gives any learning mod-
ule a wide design space. The challenge now is how to integrate a
BT in the learning mechanism of an EA module?

1.4 Grammatical Evolution

Figure 2: Grammatical Evolution: Example

One of the most common concepts used in Computer Science
is the concept of grammars [1, 6]. Like in non-programming lan-
guages, their main objective is to restrict a certain domain via the
definition of possible legal expressions.

In grammar terminology, a non-terminal character is a charac-
ter that can be replaced with other characters to eventually turn
into a terminal one using the production rules, on the other hand,
a terminal character is an elementary character that can not be
further replaced.

In EA context, grammar plays an important role in the genotype-
phenotype mapping process [4] [7]. Conceptually, the genotype-
phenotype mapping is the interpretation of a genotype of an in-
dividual in the population to an actual solution. In that regard, if
the solution is a structured entity that can be defined with a set
of rules, grammar then can be used for mapping and to guarantee
that the generated interpretation is syntactically correct.

Figure 2 illustrates an example of using a grammar in genotype-
phenotype mapping, the idea is to map the genotype given in step
1 to an output math operation in the prefix format, e.g + y x, from
a starting non terminal given character <Node>. To do this map-
ping, a grammar (rules are written in Backus Naur Form (BNF)) is

given with two rules. Rule 1 states that the non-terminal charac-
ter <Node> can be replaced with one of three possibilities. Sim-
ilarly, rule 2 states that the non-terminal character <Op> can be
replaced with one of 4 possible terminal characters: +, -, *, and /.
Now, let us use the grammar to know which operation the geno-
type will replace <Node> with: The first genotype value is 0, and
since the code started a with the non-terminal character <Node>,
therefore rule 1 is applied and since rule 1 has 3 possibilities, mod
3 will be used on the genotype value, leading to 0 mod 3 = 0, there-
fore, <Node> becomes <OP> <Node> <Node>. Similarly, after
reading genotype values 8, 4 and 8, the final output will be + x
y. This methodology can be used in the genotype-phenotype map-
ping of BTs, facilitating its evolution. Next, the full instinct evolu-
tion scheme is laid out.

2 INSTINCT EVOLUTION SCHEME
So far the objectives regarding agent’s behaviour and its learning
process is identified, the general methodology is chosen: mimick-
ing biological instinctive behaviour, the representation scheme of
an instinct is picked: behaviour trees and its genotype-phenotype
mapping method is chosen: grammatical evolution. Now a full de-
scription to the instinct evolution scheme is presented. The scheme
has six main steps as shown in Figure 3.

To give an overview on the instinct evolution scheme, a bottom-
up approach will be used starting from step 6: In step 6, the evolu-
tion of the BT using grammatical evolution is conducted, the objec-
tive here is to allow the EA process to explore the search space effi-
ciently and generate the optimum behaviour in the form of instruc-
tion set. As described earlier, BTs are flexible and facilitate user
defined actions and conditions. Additionally, there is a wide range
of possible nodes, each facilitate different functionality. Conse-
quently, defining pools of possible interesting actions, conditions
and node types before the commencement of the evolution pro-
cess will achieve multiple objectives: It will minimize the solution
space and, consequently, facilitate faster convergence in produc-
ing the optimum behaviour. And although faster convergence is
figure of merit in any optimization scheme, it is of an exceptional
importance as the simulation process of environment is computa-
tionally exhaustive. Furthermore, it will allow to use the scheme
on different levels on the hardware architecture without changing
its structure.

As a result, steps 3, 4 and 5 are designed for that purpose. How-
ever, in order to define interesting actions, an optimization on the
possible tunable variables relative to user defined objective must
be conducted first, which is done in step 2. Finally, to pin point
all possible tunable variables for each sub-module in the hardware
architecture to conduct step 2 and to identify possible perception
points in the hardware needed in step 5, an agent abstraction is
needed to highlight all these elements, this is executed in step 1.
For further analysis to each introduced step, a detailed description
is given in the following:

2.0.1 Agent Abstraction. Motivated by the definition of action
and condition pools, the agent is abstracted into three main layers:
Layout layer, configuration layer and perception layer

These layers are designed in order to be able to explicitly iden-
tify all possible configurations and their respective hierarchical
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Figure 3: Instinct evolution scheme

position. Identifying the relationship between possible configu-
rations and hierarchy will allow the EA process to control effec-
tively the evolution process with the fitness function, e.g. setting
a higher cost in the configuration change that is done on a higher
hierarchical level relative to a lower one.

In the layout layer the each configurable module in the hard-
ware architecture identifies all possible sub-modules it can acti-
vate. e.g. the compression module might have three possible sub-
modules to run: a Zero-order hold (ZOH), a wavelet and a Fast
Fourier Transform (FFT). In the layout layer these sub-modules are
identified.

However, the configuration layer contains the set of configurable
parameters for each of these sub-modules.

Both the layout layer and the configuration layer are linked to
the actions pool. But, in order to identify the points where the
conditions can be applied, a perception layer is used, where all
sensing points interacting with the environment are identified, e.g.
temperature and pressure sensors.

2.0.2 ActionGeneration. In this step amulti-objective algorithm
is used define the Pareto optimal front of the variables in the con-
figuration layer for each sub-system in the layout layer relative to
user defined objectives. It is suggested to use non-dominated sort-
ing genetic algorithm. In this process the user is given a chance to
identify the objectives relevant to sub-module under investigation.

The outcome of this process is a set of interesting actions (hard-
ware configurations) for each element in the layout layer, which
will help in the generation of actions pool. It is worth mentioning
that setting the maximum genotype integers will lead to setting
the max number an action ID can have, which will finally set the
max number of actions a pool can take.

2.0.3 Actions Pool. Theset of configurations extracted from the
Pareto-optimal front constitute a pool of potential actions an agent
can conduct, setting up the actions pool. Each action is identified
by: A unique ID to the sub-module(s) the action is associated to
(layout layer), a configuration IDwith a set of the the size of config-
urable variables with the respective configurations. (configuration
layer)

A pre-set number of integers will be allocated to be used in iden-
tify the action from the genotype value as explained in details in
section 2.0.6, this number will set the maximum possible actions
available in the action pool.

2.0.4 Nodes Pool. In this step the pool of all possible control
flow nodes of interest are defined. Each type of node has a differ-
ent complexity in their implementation in the instruction set, and
like all other pools, the trade-off between extending the solution
space to include more possible nodes versus flexibility by having a
wider range of nodes, each adding a new dimension of functional-
ity, must be analyzed and controlled in the fitness function.

Furthermore, although BTs come with a huge list of possible
control flow nodes and possible extensions, e.g the probability ex-
tension where the parent node chooses with a certain probability
which child node to tick, it is also possible to define new nodes to
fit design needs.

2.0.5 Conditions Pool. All entities of the perception layer rep-
resent a potential condition point to be monitored for further trig-
gering of an action, and as a result all these points are fed to the
condition pool.

Each entity in the condition pool has three basic dimensions: A
unique ID to its real perception point, for example an accelerome-
ter can read three axis, therefore, the possible IDs are three, num-
ber of threshold points to be applied on sensor readings, e.g. one
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threshold means classify sensor readings into two segments. Fi-
nally, the respective position of the threshold point(s) within the
sensor range, i.e. where is the threshold(s) identified in the previ-
ous step is placed within the sensor range.

It is important to highlight here, consequently, all definition of
threshold points and their positions must be conducted in proba-
bilistic manner, i.e multiple runs and from multiple agents. And
with each conducted experiment, this probabilistic knowledge is
accumulated converging to the best threshold definitions and for
all agents as a whole, not for a specific agent in a specific run.

2.0.6 Evolution of Instincts. At this point we have three differ-
ent pools action pool, condition pool and node pool. The first step
is the generation of a population, then a grammatical evolutionary
process is executed with the following BNR rules

< BT > F< T ,T > (1)
< T > F< T ,T > | < N > | < A > | < C > (2)
< N > F n1 | . . . |ni−1 |ni (3)
< A > F a1 | . . . |aj−1 |aj (4)
< C > F p1 | . . . |pk−1 |pk (5)

Where BT is the start symbol, T sets a non-terminal character,
N sets the grammar rule for choosing a node ni from the nodes
pool, A sets the grammar rule for choosing an action ai from the
actions pool, C sets the grammar rule for choosing a condition pi
from the conditions pool. It is important to highlight that this used
grammar can be easily extended.

3 APPLICATION SCENARIO
In order to project the introduced instinct evolution scheme on ex-
ploration of unknown environment case, a scenario is introduced
Figure 4. In this scenario, agents are injecting in a water loop. In
this context, compression is critical due to the limited energy avail-
able on the agents, this brings emphasis the role optimization of
agents resources through dynamic hardware reconfiguration (on-
line behaviour). Ideally, the agent should use a compression tech-
nique with low power and high information loss in the environ-
ment zones where the changes are not significant (green zone) and
use another configuration in the (red) zone, where it invests more
energy to capture this highly dynamic zone properties.

In this example, the hardware architecture offers two compres-
sion techniques: Zero-order hold and wavelet and the objective
is develop an instinct off-line using EA that will make the agent
capable of capturing the environment properties in different envi-
ronment zones with the least possible power consumption by re-
configuring its available tunable parameters.

3.1 Experiment setup
One end of the pipe loop was connected to an industrial tank di-
rectly. The other end of the pipe loop was ’connected’ to the tank
via a flexible hose of the same diameter. Pipe loop was roughly 60
m long ( 30 m and 30 m) and 10 cm in diameter.

Figure 4: Sensory agents in different environment zones

3.2 Agents
Each agent has three sensors, a gyroscope, an accelerometer and a
magnetometer. Each sensor has an x, y and z-axis which each pro-
duce a data stream, so that there are 9 data streams in total. In the
end, we are interested in knowing the acceleration of the agent in
the length, width and height directing of the pipe. However, most
of the time, these directions are not the same as the x, y and z-axis
of the agent, since the agent often spins. In order to match these
two coordinate systems, we make use of the magnetometer. Since
there usually isn’t any special magnetic field present around the ex-
periment, the magnetometer only measures the magnetic field of
the earth, which always points in the same direction in respect to
the pipe orientation. By measuring the magnetic field of the earth
inside the coordinate system of the agent, and knowing what it is
in the coordinate system of the earth, we can calculate the relation
between the two. We are now able to calculate the acceleration in
the coordinate system of the earth, starting from the acceleration
in the coordinate system of the agent.

4 HARDWARE ARCHITECTURE
This section will describe the hardware architecture of the targeted
reconfigurable sensory agents. As shown in Figure 5, the sensory
subsystem of these agents consists of seven main blocks: sensors,
an ADC, a buffer to hold samples, a parameter calculator, an in-
stinct, an arithmetic unit for compression and a non-volatile mem-
ory for data storage. This section will especially focus on the re-
configurability knobs of this subsystem, which will subsequently
be exploited by the evolutionary algorithm for optimal run-time
operation. Moreover, we will describe the hardware implementa-
tion of the digital subblocks, the arithmetic unit and the data stor-
age in more detail. We end this section by elaborating on the link
between the simulated reconfigurable hardware and the software
model of this hardware, used by the evolutionary algorithm.

4.1 General structure
Figure 5 shows the hardware structure of the agent’s sensory sys-
tem. It starts with a sensor that measures a physical entity and
converts it to an analog signal. Targeted sensors are a.o. acceler-
ator, pressure, or temperature sensors. The analog data from the
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Figure 5: Overview of the hardware architecture

sensor is converted to a digital signal with a sampling frequency f
and resolution NADC [A 0.20mm2 3nW Signal Acquisition IC for
Miniature Sensor Nodes in 65 nm CMOS].The samples of the ADC
are stored in the buffer. Once the buffer is filled with samples, it
releases all its samples at a high speed to the parameter calcula-
tor. Once the paramaters are known, these are sent to the instinct,
which then puts the settings for the digital compression. The buffer
sends all its samples for a second time, this time to the digital com-
pression block. These samples are then compressed with one of
the digital compression algorithms (C) and with a tolerable com-
pression loss ∆, which will be explained in more detail later. This
compressed signal is finally stored in a non-volatile Flash memory.
Both the compression algorithm and Flash memory are simulated
in a 90nm TSMC technology.

4.2 Compression
The sensory agent canmake use of one of 3 different lossy compres-
sion algorithms, for efficiently storing its captured sensory wave-
forms. All three compression algorithms have been implemented
in hardware: zero order hold, Fast Fourier and streamwavelet com-
pression. As will become apparent from the results presented in
this paper, it is important to enable a variety of compression mech-
anisms in the sensory agent. Depending on the characteristics of
data, different algorithms deliver a favorable compression vs in-
formation loss trade-off. At all times, only one compression algo-
rithm is active, while the two other hardware compression blocks
are in sleep mode, powered down to reduce their leakage power. A
MUX decides which set of outputs of the three compression algo-
rithms should be stored in the memory, based on the control knob
C . Following paragraphs will describe in more detail the internal
structure of each of the three compression blocks, and highlight
their tunability aspects.

4.2.1 Zero order hold compression. The zero order hold com-
pression operates by comparing the current sample with the last
stored sample, as shown in figure 6. If the absolute value of the
difference is smaller then ∆, no new data is stored. Only if the ab-
solute value of the difference between these two is bigger then ∆,
the current value is stored, both locally for further comparison, as
well as in the non-volatile storage. For the latter, also the amount
of clock cycles since the last stored value is recorded, which is cal-
culated by a counter. This counter is reset each time a new sample
is stored. This block requires very little hardware: only one adder,
a comparator, a MUX, a delay element and a small counter.

Figure 6: The structure of the zero order hold hardware

4.2.2 Streamed wavelet compression. Wavelet compression fil-
ters the input data using wavelets. The complete filter has 6 stages
in this implementation, and is shown in figure 7. Each stage splits
the input data into a high frequency and low frequency band us-
ing a low pass (LP) and high pass (HP) filter respectively and then
decimates both outputs by a factor 2. The output of the low pass
is then used as input for the next stage and the output of the high
pass filter is sent to the output. These 4 tap low and high pass fil-
ters are built from the Daubechies scaling and wavelet function.
We choose this wavelet type and number of taps for its good com-
pression vs calculation complexity trade-off.

Compared to traditional packet-based wavelet transforms, this
wavelet transform operates in a stream-based way. By using a set
of filters, which continuously operate on the incoming data stream,
a slightly better compression is achieved, while implementation
complexity can be reduced. The stream based approach requires
less registers, multipliers and adders, which is beneficial in this
highly leakage dominated system. The output consists of 6 high
pass outputs and one low pass output, which all have different up-
date rates due to the internal down-sampling as shown by figure 7.
By combining all the outputs in an organized fashion, exactly one
output value is produced every clock cycle. This makes it easier to
pipeline the system, and hence operate at low frequency with less
hardware to further reduce power consumption wasted on leakage
current. This one output line is compared with the loss factor ∆,
to decide upon storage of the wavelet result. Only output coeffi-
cients with an absolute value larger than ∆ are stored into non-
volatile memory, along with the number of clock cycles since the
last stored output.

4.3 Data storage
The data storage is done in an on-chip 90nm TSMC Flash memory.
The application needs non-volatile memory, since the agent could
run out of energy, but the data should be retained. Also, the leak-
age of non-volatile memories is usually too high. Our memory has
a leakage of about 160nW for 32,7kB. More blocks will be needed,
but only one block is active at a time. The leakage can be further
reduced by employing a rush-to-sleep scheme: buffering the out-
put of the compression in volatile memory and power gating the
Flash memory while the buffer is filling. Once the buffer is full, the
Flash memory is turned on, the data in the buffer is being written
into the Flash memory. When the buffer is empty again, the Flash
memory is again powered down. The energy to write one data
word of 16 bits to the memory is 178nJ, which for our application
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Figure 7: Structure of a wavelet filter bank

is the dominant source of energy consumption.

4.4 Behavioral model of the hardware
The behavioral model of the compression block is capable to simu-
late the compression operation of a given data stream, in function
of the various tuning knobs NADC , f , C and ∆. This allows to
quickly assess the information loss on the sensory data in function
of the compression operation tuning knobs. This information loss
is defined as the Percentage Root-mean-square Difference (PRD),
being:

PRD =

√∑k
n=1(Xn − Yn)2/N

Xmax
=

RMS(ErrorSiдnal)

MaximalError
(6)

InwhichX is the original sensory signal, andY is the reconstructed
signal which can be derived from the compressed data stream, us-
ing perfect reconstruction, as the decompression is done offline.

The behavioral model is co-simulated with the extracted hard-
ware model (see next subsection) in order to speed up the calcula-
tions required for the evolutionary algorithm, and to have all cal-
culations originating from a common environment.

4.5 Power consumption model of the hardware
The evolutionary algorithm needs to be able to rapidly assess the
impact of tuning knob settings on the system’s total power con-
sumption. This assessment would be too slow when putting hard-
ware simulations in the loop. to speed this up an accurate energy
model has been constructed. This energy model is derived from
extensive simulations of the 90nm CMOS hardware implementa-
tions. The model is moreover parametrized in function of the dif-
ferent tunability knobs NADC , f , C and ∆, to quickly assess their
impact.

The complete power consumption of the system equals

PTotal = PAFE + PADC + PBU F F + PDSP + PMEM (7)

PAFE is the power consumption of the analog front end, PADC is
the power consumption of the analog to digital converter, PBU F F

Operation Pactive Pleak
PAFE +-1nW /
PADC 0.878*4(bits−10)pJ*f 0.15nW
PBU F F 6.91pJ*f 611nW
PDSP−PC (0.745bits2-6.71bits+317)fJ*f 1.1nW
PDSP−Inst 0.09pJ*f 0.07nW

PDSP−ZOH
(0.29*f+100/cr )*(0.01bits2-
0.14bits+1.37)pW 0.14nW

PDSP−Wav (16.6+1.4*bits)pJ*f 14nW
PMEM 11.1nJ/bit written 160nW

Table 1: Frequency of Special Characters

is the power consumption of the buffer. PDSP is the power con-
sumption of the digital signal processing, this entails the Parame-
ter Calculation (PC) block, the Instinct block, theWavelet compres-
sion block and the Zero Order Hold compression block. PMEM is
the power consumption of the memory.

Table 1 shows the used active and leakage power of each op-
eration. These results are extraced from synthesis simulations in
90nm TSMC and datasheets. All DSP units that calculate, have a
square relation with the amount of bits in a sample for the active
power consumption. TheZOH calculation power is also depending
on the variability of the data, which is modeled with the compres-
sion ratio (cr). The compression ratio equals the total amount of
samples divided by the amount of saved samples. When the signal
is highly variable, the compression ratio decreases, and the power
consumption increases.

5 RESULTS
Projecting the instinct evolution scheme is summarized as follows:
In the agent abstraction step (step 1), the layout layer identifies two
compression sub-modules: ZOH and wavelet. Each has three con-
figurable variables setting the configuration layer. In step 2, using
non-dominated sorting genetic (NSAG-2) algorithm, the Pareto op-
timal front of the recognized variables in the configuration layer
is generated with the two objectives: information loss and agent
power, this is done separately for the two techniques identified in
the layout layer.

Assuming a given pre-set maximum size of the genotype of the
instinct BT (50 integers), the maximum allocated number of bits
representing actions, conditions and nodes can be set.Therefore,
solutions are selected from the Pareto-optimal front. For the nodes
pool a simple selection and sequence node types are used. In step
5, since the perception layer identifies 6 points and the number
of threshold possibilities is set as 3 and assigned to 1, 2 and 3 the
total number of conditions is 18. Statistical analysis done on the
data available from real world experiment identifies the upper and
lower limit for each condition and the position of thresholds (only
single value for each threshold was used).

In 5.1 the optimization output, which constitutes the action pool,
from the optimizing the compression model using NSGA2 is pre-
sented. Moreover, in 5.2 the evolutionary process of the BT set-
tings and convergence graph is given. Finally, in 5.3, we present
the hardware model verification tests results.
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Figure 8: EA convergence

5.1 Action Pool
In this subsection we present the Pareto optimal front provided
from the NSGA2 module constituting the actions pool. Table 2
highlights selected solutions on the Pareto-optimal front with their
relative solution configuration, where ∆ is tolerable error of com-
pression in bits, Fs is the ADC sampling frequency in Hz and Bits
are its resolution.

∆ Fs Bits Power Information Loss
[#] [Hz] [#] [W] [%]
49 487.2376 10 7.82E-06 0.9321E-03
161 159.9791 9 2.64E-06 2.7078E-03
197 151.0169 9 2.07E-06 3.4735E-03
4263 100.8162 8 4.89E-07 37.9840E-03
16916 100.0042 8 4.67E-07 63.2073E-03
Table 2: Selected Pareto optimal solutions for ZOH

5.2 Evolutionary Behaviour Tree
Using a population of 50, mutation rate = 0.03, crossover rate = 0.5
and for 20 iterations, the cost function is set as follows:

Σ = A+ ηC (8)

Where η is a weighting coefficient, A is the environment prop-
erty identification probability and C is the relative complexity de-
fined as follows:

A = Pr(Agents identifying correctly environment zones) (9)

C = 1 − number of BT nodes
max number of BT nodes (10)

Consequently, A ∈ [0,1] and C ∈ [0,1]. Figure 8 illustrates the
convergence graph of the BT for all generations

5.3 Hardware model verification
To verify our model of the hardware, we re-evaluated the solu-
tions from the Pareto optimal front generated with the model via
the NSGA2 module for comparison and further analysis. Figure 9
illustrates the differences between the hardware simulations and
the hardware model for zero order hold compression for a few so-
lutions which are picked over the complete length of the Pareto
optimal front.

Figure 9: HW-SWmodels energy output for zero order hold
module

6 CONCLUSION
In this paper different reasons for mimicking the biological instinc-
tive behaviour to facilitate dynamic hardware reconfiguration in
MASA were presented. This was done by defining the main de-
sign objectives of agent’s behaviour and its learning process. A
proposed scheme for representing instincts was laid out (BT) and a
genotype to phenotype mapping methodology was illustrated. All
this led to the introduction of an instinct evolution scheme using
EAs (Grammatical Evolution). Furthermore, the presented instinct
evolution scheme does not require anymathematical formalization
between tunable hardware variables and user defined objectives.
And although achieving such objective usually requires significant
computation resources since the search space tends to expand, the
scheme structure offers a solution to that by the minimization of
the solution space via introducing actions pool, conditions pool
and nodes pool to BT. Additionally, this allows user defined ac-
tions, and node types to be introduced in the solution space.
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