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ABSTRACT
�antum Key Distribution (QKD) allows two parties to establish a
shared secret key secure against an all-powerful adversary. Typi-
cally, one designs new QKD protocols and then analyzes their max-
imal tolerated noise mathematically. If the noise in the quantum
channel connecting the two parties is higher than this threshold
value, they must abort. In this paper we design and evaluate a
new real-coded Genetic Algorithm which takes as input statistics
on a particular quantum channel (found using standard channel
estimation procedures) and outputs a QKD protocol optimized for
the speci�c given channel. We show how this method can be used
to �nd QKD protocols for channels where standard protocols would
fail.
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1 INTRODUCTION
Today, key distribution between two parties is accomplished using
public key cryptography. Unfortunately, all such schemes rely
on unproven computational assumptions. Furthermore, this is a
necessity, as it is mathematically impossible to construct a public
key system secure against an unbounded adversary using classical
means alone.

�antum Key Distribution (QKD) protocols, however, by utilizing
quantum resources, allow two parties Alice (A) and Bob (B) to
establish a shared secret key which is secure against even an all
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powerful adversary Eve (E). Such a key could, for instance, be used
with one-time-pad encryption (which is information theoretically
secure).

One of the very interesting, and useful, properties of QKD pro-
tocols is that any a�ack against them must be active (one cannot
copy quantum bits to a�ack later). Furthermore, any a�ack must
create some noise in the channel which may be measured by the
two parties. �e more invasive an a�ack, the more the adversary
learns, but the more noise she creates in the channel. If the noise is
low enough, one may distill a secure key. If the noise is “too high”
one must simply abort. �e reader is referred to [11] for a general
survey of QKD protocols.

Typically one constructs a QKD protocol and then mathemat-
ically derives bounds on its maximally tolerated error rate. For
instance, the BB84 protocol cannot tolerate more than 11% error
before the parties must abort [10] (anything less than 11% is accept-
able, though with higher noise you may have to run the protocol
longer to get a secure key of su�cient length).

In this paper, we take the opposite approach: instead of designing
a QKD protocol and then determining which channels (e.g., noise
levels) it is secure operating over, we start with a �xed channel and
output, using a real-coded genetic algorithm (GA), an optimized
QKD protocol to run over it. We envision the following scenario:
two parties, who purchased quantum equipment, �rst run a chan-
nel estimation procedure to estimate the noise in the channel in
a variety of ways (to be described later). From this, they then in-
sert these statistics, along with a description of their hardware’s
capabilities, into our GA. Our GA will then determine an optimal
QKD protocol, based on the limitations of their hardware (or other
user-de�ned restrictions), and output the se�ings that must be used.
Of course, there are some channels where QKD is impossible (e.g.,
entanglement breaking channels [1]). �us, for these channels, our
algorithm will report that no protocol could be found.

In this paper, we will construct a new GA which outputs either a
protocol which is guaranteed to be secure over a particular channel
(given as input by the user), or to output an “error” of some sort if
it cannot be done.

We stress that QKD equipment is currently in production today
and has even been used in several practical instances [11]. �is is
very much a real-world problem. Our algorithm has the potential
to make such devices more practical; instead of having to abort if
a particular channel doesn’t allow for, say, BB84 style encoding,
one may try to search for a new protocol speci�c to the particular
observed quantum channel statistics. Furthermore, our algorithm
is general enough to take into account potential limitations in the
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abilities of one or both users’ hardware. It is also potentially a very
useful tool for theorists, allowing researchers to investigate the
necessary resources required for QKD over certain channels.

While several authors have considered the application of evo-
lutionary algorithms to quantum algorithms [4, 8, 12], and to the
security analysis of �xed QKD protocols [5, 6], we are, to our knowl-
edge, the �rst to consider their use in constructing optimal QKD
protocols over speci�ed, yet arbitrary, channels.

A�er describing our algorithm, we will evaluate it over symmet-
ric channels where it was proven in [1, 7] that BB84 is optimal thus
serving as a useful test-case; indeed for symmetric channels, our
algorithm outputs the optimal BB84-style protocol. More interest-
ingly, we also evaluate it on non-symmetric channels. We show
two example channels where BB84 would actually fail (the parties
would have to abort), yet over which our algorithm �nds a QKD
protocol which allows for secure key distillation.

2 QUANTUM COMMUNICATION
We will now provide a general introduction to quantum communi-
cation. �is section is necessarily short due to length constraints;
for more information, the reader is referred to [9].

Ifv is a complex vector or matrix, then we denote byvT to mean
its transpose and by v∗ its conjugate transpose. If z ∈ C, then<z
and =z denote its real and imaginary part respectively, while z∗

denotes its conjugate.
Unlike a classical bit which is always in a deterministic state of

0 or 1 and which may be read and/or copied at any time without
compromise, a quantum bit or qubit may be prepared in in�nitely
many possible states. Furthermore, reading, or measuring, a qubit
potentially destroys the qubit and alters its state. Also, qubits cannot
be copied with unit probability without potentially destroying it.

A qubit is a two-dimensional system and as such may be modeled
as an element in a two-dimensional complex Hilbert spaceH . As
all �nite n-dimensional complex Hilbert spaces are isomorphic to
the vector space Cn , we may view any arbitrary qubit |ψ 〉 as a
vector |ψ 〉 = (α , β)T . To simplify the math, we further require
all quantum states to be normalized vectors; thus |α |2 + |β |2 = 1.
�e notation |ψ 〉 is read “ket”ψ : it is an example of Dirac’s braket
notation. Every “ket” represents a quantum state which is simply
an n-dimensional normalized complex column vector (for qubits,
n = 2, however we may consider other quantum systems of higher
dimension).

We denote by {|0〉 , |1〉 , · · · , |n − 1〉} to be the computational “Z ”
basis ofCn . �e actual choice of basis vectors is largely irrelevant to
our work - for simplicity we will simply assume the standard basis:
|0〉 = (1, 0, 0, · · · , 0)T , |1〉 = (0, 1, 0, · · · , 0)T and so on. From this,
we may say that anyn-dimensional quantum state may be wri�en as
a linear combination of these basis vectors, that is |ψ 〉 = ∑n−1

i=0 αi |i〉,
where αi ∈ C subject to the normalization constraint

∑
i |αi |2 = 1.

When n = 2, besides the computational Z basis, we will also refer
to the X basis (spanned by the two states |±〉 = 1√

2
(|0〉 ± |1〉)) and

the Y basis (spanned by the two states |jY 〉 = 1√
2
(|0〉 + (−1)j i |1〉),

for j = 0, 1).
Measuring a quantum state (in some ways the quantum analogue

of reading a classical bit) is a probabilistic process causing a qubit to
collapse to the observed state. Understanding the exact mechanism

of this is not too important to understand our work in this paper,
so we do not go into detail. �e reader should be aware, however,
that one may measure in any basis - if the preparation choice and
measurement choice are the same basis, the result is deterministic;
otherwise the measurement outcome is random.

As mentioned, every quantum state is a vector living in some
Hilbert space. O�en we wish to consider two or more states in
union. In our case, we will wish to consider A, B, and E’s systems
along with various auxiliary systems. In general, we may have n
di�erent quantum states each living in a Hilbert spaceH1, · · · ,Hn .
Let di = dimHi < ∞ (all systems we consider in this paper are
assumed to be �nite dimensional, which, for the problem we are
considering, is an assumption made without loss of generality).
�en, the joint state is modeled as a vector living in the Hilbert
space H = H1 ⊗ · · · ⊗ Hn where, given states |ψi 〉 ∈ Hi , then
|ψ1〉 ⊗ · · · ⊗ |ψn〉 ∈ H . If |ψ 〉 = (α1, · · · ,αm )T , then the tensor
product |ψ 〉 ⊗ |ϕ〉 is simply (α1 |ϕ〉 , · · · ,αm |ϕ〉)T (this may then be
repeated for three or more systems). O�en we will write |ψ 〉 |ϕ〉 or
|ψ ,ϕ〉 to mean |ψ 〉 ⊗ |ϕ〉 (and similarly for three or more systems).
Notice that dimH =∏

i dimHi =
∏

i di .
Besides measuring a quantum state |ψ 〉, which causes it to ir-

reversibly collapse to the observed state, one may also evolve a
quantum state by applying a unitary operator. An operatorU is uni-
tary if UU ∗ = I , where I is the identity operator. Since |ψ 〉 may be
modeled as a vector, the resulting state, a�er applying unitary oper-
ator U , is simply the vector produced by the matrix multiplication:
U |ψ 〉.

For every |ψ 〉, there is a corresponding 〈ψ |. In our case, 〈ψ | is
simply the conjugate transpose of |ψ 〉; that is 〈ψ | = (|ψ 〉)∗. It is
therefore a row vector. We denote by 〈ϕ |ψ 〉 to be the inner-product
(or dot product) of the two vectors |ϕ〉 and |ψ 〉.

A state represented by a vector |ψ 〉 is called a pure state. How-
ever, o�en we want to model statistical ensembles of pure states.
�is may be done using the density operator formalism. For in-
stance, if we have a source which prepares quantum states |ψi 〉
with probability pi (

∑
pi = 1), then this may be represented as the

density matrix: ρ =
∑
i pi |ψi 〉 〈ψi |. Note that the multiplication of

the vectors |ψi 〉 with 〈ψi | form a square matrix. O�en, to simplify
notation, we will writeψi to mean |ψi 〉 〈ψi |. Also, we will write 0A
to mean |0〉A 〈0|A, where |0〉A is a computational basis state inHA
(similarly for iX for any i and system X ).

More generally, a density operator is a Hermitian positive semi-
de�nite operator of unit trace. If ρAE is a density operator acting
on Hilbert spaceHA ⊗ HE (i.e., in our case, it describes a quantum
system held by partiesA and E), then we write ρA to mean the result
of “tracing out” E’s system, i.e., the partial trace: ρA = trEρAE

where, if ρAE =
∑
i, j ρ

(i, j)
A ⊗ |i〉 〈j |, then ρA =

∑
i ρ
(i,i)
A .

Given density operator ρAE , we may consider the von Neumann
entropy of the system (the quantum analogue of Shannon entropy).
�is is denoted S(AE). Since all systems are �nite dimensional, let
{λi }Di=1 be the eigenvalues of ρAE . �en S(AE) = −∑

i λi log2 λi .
Furthermore, the conditional von Neumann entropy is denoted
S(A|E) = S(AE) − S(E) where S(E) is the von Neumann entropy of
ρE = trAρAE . Von Neumann entropy is invariant to changes in
basis. It is also a continuous function.
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Figure 1: A typical QKD protocol

2.1 Basic�antum Key Distribution
We consider one-way discrete variable QKD protocols in this paper.
Here, a source “Alice” (A) prepares qubits randomly and sends them
to a receiver “Bob” (B) who then measures the qubit in a randomly
chosen basis. An all-powerful a�acker “Eve” (E) sits between the
users, intercepts all sent qubits, and probes them, entangling them
with her perfect quantum memory, before forwarding the qubit to B.
�is stage of the protocol is called the quantum communication stage
and is repeated over numerous iterations. Based on A’s preparation
choices, and B’s measurement outcomes, they will distill a raw key
- a string of classical 0’s and 1’s which is partially correlated (E’s
a�ack induces some errors) and partially secret (E may have some
information on it). See Figure 1.

Besides the quantum communication channel, there is also an
authenticated classical channel connecting A and B. On this chan-
nel, E may only listen but not send. �us, following the quantum
communication stage, A and B will use some of their measurement
results and preparation choices to estimate the noise in the quan-
tum channel - more noise equates to a more invasive a�acker in
the worst case. If the noise is “low enough” they proceed to run
a preprocessing stage (this is optional) [10] followed by an error
correcting (EC) protocol and a privacy ampli�cation (PA) protocol.
�is is all done over the authenticated channel (thus leaking more
information to E). �e reader is referred to [11] for more infor-
mation on how EC+PA are used; preprocessing strategies will be
discussed in more detail in a later section here.

In this paper we will consider collective a�acks whereby E per-
forms the same (possibly probabilistic) a�ack operation each iter-
ation of the quantum communication stage. For the protocols we
consider in this paper, security against collective a�acks is su�cient
to prove security against arbitrary general a�acks [2].

In the case of collective a�acks, E’s a�ack may be modeled as
a unitary operator U acting on the traveling qubit and E’s private
ancilla (both modeled as �nite dimensional Hilbert spaces). Without
loss of generality, we may assume E’s memory is cleared to some
zero state |0〉E and may write U ’s action on basis states as follows:

U |0, 0〉T E = |0, e0〉 + |1, e1〉 , U |1, 0〉T E = |0, e2〉 + |1, e3〉 (1)

where the |ei 〉 are arbitrary states in E’s quantum memory (i.e.,
these |ei 〉 are complex vectors). �e subscript “T ” is used to denote
the transit space: the two-dimensional Hilbert space modeling the
qubit. Unitarity imposes various conditions on these states which
will be important later. �e above de�nition is su�cient to describe
U ’s action on any arbitrary qubit due to linearity.

It was shown in [3], that, if N is the size of the raw key (in bits),
then, following EC+PA, A and B may distill a secret key of size

`(N ) ≤ N bits, where:

lim
N→∞

`(N )
N
= inf

U ∈Γ
[S(A|E) − H (A|B)]. (2)

Above, H (A|B) is the conditional Shannon entropy (easily com-
puted) and S(A|E) is the quantum von Neumann entropy (which is
more di�cult to compute as A and B do not know exactly which
a�ack E used, and E is a quantum system). �e in�mum is over
all unitary operators U which E could have applied which induce
the observed statistics (e.g., the observed error rates). We take the
in�mum as we assume the worst case that E chose an a�ack which
results in the smallest secret key size `(N ). �e above ratio is called
the Devetak-Winter key rate in the asymptotic scenario. Clearly, the
closer it is to one, the be�er for A and B as they are able to use
more of their raw key towards their secret key; when the ratio is
zero, then the users must abort (no secure key may be distilled).

2.2 Our Goal
We envision the following scenario: First, A and B, a�er con-
necting their QKD devices to a quantum channel, will perform
a quantum tomography protocol in order to gain statistics on the
channel. �is protocol involves A sending to B qubits of the form
{|0〉 , |1〉 , |+〉 , |−〉 , |0Y 〉 , |1Y 〉}. B, on receiving a qubit, measures
in either theZ ,X , orY bases. Awill disclose the exact state she sent,
while B will disclose his measurement outcome (over the authen-
ticated classical channel which E may listen to, but not write to).
Repeating this process for a su�cient amount of iterations allows
the users to estimate the values pi, j where i ∈ {0, 1,+,−, 0Y , 1Y }
and j ∈ {0, 1, +,− ,0Y , 1Y } which we use to denote the probability
that B measures |j〉 if A sent |i〉 (conditioning on the event that B
choose the correct basis for such a measurement outcome). It turns
out (see [7]) that these statistics allow the users to gain a very good
understanding of certain key properties of the a�ack operator U
employed by E. Note that, as in [7], we do not consider inaccurate
estimates of these quantities - as we are working in the asymptotic
scenario, we may perform this process for an arbitrary number of
iterations. It should not be di�cult to extend our algorithm to the
case when these measurements are inaccurate, though we leave
that as potential future work. Note, as mentioned earlier, it is su�-
cient to consider collective a�acks in our case and thus this same
operator U is used each iteration [2].

Following this channel estimation protocol, A (or B) will run our
GA to �nd an optimal QKD protocol speci�c for this channel and
send the protocol information (using the authenticated channel) to
the other party (this does not destroy security as we are assuming
an all-powerful adversary could have simulated all possible out-
comes of the GA and chosen an initial a�ack which is the most
advantageous to her for this protocol - note that we must enforce
the channel statistics remain the same a�er tomography; otherwise,
E could alter her a�ack!). �e GA should take into account certain,
if any, restrictions on the part of the two users (for instance, maybe
B cannot measure in any arbitrary basis, only the Z , X , or Y basis).
�e GA will output “se�ings” needed to operate a QKD protocol,
based on the given restrictions (hardware restrictions or otherwise).
�e GA may also output a preprocessing strategy (to be discussed
later - though it was shown in [10] that such strategies may im-
prove the key rate). �e GA will also output the key-rate (Equation
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2) of the given protocol over the speci�ed channel. Note that, for
some channels, QKD is impossible - in this event the GA should
output a key-rate of 0.

A�er the GA speci�es an optimal protocol, assuming the key-
rate is positive, A and B will carry out the given protocol. �ey
will also, however, randomly choose certain iterations to run the
channel estimation procedure (i.e., quantum tomography) in order
to ensure that E does not alter her a�ack (if she does, then A and B
should abort as the protocol produced by the GA is optimal only
for the speci�ed channel).

�e above idea (using quantum tomography, then later running
an optimal protocol) was �rst conceived in [1]; however there,
the authors only considered a symmetric channel - they proved
that BB84 style encoding is optimal in a symmetric channel and
no optimizations could be done to improve its key-rate. In [7],
the authors considered arbitrary channels, but only one class of
protocol with few variables over which a brute-force-search was
performed to �nd an optimal protocol. Furthermore, neither source
considered preprocessing strategies which greatly complicates the
optimization process.

3 ALGORITHM DESIGN
Our GA must evolve optimal QKD protocols of a speci�ed type. �e
protocol type will be provided to the algorithm and will, essentially,
consist of mathematical equations describing the operation of the
protocol based on an arbitrary a�ack and certain arbitrary “free”
parameters. �e a�ack is outside the GA’s control, but these free
parameters (which may, for example, describe things such as what
type of qubit state to prepare at which probability) specify an actual
protocol. A candidate solution, therefore, will be these free param-
eters. �e exact number of parameters, along with their domains,
must be provided to the GA through the type speci�cation.

Once potential variables are found for the parameters in a candi-
date solution, its �tness must be evaluated. �is will entail comput-
ing the Devetak-Winter key-rate expression (Equation 2). However,
this expression requires an actual a�ack description; i.e., we must
know actual vectors |ei 〉 for E’s a�ack to substitute in to the density
operator expression and thus construct an actual matrix from which
the von Neumann entropy computation is straight-forward. Unlike
in [5, 6], we cannot evolve these operators as we are using �xed,
observed, statistics pi, j . We will develop a mechanism to construct
these vectors such that (1) they induce the correct observed statis-
tics; (2) are physically realizable (i.e., they could be produced by an
actual a�ack); and (3) do not limit E’s power - i.e., the vectors we
will construct will be su�cient to compute the key-rate in the case
that E chooses the most optimal a�ack allowed by the observed
statistics and we do not “miss” an important a�ack operator with
our mechanism.

Finally, once all of this has been established (i.e., we have values
for the protocol parameters and E’s a�ack), we need a system
that allows these values and vectors to be easily substituted into
a given density operator expression. From this, various quantum
information theoretic computations must be performed, namely
�nding the eigenvalues for the von Neumann entropy computation.
To achieve this, we designed and implemented a new quantum
simulator for this purpose.

3.1 Protocol Type Speci�cation
Our algorithm will �nd optimal QKD protocols conforming to a
particular type or class. For instance, it might be that A and B
are using limited hardware in that they can only perform certain
quantum operations. Or it may be that they are not limited and
can perform any operation allowed by today’s technology. Or,
perhaps in the future, they will have access to even more powerful
technology with greater quantum capabilities. Our goal is to design
an algorithm that produces a QKD protocol constrained by the
user’s capabilities. �us, the user must specify those capabilities
by describing a density operator equation modeling the protocol
using certain free parameters.

Note that the conclusion of a single iteration of the quantum
communication stage of any discrete variable QKD protocol may
be described by a density operator of the form:

ρABE =
∑

i, j ∈{0,1}
iAjB ⊗ ρEi, j , (3)

where theA and B system representA and B’s raw key while the ρEi, j
is a density operator describing the state of E’s quantum memory in
the event A and B’s raw key is i and j this iteration. �e probability
that A and B output a raw key bit of i and j is simply trρEi, j .

�e state of E’s memory is a function of E’s a�ack (in terms of
the vectors |ei 〉 from Equation 1) and the protocol being used. Of
course, the GA’s goal is to discover an optimal protocol, thus this
state has several “free variables” which must be evolved. �ese
free variables may represent such things as what qubits A sends
and with what probability, or what bases B measures in, etc. �us,
the user of our algorithm, when designing a new class of QKD
protocol (e.g., one based on certain hardware restrictions), must
write out the state of E’s memory given that she used an arbitrary
unitary operator U and provided that certain free variables will
be substituted in later. �is is not di�cult to do (it is just basic
algebra generally). For our evaluations, we considered two classes
of protocol: the �rst where B is limited to measuring only in the Z
basis for key distillation purposes (however A is free to prepare any
type of qubit she likes); the second has no such restrictions (A may
prepare any qubit she likes, and B may measure in any two bases
he likes). Most common QKD protocols belong to one or both of
these classes.

We call this protocol description a Π − Type and it will be one
of the inputs to our GA. �e description consists of the following
information:

1. A list of all free variables xi ∈ R used by this Π − Type which
our algorithm is allowed to optimize over. �ese variables are given
human-readable names.

2. A list of domains Di which those variables live in. �at is,
xi ∈ Di . We take Di (y) to mean that point z ∈ Di closest to y
(standard Euclidean distance).

3. Equations ρEi, j (in density operator formalism) describing the
state of E’s quantum memory in the event A and B agree on a raw
key of i and j respectively (i, j ∈ {0, 1}); see Equation 3. �ese
equations are provided as strings using Dirac notation and are
functions of E’s a�ack vectors (|ei 〉) and also the free variables xi .

4. Functionality that, on taking input vectors atk = (|e0〉 , · · · ,
|e3〉) describing E’s a�ack operator along with actual values for the
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free variables xi , returns an actual density matrix for each ρEi, j . Call
this function constructOps ({xi }, atk). In our implementation,
we developed a new quantum simulator allowing the user to input
density operator equations as strings thus allowing the so�ware to
be used by non programmers. �e simulator is able to take as input
such a string, a list of the free variables (both scalars and a�ack
vectors), along with assignments of variables to values. Having this
information it will return an actual density matrix, or the result of
certain computations of the matrix (e.g., its entropy).

A Π − Type may be considered a “blue-print” or “template” for
a particular type of QKD protocol which the user desires to be
optimized. In our implementation (source code to be released freely
online), this is implemented as an abstract class Protocol. When-
ever a user wishes to design a new protocol class, they must simply
extend this class and pass it to the genetic algorithm.

3.2 Eve’s Attack
We are given statistics {pi, j } which are the probability that, if A
sends qubit |i〉, then B measures |j〉 (these are determined during
the quantum tomography stage of the protocol - see Section 2.2). In
particular, we are given values {pi, j } with i, j ∈ {0, 1,+,−, 0Y , 1Y }.
In order to compute the Devetak-Winter key-rate (Equation 2), we
must determine actual vectors for those states |ei 〉 resulting from
E’s a�ack operatorU (Equation 1). To do so, we will take advantage
of work in [7] to bound certain key parameters.

Let Γ = Γ({pi, j }) be the set of all unitary operators acting on a
qubit and E’s private quantum memory which induce the observed
statistics {pi, j }. Without loss of generality, we may assume E’s
ancilla is at most dimension 4 (thus each |ei 〉 ∈ C4). �is follows
immediately from the Stinespring Dilation �eorem [9].

For ease of notation, we writeQX to mean the probability of a |+〉
being measured as a |−〉 (i.e., p+,−) and QY to mean the probability
of a |0Y 〉 �ipping to a |1Y 〉. Furthermore, we will write a subscript
Y whenever we mean 0Y (thus p1,Y is the probability of a |1〉 being
measured as a |0Y 〉 - in a symmetric a�ack this should be 1/2, but
in arbitrary channels this may not be the case).

It was shown in [7] that the following quantities may be directly
computed from these statistics alone:

〈ei |ei 〉 (∀i = 0, · · · , 3), 〈e0 |e2〉 , 〈e0 |e1〉 , 〈e1 |e3〉 , 〈e2 |e3〉 , (4)
(both the real and imaginary parts of the above inner products may
be computed). Furthermore, the following may be computed:

< 〈e0 |e3〉 ,< 〈e1 |e2〉 . (5)
Computing the above 10 quantities involves the simple evaluation
of linear functions of the observed {pi, j } values. For space reasons
we cannot print these equations here, though they can be found
in [7] (see Equations 10 - 19 in the arXiv version of that source).
For any U ∈ Γ, the above quantities are always the same. �e only
unknown quantities are the imaginary part of 〈e0 |e3〉 and 〈e1 |e2〉.
However, the Cauchy-Schwarz inequality may be used to bound
these:

=2 〈e0 |e3〉 ≤ 〈e0 |e0〉 〈e3 |e3〉 − <2 〈e0 |e3〉 (6)

=2 〈e1 |e2〉 ≤ 〈e1 |e1〉 〈e2 |e2〉 − <2 〈e1 |e2〉 (7)
Any valid choice of the above imaginary parts potentially describes
an a�ack operator U ∈ Γ (there are other restrictions on these

quantities which show up later). In the following, we will have to
consider all possible imaginary parts of the above inner-products.

Of course, [7] stopped at this point since that paper was inter-
ested in analyzing �xed protocols - we will require actual vectors
for |ei 〉 using this information. We now show an iterative method
to construct these vectors.

Fix U ∈ Γ whose action we write as in Equation 1. By the
Orthogonal Decomposition �eorem, we may write:

|e0〉 = a0 |E0〉 (8)
|e3〉 = a3 |E0〉 + b3 |E1〉
|e1〉 = a1 |E0〉 + b1 |E1〉 + c1 |E2〉
|e2〉 = a2 |E0〉 + b2 |E1〉 + c2 |E2〉 + d2 |E3〉 ,

where {|E0〉 , · · · , |E3〉} is some orthonormal basis of HE � C
4

(here, HE is the Hilbert space modeling E’s quantum memory).
Without loss of generality, we may assume a0, b3, c1, and d2 are
non-negative real numbers (any phase change may be absorbed
into the corresponding basis vector).

By considering the inner-product 〈e0 |e0〉 we may solve for a0.
Indeed, we have 〈e0 |e0〉 = a2

0 ⇒ a0 =
√
p0,0 (where we used the

obvious identity 〈e0 |e0〉 = p0,0).
We proceed in a similar manner, using the inner-products of the

various |ei 〉 vectors (Equations 4 and 5), along with the fact that
U is unitary, to solve for the various coe�cients (in order, top to
bo�om):

a3 =
〈e0 |e3〉
a0
, a2 =

〈e0 |e2〉
a0
, a1 =

〈e0 |e1〉
a0

b3 =
√
〈e3 |e3〉 − |a3 |2, b1 =

( 〈e1 |e3〉 − a∗1a3
b3

)∗
c1 =

√
〈e1 |e1〉 − |a1 |2 − |b1 |2, b2 =

( 〈e2 |e3〉 − a∗2a3
b3

)∗
c2 =

〈e1 |e2〉 − a∗1a2 − b∗1b2
c1

d2 =
√
〈e2 |e2〉 − |a2 |2 − |b2 |2 − |c2 |2.

Now, if a0 = 0, then in fact |e0〉 ≡ 0 and so E’s memory is really
dimension three (or less) in which case we may set a3 = a1 =
a2 = 0 (i.e., if |e0〉 never shows up, then a�er the decomposition,
we may write |e3〉 = b3 |E1〉 and so on, using - possibly di�erent -
orthonormal basis {|E1〉 , |E2〉 , |E3〉}). A similar argument follows
if b3 = 0 or c1 = 0. Finally, if the quantity inside one of the
square-roots in the above expressions is negative, then this violates
unitarity of U and so our choice of either = 〈e0 |e3〉 or = 〈e1 |e2〉 is
invalid. Recall we must consider all possible imaginary parts of
these two quantities allowed by Equations 6 and 7 - however not all
such values produce legal a�acks. �us, when constructing a�ack
vectors, we consider all imaginary values in those bounds which
do not cause a negative value in the square-root equations above.

All that remains to be shown is how to construct basis vectors
for |Ei 〉. We claim, without loss of generality, that we may use the
standard computational basis: |Ei 〉 = |i〉 (with |0〉 = (1, 0, 0, 0)T and
so on). �is is a consequence of the fact that von Neumann entropy
is invariant to changes in basis. �us, we may simply apply the
change-of-basis operator V =

∑
i |i〉 〈Ei | (which is clearly unitary)

to any a�ackU ∈ Γ. �is will not alter the Devetak-Winter key-rate
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equation. Algorithm 1 summarizes this entire process.

Algorithm 1 Gen-Attacks

Input: Stats : Channel Statistics of the form {pi, j }
Output: Γ: a set containing elements of the form (|e0〉 , · · · |e3〉)

where each tuple represents a valid a�ack E could perform based
on the given channel statistics.

–Process–
(1) 1. Γ ← ∅
(2) 2. Discretize the interval in which the imaginary parts of
〈e0 |e3〉 and 〈e1 |e2〉 live based on Equations 6 and 7 (note
the real parts are computed directly)

(3) 3. Repeat ∀ possible 〈e0 |e3〉 and 〈e1 |e2〉 in the discretized
space:
(a) Compute all inner-products allowed by the quantum

tomographic process (Equations 4 and 5)
(b) Compute the following coe�cients in order le�-to-

right: a0,a3,b3,a1,b1, c1,a2,b2, c2,d2.
(c) If one of the above coe�cients produce an illegal value

(as described in the text) discard this iteration and
move to the next possible 〈e0 |e3〉 , 〈e1 |e2〉.

(d) Otherwise, create vectors |ei 〉 from Equation 8 using
the computed coe�cients and standard basis vectors
for |Ei 〉. Add the tuple (|e0〉 , · · · , |e3〉) to Γ.

(4) 4. Return Γ

3.3 �e Genetic Algorithm
Now that we have discussed the various foundational subcom-
ponents, we turn our a�ention to the genetic algorithm itself.
It requires as input a Π − Type and a set of channel statistics
Stats = {pi, j }. A candidate solution (CS) is a list of free vari-
ables (xi ) (the number of free variables, along with their domains,
is speci�ed by the given Π − Type). Speci�c values for these vari-
ables de�ne a QKD protocol as determined by Π − Type (e.g., they
may specify the state of the qubits to prepare). We denote by Di
the domain in which xi lives; also recall that we write Di (xi ) to
mean the numberyi ∈ Di which is closest to xi . Each xi is a double
precision �oating point value.

For selection we use tournament selection with a tournament
size of 3. We also carried over the best solution from the previous
generation to the next.

Crossover was simple one-point crossover, choosing a random
point each time. To mutate a CS, we simply perturb 50% of the (xi )
variables by a small randomly chosen ϵ ∈ [−0.1, 0.1]. Of course,
a�er the perturbation, we ensure the variable remains in Di . �at
is, if we mutate variable i , we set xi ← Di (xi + ϵ). We choose
a mutation rate of 75%. �ese se�ings seemed to produce very
good results (we tested other se�ings, particularly lower mutation
rates of 25% and 50%, however they produced inferior results in our
experiments).

Finally, to evaluate the �tness of a candidate solution, we must
compute the protocol’s key rate (Equation 2) over all a�acks per-
mi�ed by the given statistics. A higher key-rate implies a more �t

Figure 2: Showing the required input, dependencies, and
output of our GA. A set of channel statistics are �rst in-
putted into the algorithm along with a Π − Type description.
A candidate solution is a list of free parameters (xi ), required
to de�ne the QKD protocol speci�ed by Π − Type. Fitness is
evaluated by passing those free parameters, along with a set
of all possible attack vectors, to the Π − Type. �e Π − Type
contains functionality to compute density matrices for the
various ρEi, j - this computation requires the use of our simu-
lator which builds the required matrix. �e resulting matri-
ces are passed back to the GAwhich then uses the simulator
to compute the entropy of the system. Finally, the output
of the GA is a QKD protocol, of a type speci�ed by Π − Type,
optimized for the given channel.

solution (as such a protocol allows A and B to distill more secret
key bits a�er EC+PA). �is �tness calculation is done as follows
(for a CS denoted {xi }):

Let Γ = Gen-Attacks(Stats) and set rate = 1 (this will be the
returned �tness value). For each atk= (|e0〉, · · · , |e3〉) ∈ Γ, do the
following:

(1) Set (ρE00, · · · , ρ
E
11) = Π − Type.constructOps ({xi }, atk)

(2) Compute S(AE) by computing the eigenvalues of the matrix:
0A ⊗ (ρE0,0 + ρ

E
0,1) + 1A ⊗ (ρ

E
1,0 + ρ

E
1,1); also compute S(E)

by computing the eigenvalues of the matrix:
∑
i, j ρ

E
i, j . Set

S(A|E) = S(AE) − S(E).
(3) Compute keyi, j , the probability that A’s raw key bit is i

and B’s raw key bit is j: keyi, j = tr (ρEi, j ) and use these to
compute the Shannon entropy H (A|B) = H ({keyi, j }i, j ) −
h(key0,0 + key1,0).

(4) Set rate = min(rate, S(A|E) − H (A|B)) and Repeat at (1)
for next atk ∈ Γ

Return rate
Note that the computation of the density operators, and the

eigenvalues, is all done using our simulator. �e entire GA, along
with the interaction of each module, is depicted in Figure 2.

3.4 Preprocessing Strategies
It was shown in [10] that, following the conclusion of the quantum
communication stage of a QKD protocol, A and B may improve the
key rate of the protocol, by engaging in a “preprocessing” stage im-
mediately before error correction and privacy ampli�cation. While
there are in�nitely many preprocessing strategies, we will use a
generalization of a particular strategy introduced in [10] which
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operates on each bit of the raw key identically and independently
by having A change her raw key bit according to some distribution
(to be evolved). In particular, if her key bit is iA (for i ∈ {0, 1}),
a�er preprocessing, it will be kA ∈ {0, 1} with probability p

A |i
kA

.

Naturally they must be normalized, therefore we have pA |i0 ∈ [0, 1],
and p

A |i
1 = 1 − pA |i0 , for each i .

To incorporate the given preprocessing strategy, we add to our
candidate solution the values {pA |ikA

} with i,kA ∈ {0, 1} normalized
as required. Furthermore, we extend the crossover operator so that,
when called, besides operating on the original Π − Type variables
as described before, it will also perform one-point crossover on the
new vector (pA |ikA

)i,kA (choosing a new crossover point). Addition-
ally, the mutation operator will alter not only the original candidate
solution variables, but also 50% of the preprocessing strategy vari-
ables by adding a randomly chosen number ϵ ′ ∈ (−1, 1) (and then
re-normalizing of course).

What remains to be shown is how the new �tness value is con-
structed - in particular, how the key rate of the protocol, a�er a
given preprocessing strategy was used, is calculated (furthermore,
the �tness must work with any arbitrary Π − Type - thus, it can
only use density matrices ρEi, j ). As before, we do so by optimizing
over all possible a�ack vectors produced by Gen-Attacks(Stats).
Let ρ =

∑
i, j = iAjB ⊗ ρEi, j be the state of the joint quantum

system (for one iteration) before preprocessing (see Equation 3).
�en, a�er A applies her preprocessing strategy, the system be-
comes: σABE =

∑
i, j

(∑
kA p

A |i
kA

kA
)
⊗ jB ⊗ ρEi, j . �erefore, to

compute S(A|E) in our �tness function, we replace line (2) of the
procedure (see previous section) to instead compute the eigenval-
ues of the above operator (tracing out B for S(AE) and then A
for S(E) of course). To compute H (A|B), we only need the value
keya,b which we use to denote the probability that A’s raw key is
a and B’s is b a�er preprocessing. From σABE , this is seen to be:
keya,b =

∑
i p

A |i
a trρi,b , which is easily computed, allowing for the

computation of H (A|B) (replacing line (3) of the �tness procedure)
and thus the key rate of the protocol. While this is a very basic pre-
processing strategy, it is enough to improve the key rate of certain
protocols over very noisy channels.

4 EVALUATIONS
We evaluate our algorithm using two di�erent protocol types Π −
Type. �e �rst, which we call One Way Simple (OWS) allows A to
send any qubit but B can only measure in the Z basis (though he
may measure in other bases for channel tomography of course!). In
particular, A will send a qubit in the state |ψj 〉 = α j |0〉 + ᾱ jeiθ j |1〉,
where α j ∈ [0, 1] and ᾱ j =

√
1 − α2

j with probability pj , se�ing her
raw key bit to j. B measures a qubit only in the Z basis. It is not
di�cult to derive the correct density operator equations placing
them in the required form speci�ed by Equation 3. Furthermore, it
is easy to see the free variables and their domains: p0 ∈ [0, 1] (note
that p1 = 1 − p0 so is not free); α0,α1 ∈ [0, 1]; and θ0,θ1 ∈ [0, 2π ).
Choices for these parameters, therefore, constitute a candidate
solution. �is protocol type includes (asymmetric) BB84 [11] as a
sub-case.

No Preprocessing Preprocessing BB84
Noise Avg. σ Avg. σ (Opt.)

5% .497 0 .497 2.1 × 10−5 .497
10% .152 0 .155 1.1 × 10−5 .152
12% .035 0 .053 3.6 × 10−5 .035
13% 0 0 .017 2.0 × 10−5 0
14% 0 0 .0002 4.7 × 10−6 0

Table 1: Results of running our GAwhen the channel is sym-
metric. “Avg.” is the average (of 50 trials) �tness (key-rate)
of the best solution at the end of 100 generations, while σ
is the standard deviation. Showing results with and with-
out preprocessing. Also showing BB84’s key-rate (without
preprocessing) which is known to be optimal over symmet-
ric channels (again, without preprocessing). �e higher the
key-rate, the better. If correct, our algorithm should be able
to �nd a solution that works at 14% noise with preprocess-
ing on; furthermore, without preprocessing, the key-rate
(�tness) should match that of BB84. Our algorithm passes
both these tests. Underlined results represent a signi�cant
di�erence in the GA output with and without preprocessing
using a 0.01 signi�cance level.

�e second Π−Type we evaluate we call One Way General (OWG)
which allows A to send any qubit state she likes (as with OWS) and
also allows B to measure in any two bases of his choice (or possibly
one basis). In particular, if, a�er his measurement, he observes state
|ϕi 〉 he sets his key-bit to be iB (there is no restriction on 〈ϕ0 |ϕ1〉).
If, a�er measuring, he does not observe one of those two states,
the iteration is considered “inconclusive.” B will inform A of all
inconclusive events and they are discarded.

For all tests we used a population size of 100. For the symmetric
experiment, we ran the algorithm for 100 generations. Since the
asymmetric test is more di�cult, we used 150 generations.

4.1 Symmetric Channels
A symmetric channel is one which is parameterized by a single
parameter Q representing the noise in the Z , X , and Y bases (i.e.,
Q = p0,1 = p1,0 = QX = QY ) with all other “mismatched” sta-
tistics being 1/2 (e.g., p0,+ = 1/2). It was shown in [1, 7] that,
without preprocessing, the key-rate of the BB84 protocol cannot
be surpassed over a symmetric channel thus this serves as a useful
test-case for our algorithm - our GA should be able to (and, as Table
1 demonstrates, does) discover a protocol with the same key-rate
of the BB84 protocol. With preprocessing, it was shown in [10]
that BB84 can tolerate at least 14% error so our algorithm should
be able to �nd a solution (albeit one with a very low, but positive,
key-rate) at such high noise levels. We tested our algorithm with a
population size of 100 using 100 iterations over symmetric channels
with various amounts of noise. We only considered OWS here (there
will be no di�erence between the two Π − Type’s in a symmetric
channel). �e results are shown in Table 1. In all our trials that
produced a positive key-rate, the optimized protocol outpu�ed by
our GA was the BB84 protocol. �us Table 1 provides evidence for
the correctness of our algorithm and approach.
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Channel Number p0,0 p0,1 p1,0 p1,1 QX QY p0,+ p1,+ p+,0 p0,Y p1,Y pY ,0 BB84’s key-rate
1 .752 .248 .055 .945 .163 .115 .435 .592 .507 .660 .357 .322 0 (Abort)
2 .790 .210 .099 .901 .121 .283 .581 .381 .373 .337 .453 .499 0 (Abort)

Table 2: Statistics of two sample non-symmetric channels we evaluated. Both channels would cause BB84 to fail (i.e., abort)
yet our GA found protocols which could successfully perform QKD over them (see Table 3).

No Preprocessing Preprocessing
Channel Number Avg. σ Avg. σ

OWS
1 .094 .006 .098 .008
2 .042 1.4 × 10−4 .049 .005

OWG
1 .126 .04 .127 .035
2 .157 .018 .157 .028

Table 3: Results of running our GA when the channel is not
symmetric. Both channels are such where BB84 would nor-
mally fail, yet our GA found protocols with positive key-
rates. With OWS, there is a signi�cant improvement between
the GA output with and without preprocessing, using a 0.01
signi�cance level. 150 generations were used in this test.

4.2 Arbitrary Channels
While symmetric channels serve as a useful test case, we also eval-
uated our algorithm on asymmetric channels. For evaluation pur-
poses, we randomly generated a�ack operators and simulated their
statistics - thus these channels could potentially arise under actual
quantum a�acks. To do so, we chose random unitary operators,
based on almost-symmetric a�acks, and simulated the tomographic
portion of the protocol to �nd the {pi, j } statistics. We evaluated
several di�erent channels, however in Table 2 we highlight two
interesting ones: namely channels with a high asymmetry in noise
and over which BB84 would actually fail. However, as seen in Table
3, our algorithm was able to �nd a protocol capable of performing
QKD over both these channels. For this experiment, we used 150
generations and 25 independent trials. A sample output of our
algorithm (i.e., an optimized QKD protocol) is shown in Table 4.

5 CLOSING REMARKS
In this paper, we showed how a GA may be applied to discover opti-
mal QKD protocols, conforming to user-speci�ed restrictions, for ar-
bitrary quantum channels. Furthermore, our algorithm is able to de-
velop a classical preprocessing strategy increasing the key-rate over
certain channels. Full source code of our implementation (and the
simulator) is available online: walterkrawec.org/QKDOpt.html.

Many very interesting open problems remain. In particular, it
would be useful to consider inaccurate parameter estimates along
with the �nite key scenario. Other, more practical a�acks, such as
multi-photon a�acks would also be interesting to study. It would be
interesting to extend the algorithm to work with two-way quantum
channels - however, this would require a new method of construct-
ing E’s a�ack vectors. Finally, we used Π − Type’s to constrain
the GA in an e�ort to model the case where users’ hardware is
limited; however, it would be very interesting to see what protocols
are discovered when Π − Type’s are evolved using, e.g., genetic
programming techniques.

p0 = .563 Probability that A chooses
a raw key bit of 0 (else 1)

.102 |0〉 + .995e4.55i |1〉 �e qubit that A sends if
her key bit is 0

|0〉 �bit A sends if her key bit
is 1

.284 |0〉 + .959e2.012i |1〉 A�er B measures this state,
his key bit will be 0

.982 |0〉 + .189e .629i |1〉 If he observes this state, his
key bit is 1

p
A |0
1 = .011 Probability that A �ips her

key bit if it was initially 0
p
A |1
0 = .004 Probability that A �ips her

key bit if it was initially 1
Table 4: Showing a sample QKD protocol (of type OWG over
Channel 2) evolved using ourGA (a�er 150 generations). �e
key-rate of this particular protocol over Channel 2 is 0.134.
Recall that BB84 always fails (i.e., has a key-rate of 0) over
this particular channel.
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