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ABSTRACT

The primary aim of automated performance improvement is to

reduce the running time of programs while maintaining (or im-

proving on) functionality. In this paper, Genetic Programming is

used to �nd performance improvements in regular expressions for

an array of target programs, representing the �rst application of

automated software improvement for run-time performance in the

Regular Expression language. This particular problem is interest-

ing as there may be many possible alternative regular expressions

which perform the same task while exhibiting subtle di�erences in

performance. A benchmark suite of candidate regular expressions is

proposed for improvement. We show that the application of Genetic

Programming techniques can result in performance improvements

in all cases.

As we start evolution from a known good regular expression, di-

versity is critical in escaping the local optima of the seed expression.

In order to understand diversity during evolution we compare an

initial population consisting of only seed programs with a popula-

tion initialised using a combination of a single seed individual with

individuals generated using PI Grow and Ramped-half-and-half

initialisation mechanisms.
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1 INTRODUCTION

The automatic improvement of existing software has gained con-

siderable ground in recent years [21, 42]. The goal of automated

software improvement is to modify program code such that overall

performance (as measured by some metric, usually execution time)
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is improved, while maintaining functional properties (or in some

cases improving them also) as measured by a test suite [6, 21].

Regular Expressions (regexes) are strings of literal and special

characters that are used to match sub-strings in text [34]. The use

of special characters can result in regexes which are considered

“correct” but su�er from severe performance issues. There may exist

multiple di�erent implementations which achieve the same or very

similar functionality. A regex may be deployed and executed in

di�erent environments, with di�erent performance characteristics

being exhibited as it is interpreted by di�erent regex engines. Dif-

ferent interpreter implementations of the same language can vary

in performance [32]. This variability motivates an automated ap-

proach to tease out performance improvements, particularly where

improvements may be unexpected or counter-intuitive.

While our overall goal is to improve performance, work on multi-

version programming is highly relevant as we are seeking function-

ally equivalent programs which have alternate implementations

[9], but which also happen to execute faster. The problem of per-

formance improvement is thus split into two smaller problems:

(1) �nding alternate implementations with equivalent func-

tionality, and

(2) reducing unnecessary execution from the given target.

In this paper, we evaluate how Genetic Programming (GP) can be

used to improve the performance of regexes in terms of minimising

execution or “wall-clock” time. An automated search process such

as GP is ideal for exploring a large range of program variants which

exhibit subtle performance di�erences [17]. In order to examine

the di�culty of the space, we have compiled a benchmark suite of

target regular expressions for an array of common regex applica-

tions, including MAC address search and validation [3] and email

validation [37]. Using Grammatical Evolution (GE) [29], a grammar-

based form of Genetic Programming (GP) [17], we explore many

variants of these regexes in the search for improvements which

yield reduced execution time.

The topic of performance improvement of regular expressions

using a population-based evolutionary search algorithm raises an

interesting question: are common regexes available from source

code repositories capable of being improved at all? Furthermore, is

it possible to generate syntactically distinct solutions while main-

taining functionality?

This work describes a pilot study in the domain of automated

regular expression improvement, which forms a basis for future

work in the area. Furthermore, there is a signi�cant gap in the

literature; as far as the authors are aware, this work represents the

�rst application of automated software improvement in the regular

expression domain using heuristic algorithms such as GP.

The rest of this paper is structured as follows. Section 2 gives an

overview of the background to both regular expressions (Section

2.1) and software improvement (Section 2.2). Our methodology is

detailed in Section 3, including our approach to population seeding

with target solutions (Section 3.1) and a detailed description of our

�tness function in Section 3.2. Experiments are outlined in Section

1280



GECCO ’17, July 15-19, 2017, Berlin, Germany B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire, M. O’Neill

4, with our benchmark test suite of target regexes for improvement

detailed in Section 4.1. Our results and discussion thereof are pre-

sented in Section 5. Finally, our conclusions are drawn in Section 6,

and we present avenues for future work in Section 6.1.

2 RELATED WORK

Program execution time can be di�cult to measure and reason

about for a number of reasons [33]. Reading through program

source code can only partially indicate expected performance as

many other aspects have an impact on the time it takes for a pro-

gram to �nish. Firstly, the size and distribution of data passed to

a program can sometimes induce an exponential increase in the

run-time cost of execution after a program has been deployed [28].

This is problematic as the input data sizes used to test a program

during development may not be representative of the programs use

once deployed. There is less control of what data is encountered

once a program is deployed. Secondly, the run-time environment

can obscure accurate performance measurements as computing

resources are shared and scheduled among other programs. Pro-

grams may be subject to optimisation strategies such as just-in-time

compilation [33]. Where a program must operate across a number

of di�erent run-time environments it may be even more di�cult to

elucidate program performance on di�ering architectures, libraries

and APIs [32]. In such widely varying circumstances a single pro-

gram executionwill not give an accurate performancemeasurement.

To gather accurate measures many repeated program executions

are needed which yield a range of values. As a result of these issues,

performance improvements are frequently made opportunistically

or in response to glaring performance bottlenecks [24] and as such,

are frequently made in an ad-hoc manner without any rigorous

analysis of performance [32].

The use of evolutionary techniques on regular expressions has

so far largely focused on evolving regexes in terms of their function-

ality and readability. As such, performance remains an important

open issue in writing regexes. We draw on a number of previous

works which demonstrate Genetic Improvement of existing pro-

grams for performance in other languages such as C++ [20, 30] and

Java [6].

2.1 Evolving Regular Expressions

It can be di�cult to write regexes which capture all edge cases [5].

“Program Boosting” in this context refers to the use of GP to merge

many human-written regexes into a single expression which cap-

tures all edge cases. From a Software Engineering perspective, this

work is very interesting in that many people can work in isolation

on a solution, coming up with novel and unique “building blocks”

which are reworked and merged by evolutionary approaches into a

regex which better ful�lls the overall requirements. If writing func-

tional code were not hard enough, non-functional requirements

(e.g. run-time or memory) introduce complex trade-o�s which must

also be considered. Further exacerbating the issue is that the envi-

ronment in which a program must operate can vary widely even

between di�erent versions of the same language interpreter [32].

Bartoli et al. showed that it is possible to evolve working regexes

[3]. Evolving regexes which pass all tests is possible in a reasonable

amount of time (minutes) without seeding evolution with known

useful partial regexes. For example, the string

eth0 119.63.193.196(5c:0a:5b:63:4a:82):4399

contains a MAC address consisting of six pairs of hex characters

in the ranges 0-9 and a-f with each pair separated by a colon. A

correct match will return the string 5c:0a:5b:63:4a:82 as well as

the start and end positions (20,36). Regexes are evolved and tested

against a set of similar test strings. A �tness gradient is provided

by counting the number of match errors which an evolved regexes

returns. A regex which returns either (5c:0a:5b:63:4a:82) or

5c:0a:5b:63:4a: is o� by 2 characters.

The search algorithm proposed by Bartoli et al. applies GP mul-

tiple times on test cases derived from the example shown above

[3]. The idea here is to use GP to �nd regex elements which match

some small portion of the desired text. An interesting point is that

the desired text is decomposable into sub-problems by considering

smaller portions of the desired text, something that is not straight-

forward for more complex programs. If a regex can match the �rst

3 characters of a MAC address then that regex can be considered a

building block for the overall solution. These partial “building block”

regexes are composable with the “or” operator |. The decompos-

ability of the test cases as well as the composability of the solution

appears a key enabler in evolving regexes relatively quickly.

Subsequent to evolving and composing regexes, GP has also

proven capable of evolving shorter, and therefore presumably more

readable regexes [2]. This highlights that GP is very useful for

reducing a large, complex or general program down into one which

is more specialized for a particular case. While regexes are evolved

to be functionally correct, shorter, and more readable, run-time per-

formance is not taken into account [3]. Deterministic approaches to

“optimise” regexes create more concise versions while maintaining

semantic equivalence with rule-based approaches [19, 43].

If we are to contrast the evolution of regex functionality with

evolution of regex performance, �nding improvements which show

up as a decrease in execution time is not as closely related to the

makeup of each part of a regex. For this reason we do not expect

that the composability of regexes to be as important for improving

run-time as it is for “growing” functionality.

2.2 Performance Improvement in Software

In this paper we use “performance” to refer to time elapsed for some

execution. Reliably measuring wall-clock time or “benchmarking”

programs is subject to variability introduced by the execution en-

vironment, especially for interpreted languages. When improving

existing software, we are starting with a known “good” initial pro-

gram which is near-optimal or mostly correct. As the initial pro-

gram already embodies a mostly acceptable program, it represents

a local optima which evolution must escape. The initial existing

program can be seeded into the �rst generation and/or mutated to

initialize the �rst generation [6] of an evolutionary algorithm.

Previous work in program improvement demonstrated improve-

ments to programs resulting from a small number of modi�cations

to code [6] as well as through the removal of unnecessary code [21].

One of the most e�ective ways to reduce the execution time of a

program is simply to remove redundant executions [21]. Improved

program variants have been found where up to 15% of the code is
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modi�ed under mutation [30], however the lion’s share of execu-

tion reduction can often be achieved with fewer modi�cations to

the code [6, 21, 30]. Though software has been shown relatively

robust to mutation [31], diversity can be an issue, particularly when

mutating small programs in a strongly-typed language such as Java

[6]. When starting from an existing program we are essentially

seeking alternative implementations of functionality, and for this

reason, �nding diverse implementations is of interest.

2.3 Diverse Implementations

Ideally we would like to enumerate and compare performance of

multiple diverse implementations which provide the same function-

ality. The most prominent means for promoting diversity in evo-

lutionary algorithms utilize multi-objective optimisation to drive

both �tness and diversity in a population [7, 22]. Other approaches

seek to improving diversity by introducing known relevant building

blocks from a range of existing programs [30]. Diversity has also

been strongly encouraged by using multiple GP runs with di�erent

con�gurations over a range di�erent primitives to �nd entirely

di�erent implementations of the same functionality in the context

of multi-version programming [9].

3 METHOD

We use Grammatical Evolution as implemented1 in the “PonyGE2”

evolutionary framework [11]. In order to make regular expressions

amenable to evolution in PonyGE2, a GE-compatible LR parser was

constructed for this application [10]. This parser quickly converts

any target regex string using a given grammar and returns a fully

parsed, PonyGE2-compatible tree.

3.1 Initialisation & Population Seeding

Initialisation typically has a large e�ect on the overall performance

of the evolutionary algorithm [17]. We compare three di�erent

methods of composing the initial population. The �rst method uses

only the seed regex. The other two methods use a single seed along

with more traditional initialisation techniques.

Seed Only

As the target program is known, we investigate initialising the �rst

generation using only the seed program. While subtree crossover

will have no e�ect on the initial generation (since all individuals will

be identical), subtree mutation will inject new genetic material into

the population. Diversity will increase in subsequent generations as

o�spring programs are subjected to further mutation and crossover.

As the initial seed program is already highly �t (i.e. it should pass all

test cases by default), the search process will �rst need to navigate

its way out of this local optima.

Ramped Half-and-Half + Seed

Ramped Half-and-Half (RHH) is a commonly used initialisation

method for GP-based techniques [16]. This approach generates a

population of individuals across a range of derivation tree depths.

The tree depth is “ramped” up from zero to produce a range of

program sizes. At each depth, derivation trees are created using

“full” (every branch in the tree is forced to the given depth) and

1Source code and experimental con�gurations used in this paper are
available at https://github.com/codykenb/PonyGE2, speci�cally commit
2e7fa0184b69cca31c078963e58857c9f563d20e.

“grow” (no branch in the tree is forced to the depth and the tree

is allowed to grow at random up to that given depth) derivation

methods. While this technique is widely used, there have been

concerns over its appropriateness in certain applications [8, 14, 25,

27]. A single seed individual program is then added to the initialised

population, resulting in the population instantly gaining a highly

�t local optimum. In comparison to “seed only”, RHH introduces

an increased amount of ‘noise’ in the population which may make

escaping this local optimum more di�cult.

PI Grow + Seed

Position Independent Grow (PI Grow) has been proposed as a viable

alternative to RHH initialisation [8]. Whereas RHH generates pairs

of trees at a range of depths, PI Grow eschews the combination of

full and grow derivations and generates individuals at a range of

depths where at least one branch of the derivation tree is forced to

the given depth. Furthermore, to combat the leftmost derivation

tendencies of pre-�x or in-�x grammar-based mapping systems, PI

Grow derives trees in a position independent manner by randomis-

ing the order of derivation of non-terminals [8]. This has the e�ect

of reducing inherent biases which are intrinsic to grammar-based

systems. As with RHH above, a single instance of the “local optima”

seed individual program is included into the initialised population.

3.2 Fitness Function

Our �tness function is a sum of functionality errors and execution

time in milliseconds.

Execution Time is a sum measure of the time a regex takes on

multiple input values (test cases). We use the timeit Python library

which makes certain provisions for accurately timing execution

such as temporarily disabling the Python garbage collector [12].

We take the best of 3 repititions for each test case. Occasionally,

evolved regexes will exhibit exponential execution behaviour due to

catastrophic backtracking, needlessly delaying the run. To mitigate

this issue we impose a one second timeout for any given regex to

complete all tests. As a result, execution time can not contribute

more than 1 to the �tness. One second is many times longer than

the time it takes each regex to search through all test cases.

Functionality Error is summed across many positive and neg-

ative test cases. Errors within a positive matching test case are a

sum of the the number of incorrect characters matched as well as

the number of missing characters per match. A missing character

is weighted the same as an incorrectly matched character. Where a

number of matches are expected, for example where multiple MAC

addresses exist within a string, the number of incorrect matches are

added to the functionality. The minimum measure of functionality

error is one, meaning any regex which contains a detectable error

can not receive a �tness value better than a regex which contains

no error.

4 EXPERIMENTS

All experiments use “PonyGE2” [11] with experimental parame-

ters as summarised in Table 1. We conduct a single run to 1000

generations for each problem to �nd some interesting “best found”

examples of our regexes. For subsequent results in comparing ini-

tialisation methods, we found 100 generations to be enough to

�nd improvements. A bootstrapping statistical method is used

to compare the best performance improvement (lowest execution
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time) found by each initialisation technique after 100 generations.

Listed parameters were chosen after initial exploratory experiments,

although a full parameter sweep was beyond the scope of this in-

vestigation.

Parameter Value

Runs 50

Population 1000

Generations 1000 for examples

100 for initilisation comparison

Initialisation RHH, PI Grow [8], or Seed Only

Crossover Subtree

Crossover Rate 0.1

Mutation Subtree

Selection Tournament

Tournament Size 2

Replacement Generational

Elitism 100 Individuals

Grammar Perl Compatible Regex (PCRE)

Table 1: GE Con�guration

4.1 Regex Problem Set

We have assembled a benchmark suite of regex examples. These

regexes can be considered “Toy” problems in that they are relatively

short and understandable. The whole problem set can �t in this

paper and does not pose a signi�cant scaling challenge for GP.

Results are not so complex as to be inscrutable. Experiments can

be repeated and veri�ed economically; a single run consisting of

1000 individuals across 1000 generations on a single core takes in

the order of a couple of hours.

This benchmark set can however also be considered “real-world”

as regexes are widely used in industry. Many programming lan-

guages have built-in support for regexes. Many of the chosen

examples were taken from source code repositories of widely used

libraries. Although larger amounts of code have been subjected

to and improved with GP [23, 30], we see our benchmark suite as

an introductory set of programs for experimenting with Genetic

Improvement.

We gather regular expressions from online sources and popular

Javascript libraries such as AngularJS [37] and D3 [38]. We also take

a problem from recent work [3] on evolving regular expressions in

their entirety. Table 2 lists these regular expressions and we give a

description and example input test data used for each problem.

MAC address search

The main use of regexes is for text extraction. We take an example

which �nds all MAC address instances in a string. This regex

example was taken from the source code distributed with recent

work in evolving this regex in its entirety [3, 39]. The 12 hexidecimal

characters of a mac address can be upper or lower case and each

pair of characters must be separated by a colon or minus sign. As

mentioned in 2.1, an example test input string is:

eth0 119.63.193.196(5c:0a:5b:63:4a:82):4399

MAC address validation

Regexes are frequently used to validate input data in client-side

Javascript. We take one example here which validates a 12 character

MAC address formatted as upper-case only, without any separator

character. A string is valid if there are no characters before or after

the MAC address. An example test input value for this regex is:

5C0A5B634A82

Email validation

Email addresses are frequently validated on websites before trans-

mission server-side. This example is from a widely used Javascript

library which supports validation of email addresses (AngularJS)

[36]. No leading or trailing are characters are allowed.

ISO 8601 datetime

ISO 8601 is a standard for representing date and time strings and is

also frequently validated. An example input string is:

2016-12-09T08:21:15.9+00:00

Scienti�c number

From the same Javascript library as the preceding three, this vali-

dation regex checks for scienti�c number strings which can have

leading plus or minus symbols and optionally exponent notation.

Example input string is:

230.234E-10

This regex is unusual for the purposes of validation as it allows

leading and trailing whitespace. If this is not tested for in the test

cases, then GP will remove this functionality. Similarly, edge cases

such as a number less than one which does not contain a leading

zero, e.g. “.4536”, must also be tested.

D3 interpolate number

In another Javascript library [38] we found a regex similar to the

previously mentioned Scienti�c number. This regex di�ers as its

purpose is to extract matching strings of characters which are in

scienti�c number format as opposed to validate them. The extracted

number can be surrounded by other characters.

Catastrophic (QT3TS 1)

This problem was taken from a set of test cases designed to demon-

strate interoperability between XML implementations. The regex

was actually commented out of the test cases due to excessively

high execution time. “Catastrophic” here refers to a regex which

is obviously problematic in terms of run-time performance. Cat-

astrophic Backtracking happens when part of regex matches text

but a subsequent expression in the regex means the string is not a

match. Regexes which are obviously problematic are clear targets

for improvement. Where obvious improvements exist, problems

like this one can be used as a test to validate the GP improvement

system itself. A correct regex should extract “bXcyXX” from the

following string:

bbbbXcyXXaaa

Catastrophic (CSV P in 11th)

This regex also exhibits Catastrophic Backtracking as it attempts

to match only when the 11th element of comma seperated string of

values is an upper case P. The following input value should match:

1,2,3,4,5,6,7,8,9,10,11,P

Grammar parse rule

Our �nal regex was taken from the PonyGE2 source code [11] and

its purpose is to extract a production rule name and value from

Backus–Naur form grammar. An example input string is:

<string> ::= <letter>|<letter><string>
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Note that this regex is also expected to extract values as groups

with the names “rulename” and “production”. Our �tness function

does not currently test for capture groups.

4.2 Input Test Data "Boosting"

As mentioned in 3.2, functionality error is a sum of match errors.

To expand the set of input strings, we use a very basic approach to

automatically generate additional test cases for each regex [15, 26].

We take an input string and a known target regex which matches

the desired text. We deterministically modify this input string until

the target regex no longer matches. Any input strings which do not

match are added to our test suite of input values. We modify input

strings in two ways. We trim o� characters from the start and end

of the string until we �nd a string which does not match. We also

replace every single character in the string with each character in

the ranges 0-9 and a-Z. Replacing characters catches any special

characters which are an important part of the problem. A variant

evolved regex is only considered equivalent to the original seed

regex in terms of this test data. Generally, the more terms there are

in a regular expression, the more cases are needed to provide test

coverage.

5 RESULTS

We initially report the results of a single GP run with a population

of 1000 and 1000 generations. We use 1000 generations here to

allow GP enough search time so that we may observe convergence

in the population and hopefully �nd some interesting example “best

found” regexes. Improvements were found in all regexes in our test

suite as can be seen by the speedups listed in Table 3. We classify

these improvements as “specialisation” as each regex is speci�c to

the input test cases we used. The speedup values are indicative of

typical improvements that were found for our chosen input data set.

The speedup achievable also depends on the length and distribution

of the input strings. In many cases, further testing is required to

determine if the evolved regex is equivalent to the original seed

used. The largest run-time improvements were found in the two

examples of catastrophic backtracking with a particularly large

performance improvement found for the “Catastrophic (CSV P in

11th)” problem.

A sample of improved regexes is shown in Table 4. These exam-

ples appear complex as mutation has introduced what we consider

“noise” - changes which have no measurable impact on runtime

performance. From these results we can see that improvements

are possible but that the result has become less readable. An addi-

tional “minimisation” GP run could be used to identify the minimal

set of code changes which introduce a performance improvement

enabling us to exclude super�ous code changes [41]. Though a

reasonable amount of each regex has been modi�ed, the overall

structure remains broadly the same.

From these results, it would appear that the improvements re-

quire more than a single modi�cation of a program. In other perfor-

mance improvement work on much larger programs the number of

changes to a program appears to result in less than a dozen changes

amongst approximately 2000 lines of source code [21]. In compar-

ison, evolving a more terse language such as regular expressions

appears to result in more of the original seed regex being modi�ed.

Of particular interest are the improvements at the extreme ends

of what was found with GP. What constitutes a valid MAC address

is reasonably well and concisely speci�ed as a sequence of exactly

twelve uppercase letters (A-F) or numbers in the “MAC address

validation” problem. It was not clear whether any improvement

was possible for this problem and so we were surprised to see an

improvement. Although the execution time was reduced, closer

inspection reveals that the regex was specialised to the test cases

used, as can be seen in Table 4. This exempli�es the use of GP to

explore the tradeo�s between functionality and performance. It is

also likely that many of the longer more complex evolved regexes

would not be considered semantically equivalent to the original

regex.

In Table 5 all improved regexes from a GP run are shown for the

“Catastrophic (QT3TS 1)” problem. While the di�erence between

the �rst two regexes clearly shows a 70% reduction in execution

time, the performance improvements thereafter are not as obvious.

In regex number 3 the expression .+ (any character, any number of

times) is replaced by a set of characters listed between square brack-

ets. The + operator is greedy, allowing any number of characters

to match so it is understandable that replacing this with something

more speci�c may improve performance. The 0-c expression is

evaluated as a range within square brackets. Replacing the match

any (.) operator with a range which more closely matches the input

data example is also understandable. Despite the appearance of

matching curly braces {76,} these braces are not evaluated and are

taken as individual characters within square brackets. The question

mark allows zero or one of the characters in the set to be present.

We found a statistically signi�cant di�erence between regex 2 and 3.

Under further repeated tests comparing regex 3, 4 and 5 in Table 5

no statistically signi�cant di�erence was found between the run-

ning time of these regular expressions. This highlights a limitation

with this approach whereby run-time performance variability can

result in arbitrary mutations.

In the “Catastrophic (CSV P in 11th)” problem a marked change

can be seen after evolution. The original regex in Table 2 was

12 characters long. After evolution, it is 30 characters long in

Table 4. This variability is almost certainly a result of the di�culty

of performing dependable benchmarking on software, particularly

in interpreted environments. Measuring instructions executed gives

a deterministic dependablemeasure [18] but counts each instruction

the same. Instructions executed contain no information about how

di�erent combinations of instructions have varying execution time

cost. In our GE system, each new individual regex is benchmarked

for time. If some additional characters are added to a regex which do

not measurably alter the running time of the regex, it is possible that

the regex will receive a slightly lower running time than the original

program. This demonstrates �rst-hand the di�culty in performing

regex benchmarks. Although our inclusion of measuring runtime

in the �tness function introduces a form of indirect parsimony

pressure on the length of a regex, over many generations we still

see neutral changes to the regex accumulate.

In Figure 1 we compare the e�ect of the di�erent initialisation

methods as described in section 3.1. We perform 50 GP runs and use

a bootstrapping method to gain statistical signi�cance. We draw

1000 random samples (with replacement) from experiment values

and �nd the di�erence between these values for each pairing of

1284



GECCO ’17, July 15-19, 2017, Berlin, Germany B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire, M. O’Neill

Table 2: Test Suite of Regular Expressions (regex spanning more than one line should be concatenated)

Name Source

MAC address search [3, 39] ([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})

MAC address validation [36] ^[0-9A-F]{12}$

Email validation [37] ^(?=.{1,254}$)(?=.{1,64}@)[-!#$\%&'*+0-9=?A-Z^_`a-z{|}~]+

(\.[-!#$\%&'*+0-9=?A-Z^_`a-z{|}~]+)*@[A-Za-z0-9]

([A-Za-z0-9-]{0,61}[A-Za-z0-9])?(\.[A-Za-z0-9]

([A-Za-z0-9-]{0,61}[A-Za-z0-9])?)*$

ISO 8601 datetime [37] ^\d{4,}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-5]\d\.\d+

(?:[+-][0-2]\d:[0-5]\d|Z)$

Scienti�c number [37] ^\s*(-|\+)?(\d+|(\d*(\.\d*)))([eE][+-]?\d+)?\s*$

D3 interpolate number [38] [-+]?(?:\d+\.?\d*|\d*\.?\d+)(?:[eE][-+]?\d+)?

Catastrophic (QT3TS 1) [35] .X(.+)+XX

Catastrophic (CSV P in 11th) [40] ^(.*?,){11}P

Grammar parse rule [11] (?P<rulename><\S+>)\s*::=\s*(?P<production>

(?:(?=\#)\#[^\r\n]*|(?!<\S+>\s*::=).+?)+)

MAC address search MAC address validation Email validation ISO 8601 datetime Scientific number D3 interpolate number Catastrophic (QT3TS 1) Catastrophic (CSV P in 11th) Grammar parse rule
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Figure 1: Comparison of Initialisation Methods.

Table 3: “Best Found” Regular Expression Speedups Found.

Name Speedup

MAC address search 1.14X

MAC address validation 1.57X

Email validation 1.34X

ISO 8601 datetime 1.09X

Scienti�c number 1.89X

D3 interpolate number 1.07X

Catastrophic (QT3TS 1) 3.60X

Catastrophic (CSV P in 11th) 112.64X

Grammar parse rule 1.31X

initialisation method. We take the mean of these 1000 di�erences.

We repeat this process 1000 times to generate 1000 mean values of

di�erence in speedup between each pairing. The di�erence between

initialisation methods is statistically signi�cant when the body

of the boxplot does not cover the origin. Seed Only performed

the best on 7 of the 9 problems with RHH performing best on

the remaining two problems. This suggests that although we can

increase diversity in the population, it does not always help in

�nding diverse implementations. RHH appears to outperform

PI grow on 6 of the 9 problems, and their performance on the

Catastrophic (QT3TS 1) problem is not clear.

Though somewhat anecdotal, we did attempt evolution without

the seed program. On one such run we were also able to �nd a

regex which passed all our tests on the “MAC address search” prob-

lem without including the seed regex. This is worth investigating

in future work as it appears that the evolution of regex from an

initialisation mechanism such as ramped half-and-half or PI grow

is within reach of a standard GP approach. Using standard GP ap-

pears to take a lot longer (hours instead of minutes) than multiple

applications of a GP algorithm specialised for evolving regexes [3].
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Table 4: Example Regex Improvements.

Name Example Improvement

MAC address search (..[:]){5,}[a-z\d(x{2277298,36899})+F]{3,653}

MAC address validation ^[0-9(?!9-G).]{12}$

Email validation ^(?#.{1,254}$)(?=.{0,61}@)[-!#1A-Z*A-Z^_`a-z{|?~]+

(@.[M!#$%&'*Y0-9=?-Z^_`a-z{|~]+)i[A-Za-z0-9]

([A-Za-z0-9-]{0,61}[0-9a-za-z])?(\.[A-Za-z0-9]

([A-Za-z0-9-]{0,61}[A-Za-z0-9])?)*\w

ISO 8601 datetime ^\d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-5]\d\.\d+

([+][0-2]\d:[0-5]\d|^^A-Z[-5]d:[[]\d:[a-z]\d:]{06227}

.\d+2-b[%][58w07r\f-]u[{212,}]\?V0Z[1][!\w\d\d+][8dA]\F#2j[{2202,456}]\q|Z)$

Scienti�c number ^\s*(-|\+)?(\d+|G\wp"\E,("s%Q+)?)([.Y]?\d+([eE][+-]\d+)?\ *|)$

D3 interpolate number (?:\d+\.?\d*|[(-EQ)[]]*(?:\d+\.?[+E\/'3t\/++]?|[[N0.]]*\F))(?:[eE][-+]?\d+)?

Catastrophic (QT3TS 1) .X([3-c{26,}]?)\wXX

Catastrophic (CSV P in 11th) ^([{}{6856945737,}5|{2555,}{,}WAT1][{137,2}v{3,}v3|{1170,}|{20,}]*,){11}P

Grammar parse rule (?P<PPa><\S{6,6}>)\ ::=\s*(?P<OoFuDxisn>(tF6(){,}A-Z(vPE)?|(?!<Plt>\s).{6}?){4})

Table 5: Catastrophic (QT3TS 1): Lineage of Improved ver-

sions.

Regex Time Gen Found

1 .X(.+)+XX 0.00034746 0

2 .X(.+)XX 0.00010399 58

3 .X([0-c{76,}]?)\wXX 0.00009754 83

4 .X([9-c{70,}]?)\wXX 0.00009745 476

5 .X([3-c{26,}]?)\wXX 0.00009634 481

5.1 Limitations

The performance improvements found are only valid within the

input values used to test regex functionality correctness. Where

some functionality provided by the original regex is not speci�cally

tested by the input strings we can assume GP will likely remove

such functionality. If removing this functionality does not cause a

�tness penalty then it is likely to be removed if it reduces the exe-

cution time of the regex. Test suite coverage as well as determining

program equivalence is a recognised problem [1] and although we

�nd performance improvement, we can only claim the improve-

ments as specialisations of the regexes to the input data. In other

words, we maintain functionality only as far as is measured by our

test strings. If the tests don’t measure it, functionality is removed

during experiments. There remains the possibility that an evolved

regex which is correct for the input test data is not fully equivalent

to the original regex2. Though our benchmark suite is compact,

the power of our results to recommend one initialisation method

over another may only be used as a guide for future work due to

the relatively small size of the benchmark suite.

2There is a larger open question here on how to fully test program equivalence between
original seed and evolved regex. In practice, if GP can be used to �nd a performance
improvement, we may ask a human programmer to decide whether the evolved regex
can be used as a replacement.

6 CONCLUSIONS

We have presented and experimented with a compact benchmark

test suite of “real world” regex examples. Our evaluation demon-

strates the utility of Grammatical Genetic Programming in explor-

ing the trade-o� between functionality and performance. We were

able to �nd improvements in code from widely used systems. This

answers our �rst research question from 1 as we readily �nd regexes

“in-the-wild” for which we can �nd some performance improve-

ment. As to our second research question as to whether or not we

can maintain functionality, we are somewhat undecided. For the

shortest regexes, we were able to �nd improvements, but these im-

provements clearly did not maintain equivalent functionality. For

the more complex regexes which we evolved, we found improve-

ments but cannot say for sure if these improvements deleteriously

a�ected functionality.

We were also able to use our GE system to �nd regex improve-

ments in the GE system itself, demonstrating an initial step towards

a self-improving GP system [6]. From our results it appears that it

is not a problem to use only a seed program as the initial starting

point in evolving improvement. Improvements found are incremen-

tal in that the overall structure of the original regex is maintained.

As such, other methods for �nding increasingly di�erent regexes

should be explored.

6.1 Future Work

A common thread in this future work is the notion of building up

a library or repository of known, well understood regexes. Regex

snippets could be continually gathered as they are parsed [10] from

human-written examples as well as over the course of evolutionary

runs. Within a GP context, this library could be used to drive a

semantic crossover operator.

An approach to elicit interesting regex variants is to use many

evolutionary runs with di�erent GP con�gurations [9]. We envi-

sion a hierarchical approach whereby progressively larger numbers

of regex primitives are excluded from each GP run. Excluding a

primitive from a regex and the grammar would force GP to �nd a

functionally equivalent regex without using that particular primi-

tive. Repeating this for all individual primitives in the known regex
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should yield a set of alternative regex implementations, which can

also be added to our library. The process can be repeated for all

pairs of primitives, and so on for triplets etc.

To gain a more representative analysis of real-world regexes, the

benchmark suite can be expanded to include thousands of regexes

[4]. As e�ort has been made to discover the most prevalent and

e�ective performance improvements in Javascript [32], a similar

approach may be useful across a large corpus of regexes. If com-

mon regex patterns are found we may apply regex improvements

more deterministically. If we can gain a broad understanding of

what functionality is most often required, and also elicit the most

common improvement opportunities in human-written regexes, we

may be able to de�ne a canonical set of the “best” regexes to use

in the majority of cases, thus providing more “bang-for-buck” to

the programmer [13]. The goal is to reduce time spent writing and

debugging regexes for use cases which are well understood and, in

some sense, already “solved”.
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