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ABSTRACT
With the increased use of unmanned aerial vehicles (UAVs) for
both commercial and private use comes the inevitability that over-
saturated airspaces will exist. If an airspace becomes congested and
difficult to traverse, the possibility of an entity abusing, controlling,
and even monopolizing the space can be extremely dangerous. In this
paper we show that this type of monopolization can exist. We use
cooperative coevolutionary algorithms to examine multiple teams
of UAVs coexisting in the same airspace. Considering two equally-
sized teams: A and B, if Team A chooses to cooperate with Team
B, and considers team B’s losses as its own, the system can work
fluidly. If Team A chooses to focus on its own concerns while
ignoring impacts on Team B, Team B can suffer a 99% increase in
midair conflicts. If Team A chooses to actively prevent Team B from
fluid operation, Team B’s number of midair conflicts can suffer a
394% increase.
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1 INTRODUCTION
Cooperative multiagent systems (CMASs) have been a growing topic
over the last 20 years, yielding many breakthroughs and achieve-
ments [5, 7, 17]. There has been sufficient success with a number
of multiagent system (MAS) domains; one of which is navigating
around obstacles to achieve a unified goal, while systematically
learning how to improve their efficiency [13, 14]. For example, the
implementation of CMASs are being used to develop policies for
unmanned aerial vehicles (UAVs) for search and rescue applications.
Allowing the agents to work with each allows faster location of the
assets, improving the agent’s individual efficiency in addition to the
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overall system efficiency. This strategy of having the agents and the
overall system improve their efficiency simultaneously has largely
been explored with CMASs. The issue with this is that there is an
assumption that the agents will work with each other to improve the
efficiency of the overall system.

The United States National Aeronautics and Space Administration
(NASA) is developing an Unmanned Traffic Management (UTM)
system to develop a low-altitude airspace for unmanned aircraft
system operations [9, 10]. This is in direct response to the rise in
popularity of the use of UAVs. Entities within NASA’s UTM system
would submit a flight plan containing the time of departure, type
of aircraft, planned travel speed, and waypoints. The UTM system
will check that the proposed flight plan is conflict-free and then
tracks the aircraft via GPS. Though the UTM system will check for
potential conflicts prior to authorizing a flight plan, it is not capable
of distinguishing the difference between a flight plan whose purpose
is to simply make it to its destination and an obstructive flight plan.
Since the UTM system handles the flight plan request and execution
autonomously, there is no fail-safe that understands the purpose
of any particular flight plan. This leaves a door open for an entity
to submit flight plans that could directly impact the flight plan of
another entity. If we consider this on a larger scale, then a team or
corporation could submit flight plans that negatively impact other
teams or corporations.

An apparent example of this scenario is when we consider mul-
tiple drone delivery companies all operating in one airspace. Com-
panies, such as Amazon, are currently working towards deploying
swarms of UAVs to deliver packages to their customers; however
Amazon needs to wait until regulatory support is in place [1, 2].
NASA’s UTM system is the regulatory support that will enable not
only drone delivery, but agricultural applications, commercial pho-
tography, surveillance, and search and rescue operations. Once the
regulatory plans are in place, other companies will enter as entities
in the drone delivery market. If an entity looks to exploit this market,
they can saturate the airspace with obstructive flight plans and drive
their competitors out.

The major contribution of this work is to show that under NASA’s
current UTM system, an individual or group (“entity”) can take
actions to create severe congestion in an otherwise healthy airspace,
forcing up to 394% more collision avoidance maneuvers than were
required otherwise.

The remainder of this work is organized as follows: Section 2
provides the necessary background. Section 3 describes our exper-
imental approach. Section 4 describes the experimental domain.
Section 5 provides our experimental results. Finally, Section 6 con-
cludes this work and provides directions of future research.

2 BACKGROUND
MASs are a useful way of developing a system where multiple en-
tities make decisions that effect themselves, other agents, or the
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environment [5]. In a MAS, agents are rewarded for decisions that
they make and how it affects themselves, other agents, or their envi-
ronment. Agents can be rewarded for making it to their destination,
observing points of interest (POI), avoiding conflicts with other
agents, or even producing conflicts with other agents.

In a CMAS, agents work together in a team to achieve an individ-
ual or global goal [11]. In a sense, agents who perform well with
other agents by reducing conflicts, or discovering a high number
of POI are rewarded. Inversely, the competitive side of MASs ex-
ists where agents receive rewards based how often other agents had
conflicts or if the other agent’s number of observations of POI are
minimized.

Typically models are developed based on whether or not agents
in a system are working with or against each other. However, this
idea of cooperative or competitive MASs neglects a scenario where
agents are not being rewarded in a competitive sense, but rather the
agents are focused on optimizing themselves regardless of how it
affects other agents or the environment. This middle ground can be
modeled by having multiple CMAS teams, where each team has their
own objective. This scenario of agents learning cooperatively within
their own respective team, however not necessarily with agents form
other teams, can better be described as a multi-cooperative multia-
gent system (MCMAS), which is illustrated in Figure 1. A CMAS
represents how agents from single team work with one another,
where the MCMAS represents how teams of CMASs can exist in the
same environment but have the ability to learn differently from one
another. For instance, one team may be learning to cooperate with
all agents in the system, while another team may only be learning
cooperatively with agents in it’s own team. In this paper, we use
this model to show how a team of non-cooperative agents can harm
another cooperating team without being directly rewarded. We also
look into how a team of malicious agents can harm a cooperating
team when receiving direct rewards.

A common learning algorithm for training agents is an evolution-
ary algorithm (EA). The multiagent implementation of this comes in
the form of a cooperative co-evolutionary algorithm (CCEA). Like a
standard EA, agents have multiple solutions or policies, but specific
to a CCEA, each policy for each agent is given an overall quantita-
tive value for how well the agents’ policies worked together. CCEAs
tend to have a population of solutions that converge to a stable set

Figure 1: In a CMAS, all agents are cooperating. In a MCMAS,
multiple teams of agents are cooperating with their teammates,
but not necessarily with other teams.

Figure 2: Random Team Builder - A CCEA randomly selects a
policy for each agent to build a simulated team.

of solutions and not necessarily the optimal solution. Leniency is a
form of a credit assignment that helps a CCEA train the population
not only faster, but it allows a more optimal population of solutions
to be obtained.

2.1 Cooperative Co-evolutionary Algorithms
A CCEA is a method used to simultaneously train multiple agents to
work together cooperatively to achieve a global goal. This consists
of a team of multiple agents, where each agent has multiple policies.
The policies contain a set of decisions that directly effect that policy’s
fitness. A key difference between an EA and a CCEA is that a CCEA
allows multiple agents to learn to produce a stable solution space
rather than the most optimal. This is extremely useful for MAS
exploration and path planning problems [8].

Since these policies need to work well with one another, they
need to be graded as a team. This random selection repeats until
all of the policies for each agent are selected and assigned a fitness.
Figure 2 shows a visualization for a single team of agents and how
policies are selected to build a ”simulated team” where each of the
different colors represent a different simulated team.

As a way to determine which policies for each agent were the best,
each agent performs its own EA. Similar to a standard competitive
style EA, two policies are randomly selected and compared. The
losing policy becomes a copy of the winning policy and is given
a slight mutation. This process is repeated until the population
of policies for each agent contains one half corresponding to the
winners and the other half corresponding to the mutated copies of the
winners. Once each agent has performed an EA on their policies, the
next generation of the CCEA begins and randomly selected policies
are simulated again.

2.2 Leniency
CCEAs are great at producing coorperative polices, however they
have a difficult time when also trying to optimize the global fitness.
Each policy of each agent is only simulated once during a generation
and it’s fitness is directly affected by the other agents’ policies that
it is simulated with. Leniency addresses the problem that one policy
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could have performed better if it is paired with a different set of
policies. It is a method that allows each policy to be evaluated on
several different simulated teams before assigning it a final fitness
for that generation [12]. The most simplistic implementation of
leniency is to allow each policy to be simulated in different teams,
where it’s fitness would be the fitness associated with the best team
that it was on. This allows the policies to not only learn to work with
each other, but drive the solution space towards the optimal solution.

2.3 Related Work
In the case of multiagent systems, it is largely assumed that the
agents will work cooperatively with one another since it is far easier
to control a system where there is a unified goal. However, CMASs
are not always the appropriate model to use. The Tragedy of the
Commons is an economic theory where multiple individuals working
independent of each other deplete a finite resource. An example
of this is how fish populations in the oceans have been decimated
because people have interpreted the ”freedom of the seas” to include
a right to fish them without any quantity restrictions [6]. Much
like people overfishing, an entity could interpret the drone delivery
market as the freedom to schedule as many flights as they want,
without considering others uses for the airspace.

This issue where airspace becomes a finite resource is amplified
when the agents can explore it freely without consequences. Colby,
Knudson, and Tumer explored how a MAS could be trained such
that the agents would avoid each other while being able to navigate
through an airspace to find POI [3]. By using a CCEA to train a
neural network for each agent, 92% POI coverage can be achieved
while providing zero conflicts between agents.

With the inclusion of a finite resource into a MAS brings with it
the possibility of competition. Just like in nature where predators
and prey evolve over time, a competitive MAS can also evolve [15].
By simultaneously co-evloving two teams to compete against one
another, an arms race develops where each team is being negatively
affected by the other teams in the system. This competitive scenario
is applicable to airspace as it becomes more and more saturated.

Hall of Fame (HOF) was introduced by Rosin and Belew for
competitive co-evolution originally, where the best individuals are
saved to be tested against later generations [16]. This allows the
policies of the individuals selected for the HOF to contribute to
future generations, and that new individuals may be tested against
the HOF policies. This method has been extended to CCEAs where
the concept of a HOF team can be implemented [4]. In this work,
leniency was used in place of HOF as it is able to achieve a desirable
learning speed. HOF will be implemented in future work.

3 TEAM-BASED CO-EVOLUTIONARY
ALGORITHM

In this paper we investigate how two teams interact given various
parameters which make them fully cooperative, non-cooperative,
or even malicious. The team-based CCEA’s are set up in such a
way that a single policy from each agent in each team is randomly
selected and simulated. More simplistically, we can imagine that
Figure 2 is extended to include the agents and policies of the other
team as shown in Figure 3.

Figure 3: Random Multi Team Builder - Multiple CCEAs ran-
domly select a policy for each agent for each team to build mul-
tiple simulated teams.

Algorithm 1 describes how the CCEA is implemented in this
paper. Line 1 creates a random set of polices for each agent in both
teams. The selection process then works the same as a standard
CCEA, where a policy from each agent from both teams is randomly
selected in line 5, which creates the simulated team. Line 6 is
described in more detail in Algorithm 2. To obtain the fitness for
each policy, all of the policies on Team 0 would have the same fitness
value as each other and all of the policies on Team 1 would have the
same fitness values as each other, which is performed in line 7 in
Algorithm 1. This process is repeated, until each policy has been
assigned a fitness value only once. When leniency is implemented,
this process is repeated n number of times and a policy’s fitness is
reassigned if it is able to perform better on a different simulated
team.

The next portions of the CCEA used in this paper are the Down
Select, Repopulate, and Mutate functions, lines 11, 12, and 13,
which are described in the Section 2.1 of this paper. Following that
the conflict and fitness data corresponding to the best polices for
each agent in both teams are stored, the entire process from line 5 to
14 is repeated form number of generations.

Both leniency and HOF allow for the CCEA to better learn to
produce optimal solutions, however HOF was out of the scope of
this project and will be implemented in future work. In this work, le-
niency is selected because it allows for a better representation of how
well each individual policy performs on different simulated teams.
Leniency also helps to speed up the learning process substantially.
Each simulated policy is assigned a fitness value that is dependent
on how well it performed, given a preset scenario.

4 UAV AIR CONFLICT DOMAIN (UCD)
The basic parameters for the UAV Air Conflict Domain (UCD) are
set in such that an x by � by z unit space will be highly saturated
with UAVs. By introducing n number of agents into the environment,
the airspace becomes very difficult to navigate without triggering
the crash avoidance systems while still allowing the agents to learn
to not cause a conflict with one another.

In each simulation, agents are given a set of w number of way-
points which include their starting and ending waypoints. During
the simulation, each agent has set amount of time to move from way-
point to waypoint. Once an agent has made it to their final waypoint,
their conflict data and flight time is stored. The conflict data for an
agent is then used to judge how well that set of waypoints worked
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Algorithm 1: CCEA Algorithm. The CCEA is populated by
vector teams (T ) which contain a vector of agents (A), which
contain a vector of polices (P) and randomly builds teams for
the the simulator (ST ), which returns a fitness for each policy
(Fp ).

Input: T ,A, P ,Num T ,Num A,Num P ,Gen max ,Len
Output: Ft

1 Initialize Population(T, A, P)
2 for Gen < Gen max do
3 for Amount lenient Len do
4 for Each Policy P do
5 ST  Build Team For Simulation(P)
6 Simulate Team(ST)
7 Get Team Fitness(ST)

8 for Each Team T do
9 for Each Agent A do

10 for Num P/2 do
11 Down Select(Fp)
12 Repopulate(P)
13 Mutate(P)

14 Store Data(Ft )

15 Return Fitness Data Ft

at avoiding conflicts and allowing the agent to make it to it’s final
destination.

Algorithm 2 describes the simulation process used in the UCD.
Each agent begins the simulation at their first waypoint, which is
performed in line 3. For each agent, line 6 calculates where it will
be at the end of each time step. Once each agent has their projected
state, then line 8 is performed, which is detailed in Algorithm 3. If
there exists a potential conflict between two or more agents, then
all agents involved in the conflict will have their speeds reduced,
changing their projected state. Line 10 of Algorithm 2 simply looks
to see if an agent has reached it’s target waypoint. If the projected
state predicts that an agent will overshoot the target waypoint, the
agent will adjust it’s speed as needed to not overshoot. Once the
agent makes it to their target waypoint, it is assigned a new target
waypoint. Lastly line 11 assigns an agent’s current state to be their
projected state. This process is repeated until the allotted time given
for a simulation runs out.

Given any agent’s projected state, the simulator calculates the sep-
aration distance between each agent, checks for potential conflicts,
and performs a crash avoidance if necessary. The crash avoidance
used in this domain is detailed in Algorithm 3. Since a potential
conflict could occur between two or more agents’ current states and
their projected states, line 2 gets the incremented states for an agent
between it’s current state and projected state at k time interval. If the
separation distance calculated in line 5 is less than the acceptable
crash avoidance distance, the crash avoidance functions will take
place represented by lines 7 through 12 where the fitness is deter-
mined by the behavior of the teams involved in the potential conflict.
Line 10 then adds a value of one to the number of conflicts for that
agent’s team. In this domain, the conflict data is representative of

Algorithm 2: Simulator Algorithm. The Simulator (S)
is populated by vector of agents in a simulated team, (ST )
where each agent has a vector of waypoints (W) and returns a
fitness for each agent (F).

Input: ST ,W , St ime
Output: Fi

1 Set Initial Conditions(S)
2 for iter = 0! size(ST ) do
3 ST  Initialize Agents(W)

4 for Each time step do
5 for Each agent in simulated team ST do
6 Get Projected States(W)

7 for Each agent in simulated team ST do
8 Check For Conflicts(W)

9 Track Conflicts(W)

10 Check If At Target Waypoint(W)

11 Get New States(W)

12 Return Agents Fitness Fi

Algorithm 3: Crash Avoidance Algorithm. Each
agent’s projected state is compared to other agents to check
for possible conflicts in the Simulator (S). If a potential conflict
exists the conflict matrix is evaluated and penalties are given
based on the experiment being conducted (E).

Input: ST ,
Output: Fm

1 for Each agent in simulated team ST do
2 Get Incremented Projected State(ST)
3 for Each agent in simulated team ST do
4 for k < Time Step do
5 Get Separation Distance(ST)
6 if Separation Distance < Crash A�oidance Distance

then
7 Set Fitness Matrix(E)
8 Calculate Fitness Matrix(ST)
9 Penalize Agent(ST)

10 Store Conflict Data(ST)
11 Change Agent Travel Speed(ST)
12 Get New Projected State(ST)

13 Return Fitness Fm

the global fitness for each team. Lastly the agents involved in the
potential conflict will have their travel speeds for that time step re-
duced and a new projected stated will be calculated. This reduced
speed is to represent the how an agent would have to move off a
straight line path to avoid a crash.

4.1 Fitness Calculations
In the UCD, several fitness calculations are considered to model
how two teams can learn to optimize their population of solutions
differently. Figure 4 illustrates how fitness is calculated based on
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Figure 4: - Conflict Matrix: In the cooperative, uncooperative,
and malicious cases, Team 0’s fitness calculation changes, but
Team 1’s is always done cooperatively (Equations 2–5).

the type of learning that caused the conflict. The fitness matrix
allows agents to be penalized or rewarded depending on if their team
is cooperatively, uncooperatively, or maliciously learning. C00 is
a conflict between two agent on Team 0, C01 is a conflict between
an agent on Team 0 and an agent on Team 1, and C11 is a conflict
between two agent on Team 1.

The conflict matrix allow agents in different teams to be penalized
or rewarded based on actions that caused conflicts between agents.
The UCD keeps track of conflicts that involve only agents in Team 0
denoted byC00, agents in Team 0 that conflict with agents in Team 1
or vice versa, denoted by C01, and conflicts that only involve agents
in Team 1 denoted by C11. The fitness for each team is the sum of
the fitnesses for each agent in that team. Agent fitness is the sum of
penalties and rewards for each agent in that team for each time step
throughout the simulation. The fitness calculation for a given team
is:

Ft =
’

n=(0):number of a�ents
(Fn ) (1)

Where Ft is the fitness of each team which is determined by the
fitness of each agent in that team, note that agents on Team 0 are
capable of learning with various behaviors where agents on Team 1
always learn cooperatively. Fn is the fitness for the nth individual.

Two Cooperative Teams - In the case of two cooperative teams,
agents on any given team are penalized if one of it’s agents cause
a conflict regardless of which team the other agent is on. From the
conflict matrix, agents on Team 0 receive penalties when an agent
from Team 0 conflict with another agent from Team 0 or conflict
with an agent on Team 1. Agents on Team 1 are penalized when a
conflict occurs between two agent on Team 1 or between an agent
on Team 1 and Team 0. The fitness calculation for Team 0 and Team
1 where F0n coop is the fitness for the n

th individual on Team 0,
F1n coop is the fitness for the nth individual on Team 1 is:

F 0n,coop =
’

t=(0):max time
(C00 +C01) (2)

F 1n,coop =
’

t=(0):max time
(C01 +C11) (3)

One Uncooperative and One Cooperative Team - In the case of
one uncooperative team and one cooperative team, the uncooperative
team is only penalized if one of its agents conflicts with another one
of its agents. In this domain, Team 0 is the uncooperative team
and therefore is only penalized through the conflict matrix when

agents on Team 0 cause a conflict with another agent on Team 0.
The cooperative team is Team 1 and is penalized each time any of
its agents are involved in conflict regardless of which team the other
agent in on. The fitness calculation for Team 0 is shown below,
where F0n uncoop is the fitness for the nth individual and the fitness
for agents on Team 1 is defined by F1n coop .

F 0n,uncoop =
’

t=(0):max time
(C00) (4)

One Malicious and One Cooperative Team - The last case that
is considered in this domain is when one team acts maliciously
towards another team. The malicious team in this domain is Team
0. The malicious team receives a reward every time an agent from
Team 0 conflicted with an agent from Team 1 or when two agents
from Team 1 conflicted with each other. Agents on Team 0 are
never penalized for being involved in a conflict. Similar to the other
two cases, Team 1 is still penalized for any conflicts that it’s agents
were involved in. The fitness calculation for Team 0 is shown below
where F0n malicious is the fitness for the n

th individual and the
fitness for agents on Team 1 is defined by F1n coop .

F 0n,malicious =
’

t=(0):max time
(�C01 �C11) (5)

5 EXPERIMENTAL PARAMETERS
The parameters for this experiment are developed such that the
airspace would be difficult to learn in. In each experiment, the basic
parameters are keep the same to allow the different experiments to
be compared fairly. The basic parameters for each experiment are
a 35 by 35 by 35 unit airspace, 28 agents divided evenly into two
teams, and 150 seconds of allotted time to make it to all of their
waypoints. Each agent has 50 policies, where each policy contains 8
waypoints and are bounded to always be within the airspace. Each
agent has a normal travel speed of 5 units per second and a crash
avoidance speed of 2.5 units per second. The crash avoidance radius
is set to be 5 units and agent movements through the airspace are
calculated every 0.1 seconds. For the experiments that use leniency,
each policy is allowed 5 chances to find a random team to perform
well on. The learning algorithm is to be ran for 300 generations
where each waypoint for a copied policy has a 50% chance of being
mutated in the x , �, and z direction between [-1, 1] units. Lastly,
each experimental result is the average of 30 statistical trials and the
error was calculated by the standard deviation for each generation
dived by square root of the number of statistical trials (�/

p
N ).

To show that one team can harm another, the following experi-
ments were conducted (Sections 5.1–5.4, respectively):
• Two Teams Same Size With Cooperative Learning:

Serves as a baseline and shows that given a highly saturated
airspace, teams can learn to avoid conflicts.

• Two Teams Same Size With Uncooperative Learning:
One team is cooperative and one team is uncooperative. Team 0
learns to avoid internal conflicts with other agents from Team 0,
but not conflicts with Team 1.

• Two Teams Same Size With Malicious Learning:
Team 0 will learn cause conflicts with agents in Team 1.

• Static Waypoints:
Team 1 will learn policies that reduce the number of internal
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Figure 5: Conflict data for two teams learning cooperatively.
Because the teams were both cooperative and equally sized they
experienced a similar number of conflicts in each experiment.
Both teams were able to learn substantially better with leniency.

conflicts, which are then kept static as Team 0 is introduced
into the environment, learning in different cases: cooperatively,
uncooperatively, and maliciously.

5.1 Two Teams Same Size Cooperative Learning
The purpose of the first experiment conducted is to show that two
teams that work cooperatively with one another can learn to min-
imize the amount of potential conflicts. The goal is to have each
team statistically learn at the same rate and achieve the same number
of conflicts. Additionally, we want to show that when leniency is
included, the two teams are able to learn faster and achieve a better
final number of conflicts. Lastly this experiment serves as a bench-
mark for the other experiments as it presents an ideal learning curve
for this domain when two teams are learning to navigate a highly
saturated airspace.

From Figure 5 we can see that both teams are able to minimize
their number of potential conflicts. Both teams are also able to
learn at the same rate and have average final number of conflicts
of 776.16 and 760.00 that are within error bars of each other and
are therefore statistically the same graph. This result also acts as
a verification for our domain, such that instead of one large team
working cooperatively with one another, we can now have two teams
working cooperatively with each other. Both teams learn at the
same rate and achieved the same final number of conflicts; this is
significant since each team has different global evaluations. Lastly
we can see that when the teams are able to learn with leniency, they
are able to learn faster and achieve better average final conflict values
of 574.90 and 565.36.

5.2 Two Teams Same Size Uncooperative
Learning

In the second experiment, we explore how both teams learn to avoid
potential conflicts when one team was acting uncooperatively with

Figure 6: Conflict data for two teams with one cooperative and
one uncooperative team. Both teams experienced more conflicts
than that of the cooperative case shown previously.

the other. In this case agents on Team 0 are only penalized for being
involved in a conflict with another agent on Team 0. However, agents
on Team 1 are still penalized for being involved in conflicts with
agents from Team 0 or with another agents on Team 1. The goal is
to show that when agents on Team 0 are acting uncooperative with
agents on Team 1 and a conflict between the two teams occurs, then
agents on Team 0 will keep their flight path and force agents on
Team 1 to take a different one.

Figure 6 shows that when agents on Team 0 are learning unco-
operatively with agents on Team 1, then Team 1’s global conflicts
are only 6.31% higher than that of Team 0’s global conflicts. Due
to Team 0’s uncooperative learning, Team 0’s and Team 1’s aver-
age global number of conflicts increase from 574.90 and 565.36 to
736.95 and 783.47 in comparison to when both teams were learning
cooperatively. Since Team 0 learns in an uncooperative manner,
Team 1’s final global number of conflicts increases by 38.57%. This
rise in the number of conflicts is directly due to the conflict counter
keeping track of all of the conflicts between agents regardless of
how the team learns.

5.3 Two Teams Same Size Malicious Learning
Another method that a team of agents can use to learn to interact
with agents from another team is to maliciously attack them. In this
experiment, agents from Team 0 are given a reward for causing con-
flicts that involved agents from Team 0 and Team 1. In addition to
this, agents from Team 0 are also rewarded for conflicts between two
agents on Team 1. Agents on Team 1 are trained to learn coopera-
tively and therefore are penalized for being involved in any conflicts.
By running this scenario, we are able to see if a team of agents could
learn to optimize their flight path in a hostile environment.

Figure 7 provides evidence that a team of agents acting mali-
ciously can greatly impede the learning progress of another team
learning to avoid potential conflicts. In this experiment agents on
Team 0 achieve an average final number of conflicts of 1635.20,
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Figure 7: Conflict data for one cooperatively learning team and
one maliciously learning team. Both teams experienced substan-
tial increases in conflicts when compared to the cooperative case
or uncooperative case shown previously.

where agents on Team 1 achieve a average final number of conflicts
of 1058.60. If we compare these results to that of the strictly coop-
erative case, we see that the number of conflicts greatly increases
when agents on Team 0 learn to maliciously attack agents on Team 1.
Due to Team 0’s malicious behavior, Team 1’s average final number
of conflicts increases by 87.24%.

5.4 Static Waypoints
Although the other experiments shed light on what happens when
both teams are learning simultaneously, they do not provide any
insight as to what would happen if only one team is able to learn.
In this experiment we first optimize the flight path for agents on
Team 1, then introduce Team 0 into the environment. We then run
the cooperative, uncooperative, and malicious cases for Team 0 and
keep agents on Team 1 from learning to change their optimized flight
path. The purpose of keeping agents on Team 1 form learning to
alter their flight path is to show a more realistic way that a team can
harm another team by simply having their agents learn to produce
flight paths based on a learning algorithm.

Figure 8 shows the average conflict data for both teams for the
cooperative, uncooperative, and malicious cases as well as the learn-
ing curve for when the environment only consist of Team 1. Before
introducing both teams to the environment, agents on Team 1 are
allowed to optimize their flight path to an average final number of
conflicts of 101.09.

In one scenario, agents on Team 0 learn to cooperatively work
with agents on Team 1. This cooperative behavior allows for Team
0’s average final number of conflicts to be reduced to 531.48. Al-
though the agents on Team 1 are not allowed to deviate from their
optimized flight path, Team 0 is learning to cooperate and this causes
the average final number of conflicts for Team 1 to be reduced to
455.52. The reason that there is such a large increase from when
there was just Team 1 in the environment to when a cooperative

Figure 8: In the first 300 generations, Team 1 learns to mini-
mize their conflicts. After 300 generations Team 1’s behavior is
held constant and Team 0 is introduced and learns with leniency
from generations 300-600. Team 0 learning cooperatively pro-
duces the fewest conflicts; uncooperative produces moderately
more conflicts; malicious produces far more conflicts.

Team 0 was introduced is due to the introduction of 14 more agents
into the environment, causing the airspace to be more saturated and
difficult to learn in.

For the scenario where an uncooperative Team 0 is introduced
and agents on Team 1 are only allowed to used their optimized flight
path, we see a statistical increase in the average number of conflicts.
Due to Team 0’s uncooperative learning, Team 1 is only able to
achieve an average final number of conflicts of 906.94, which is a
99.10% increase to that of the cooperative scenario.

The last scenario in this case is a malicious Team 0 being intro-
duced into the environment after agents on Team 1 optimize their
flight path. This simple behavior change causes a very drastic in-
crease in the average number of conflicts for agents on Team 1, with
an average final number of conflicts of 2253.7, which is a 394.75%
increase from the cooperative scenario.

5.5 Discussion
The experiments presented in this paper have allowed us to look
at airspace congestion from multiple aspects. The first experiment
where two teams of the same size learned to cooperate with one
another proved that even though an airspace may be highly saturated,
as long as all the agents in the environment learn to work together,
the number of potential conflicts can be greatly reduced. Since both
teams’ learning curves were statistically the same, we can say that
the cooperative learning process worked. Lastly, the first experiment
showed how the CCEA was able to learn not only faster but better
by using leniency.

The next experiment explored how a team may want to learn
differently than the other. When Team 0 learned in an uncooperative
manner and Team 1 was still trying to learn cooperatively, there was
a statistically drastic increase in the number of potential conflicts
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Table 1: Average Final Number of Conflicts Two Teams Learn-
ing

Learning Behavior Team
Learning Team 0 Team 1

Cooperative no Leniency 0 & 1 776.16 760.00
Cooperative with Leniency 0 & 1 574.90 565.36

Uncooperative 0 & 1 736.95 783.47
Malicious 0 & 1 1635.20 1058.60

Table 2: Average Final Number of Conflicts One Team Learn-
ing

Learning Behavior Team
Learning Team 0 Team 1

Optimized Team 1 1 N/A 101.09
Cooperative Team 0 0 531.48 455.52

Uncooperative 0 948.90 906.94
Malicious 0 3188.4 2253.7

by an average of 38.57%. Since Team 0 was only learning to avoid
potential conflicts with its own team members, the airspace became
more difficult for Team 1 to learn in. Whenever there was a potential
conflict between the two teams, Team 1 was forced to change their
flight plan, where the Team 0 was able to keep theirs.

The third experiment investigated how the two teams learn when
Team 0 was maliciously trying to cause conflicts with Team 1 while
Team 1 was still trying to learn cooperatively. This behavior made
it even more difficult for Team 1 to learn to reduce the number of
conflicts and we saw an increase in the average by 87.24%. Table 1
lists the average final number of conflicts for each behavior when
both teams are capable of learning.

In the final experiment, we identified the problem caused when
only Team 0 is able to learn to avoid or cause conflicts in an already
optimized airspace. After Team 1 was allowed to optimize its flight
path, Team 0 was introduced. The newly introduced team was then
able to learn cooperatively, uncooperatively, or maliciously. In the
cooperative scenario, Team 0 was able to learn to optimize their
flight path as much as possible. The uncooperative scenario showed
that there was an increase in potential conflicts by an average of
99.10%. For the malicious scenario, there was an increase in the
number of conflicts by 394.75%. Table 2 lists the average final
number of conflicts for each behavior when only one team is capable
of learning.

6 CONCLUSION
In this work we investigated the use of multiple multiagent systems
to model competitive entities using the UTM system. Because of
the broad increase in drone usage in recent years and the desire for
drone-based package delivery to become a mainstream service, it is
an inevitability that multiple entities will be working within a shared,
limited airspace.

The experiments, with two equally-sized multiagent teams with
one team always working cooperatively and the other team working
either cooperatively, uncooperatively, or maliciously, show how the

different entities using the UTM system will interact and how it will
change the efficiency throughout of the system. If an entity chooses
to be malicious toward the other team’s smooth operation, this can
lead to a 394% increase in the number of potential mid-air conflicts
in comparison to a strictly cooperative airspace.

Even in the best-case scenario, where each team is aware that it
should continue to optimize its own paths, a team choosing to act in
their own best interests instead of the overall system’s best interests
can lead to a 38% increase in potential mid-air conflicts. This is a
substantial loss in performance for other stakeholding entities.

Future work on this topic includes implementing no-fly zones
(modeling areas such as airports or congested pedestrian urban cen-
ters), which will create a more difficult routing problem and possible
bottlenecks. Additionally we will examine how each team learns
when team sizes are varied. If an entity can create a large negative
impact in a saturated airspace with even a very small number of
agents, this may drive the necessity of additional safeguards.
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