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ABSTRACT
XCS is the most popular type of Learning Classifier Sys-
tem, but setting optimum parameter values is more of an art
than a science. Early theoretical work required the imprac-
tical assumption that classifier parameters had fully con-
verged with infinite update times. The aim of this work is
to derive a theoretical condition to mathematically guaran-
tee that XCS identifies maximally accurate classifiers, such
that subsequent deletion methods can be used optimally, in
as few updates as possible. Consequently, our theory pro-
vides a universally usable setup guide for three important
parameter settings; the learning rate, the accuracy update
and the threshold for subsumption deletion. XCS with our
best parameter settings solves the 70-bit multiplexer prob-
lem with only 21% of instances that the standard XCS setup
needs. On a highly class-imbalanced multiplexer problem
with inaccurate classifiers having more than 99.99% classi-
fication accuracy, our theory enables XCS to identify only
100% accurate classifiers as accurate and thus obtain the
optimal performance.

CCS Concepts
•Computing methodologies → Rule learning; Classi-
fication and regression trees;

Keywords
learning classifier system, theory, parameter analysis

1. INTRODUCTION
Learning Classifier Systems (LCSs) [7] are a rule-based

evolutionary learning system that aims at producing general
classifiers as a solution to a problem. In 1995, Wilson pro-
posed the XCS classifier system [14], which seeks to produce
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maximally general and maximally accurate classifiers. Since
then, XCS has been actively researched on a wide range of
machine learning problems as it is an effective evolutionary
approach to solve complex and large scale problems. For
instance, in 2013, Iqbal showed the first result that an ex-
tension of XCS solves the 135-bit multiplexer problem [9].
In 2014, XCS was applied to salient object detection [10]
and sequence labeling as complex classification problems.

XCS is a framework controlled by system parameters,
which can produce maximally general and maximally ac-
curate classifiers provided that these system parameters are
set adequately (here, internally learnt classifier statistics are
simply termed ‘parameters’). That is, XCS evolves gen-
eral classifiers, learns associated parameters to identify ac-
curate ones, and then subsumes specific classifiers to similar,
general, accurate ones (i.e. subsumption deletion). Hence,
evolution and learning aim to generate good candidates of
classifier and to correctly identify them as accurate or inac-
curate1 ideally in as few generations or classifier updates as
possible respectively.

The correctness of identification of accurate classifiers grea-
tly affects the system performance. If an inaccurate classi-
fier is wrongly identified as accurate then it is allowed to
subsume its more accurate neighbors (i.e., the problematic
over-generalization occurs). System performance is reduced
as it requires additional iterations to correct this mistake.
Hence, the system parameters must be adequately set up to
avoid this cause of over-generalization.

However, there is a lack of a theory that guarantees the
correct identification of accurate classifiers through reason-
able system parameter settings. Early theoretical works, e.g.
[3, 4, 6] have provided insight into the workings of LCS in
relation to system parameter setting. As related work, Butz
mathematically derived equations that calculated the fully
converged values of classifier parameters assuming infinite
update times [3]. Based on the Butz’s equations, Orriols
presented a theoretical setting of some system parameters
tuned for the class imbalance problem [12]. However, this
approach, i.e. to use the fully converged values, may be less
reliable in practice due to the impractical assumption of the
infinite update times (see Section 3.2 for more detailed dis-
cussion). For instance, here is an unsolvable question with

1XCS aims to identify the maximum accurate classifiers as
accurate, otherwise inaccurate.
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those works (but will be solved by this paper); can we de-
cide the system parameter settings in order that, in as few
classifier updates as possible, XCS identifies 100% accurate
classifiers as accurate and 99% accurate ones as inaccurate?
This is a lack of a universally accepted set-up guide for LCSs
in terms of identifying accurate classifiers. Instead, the pa-
rameter settings are normally decided by experience, espe-
cially by reference to the standard settings [5]. But XCS
may need more iterations in order to handle this process
than the minimum iterations it ideally needs. This funda-
mental inefficiency issue still remains more than 20 years
after XCS was proposed.

This paper presents a theory that mathematically guar-
antees that XCS identifies only actually accurate classifiers
as accurate and thus the subsumption deletion is applied
only with such classifiers. In other words, our theory de-
rives a limit that prevents problematic over-generalization.
Here, a classifier is systematically defined as accurate if its
prediction error is less than a threshold called the standard
accuracy ε0; a prediction error is a classifier parameter and
it is updated by the Windrow-Hoff learning rule [13] with
the learning rate β. In addition, the subsumption operator
functions with reliably accurate classifiers that have been
updated more than a threshold θsub. Based on this XCS
mechanism, we will reasonably explain that, if those three
system parameters (i.e., ε0, β and θsub) are set adequately,
XCS can prevent over-generalization.

Our theory does not require the assumption that the clas-
sifier parameters have been fully converged to their ideal
values and it can be a universally usable set-up guide for ε0,
β and θsub not only for XCS but also XCS-based systems
that employ the same learning mechanism as XCS. We fur-
ther present that our theory can derive the best values of
those parameters, which enable XCS to identify the classi-
fiers either as accurate or as inaccurate in as few updates as
possible. In the experiments, we test our theory on XCS,
but also on a version of XCS called XCSSMA, which is an
advanced LCS model solving complex overlapping classifica-
tion problems [8]. This paper does not explain the algorithm
of XCSSMA, which can be found in [8]. Our experimental
results of XCS are repeatable with our code uploaded in sup-
plementary material2. Note that this paper does not discuss
the optimality of the standard learning mechanism of XCS,
e.g. the Widrow-Hoff learning rule may not be the best ap-
proach to update classifier parameters. Also we do not focus
on improving the performance in terms of evolution, i.e. we
do not discuss how fast XCS can generate accurate classi-
fiers only how fast classifiers can be labelled correctly once
evolved. It is assumed that during the evolutionary process
accurate classifiers will be created at various times. This has
been observed in our experiments (see Section 4).

2. XCS
We describe the XCS mechanism for classification tasks

(see [5] and our code in supplementary material for more
detail). A classifier is a condition-action rule; a condition
C is coded by C ∈ {0, 1,#}L, where L is the length of con-
dition, and the symbol ‘#’ is the don’t care symbol which
matches all input values (i.e., 0 or 1). Classifiers consist of
a condition, an action, and four main parameters [5, 14]: (i)
the prediction p, which estimates the relative payoff that the

2Our code is based on Butz’s XCSJava code [1].

system expects when the classifier is used; (ii) the prediction
error ε, which estimates the error of the prediction p; (iii)
the fitness F , which estimates the accuracy of the payoff
prediction given by p; and (iv) the experience n, which is
the number of times it has been updated3.

For the current sensory input s, XCS builds a match set
[M ] containing the classifiers in the population [P ] whose
condition matches s. If [M ] does not contain all the feasi-
ble actions, covering takes place to create a set of classifiers
that matches s and cover all the missing actions. For each
possible action a in [M ], XCS computes the system predic-
tion P (s, a) which estimates the payoff that XCS expects if
action a is performed in s. The system prediction P (s, a)
is computed by Equation 1 as the fitness weighted average
of the predictions of classifiers in [M ] that advocate action
a, where, [M ](a) represents the subset of classifiers of [M ]
with action a, cl.p and cl.F identify the prediction and fit-
ness of classifier cl ∈ [M ](a), respectively. Then XCS selects
an action to perform; the classifiers in [M ] that advocate the
selected action form the current action set [A]. The selected
action a is performed, and a scalar reward r is returned to
XCS. Then XCS receives a new input s.

P (s, a) =
∑

cl∈[M ](a)

cl.p× cl.F∑
c∈[M ](a) c.F

(1)

Classifiers’ parameters are updated in the following order:
experience, prediction error, prediction, and finally fitness.
Note, these parameters, except for the experience, are nor-
mally updated using the moyenne adaptive modifee (MAM)
procedure that replaces the weighted update with the learn-
ing rate β (0 ≤ β ≤ 1) with a simple average value at the
start of training (i.e. n < 1/β) [5]. The MAM procedure
helps a classifier’s parameters to converge faster. Firstly, the
experience n is increased by one. Then, the prediction error
cl.εn and prediction cl.pn of classifier cl, both for experience
n, are updated by the Widrow-Hoff learning rule:

cl.εn = cl.εn−1 + β(|r − cl.pn−1| − εn−1) (2)

cl.pn = cl.pn−1 + β(r − cl.pn−1) (3)

Then, the absolute accuracy cl.κ is calculated by Equation
4 dependent on the standard accuracy ε0. Then the fitness
is updated as usual [5]. Classifiers are defined as accurate
classifiers (cl.κ = 1) if εn < ε0. Finally, a Genetic Algorithm
(GA) is applied to classifiers in [A]. The subsumption op-
erator is applied to the classifiers in [A] after updating the
classifier parameters and also to offspring after the GA. A
classifier can be subsumed by a more general classifier than
it, provided that the more general classifier is reliably ac-
curate and sufficiently updated (i.e., εn < ε0, n > θsub).

cl.κ =

{
1 if cl.εn < ε0,

α(cl.εn/ε0)−ν otherwise.
(4)

3. THEORY

3.1 Preparation
Goal. While XCS defines the accurate classifiers with the
condition εn < ε0 (see Equation 4), this condition is still
unclear to determine the reliably accurate classifiers as it
does not specify how many times a prediction error should

3The experience is originally denoted by exp in [5].
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be updated with the learning rate β to be trustworthy. In-
stead, the subsumption operator employs the specific con-
dition εn < ε0, n > θsub to identify the reliably accurate
classifiers. Accordingly, our theory aims to derive a theoret-
ical condition which mathematically guarantees that XCS
identifies the reliably accurate classifiers satisfying the con-
dition εn < ε0, n > θsub, that is, we derive theoretical values
of ε0, θsub and β.

Assumptions. We here use the following two assumptions.
Firstly, we consider a classification task with binary reward
scheme represented as rmax/rmin. XCS will receive the max-
imum reward rmax when executing the correct action to an
input; otherwise the minimum reward rmax. This paper
sets rmax and rmin to 1000 and 0 respectively. Second, we
consider that two classifier parameters, prediction p and pre-
diction error ε, are updated without the MAM procedure in
order to simplify our theory derivation. Hence, in our the-
ory, those parameters are always updated as in Equations 2
and 3 4. However, to determine the impact of this assump-
tion, we conduct experiments to compare the performances
of XCS with/without MAM update.

Procedure. We firstly derive specific estimation equations
for the classifier parameters of prediction and prediction er-
ror for any experience n. Second, we determine the system
parameter values of ε0, θsub and β, which satisfy the condi-
tion εn < ε0, exp > θsub. Finally, we find the best settings
for those parameters, which enable XCS to identify the ac-
curate classifiers in as few updates as possible.

3.2 Estimation Equation Derivation
Prediction Estimation. Let pn be the prediction p of
classifier cl for experience n, that is, pn has been updated
n times; and rn ∈ rmax, rmin be a reward which is used to
update pn. An initial prediction pI (n = 0) can be any value
as it is initialized by the covering operator or in the GA when
it is generated5. Equation 3 can be rewritten as Equation
56. We can see each reward rk is weighted by β(1− β)n−k:
newer rewards rk (i.e., k is close to n) are weighed more
than older ones.

pn = (1− β)npI +

n∑
k=1

β(1− β)n−krk. (5)

Accordingly, the value of pn depends on how many and
when it received rmax or rmin. The number of rmax (or rmin)
earned by a classifier depends on the classification accuracy.
Let PC be the true classification accuracy of classifier cl.
Then we can suppose the number of rmax can be nPC , and
thus the number of rmin will be n(1 − PC). That is, when
a classifier is updated by n times, ideally, it receives nPC
rmax rewards, and n(1 − PC) rmin rewards. For instance,
a classifier with PC = 0.8 would receive 8 rmax rewards for
n = 10, and so 2 rmin rewards.

Let R(PC) = [r1, r2, · · · , rn] be the matrix of reward that
a classifier cl with PC received, for experience n; again, the
number of rmax ∈ R(PC) is nPC and the number of rmin ∈
4Note that, the action set size which is not relevant to our
theory is calculated with the MAM procedure as in [5].
5For n = 0, the prediction and the prediction error are suit-
able to be represented as p0, ε0. However, we denote both
as pI εI respectively, because ε0 is already defined as the
standard accuracy.
6We do not show the mathematical proof due to lack of
space but it can be proved by mathematical induction.
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Figure 1: Classifier prediction p10 with β = 0.2,
where its true classification accuracy PC = 0.8, its
experience n = 10, its initial prediction pI = 0 and
the rmax = 1000, rmin = 0 rewards.

R(PC) is n(1 − PC). Here, R(PC) can take different com-
binations of rmax and rmin. For instance, with PC = 0.8,
n=10 and rk ∈ 1000, 0, R(0.8) can be [0, 0, 1, 1, 1, 1, 1, 1,1, 1],
[0, 1, 0, 1, 1, 1, 1, 1, 1, 1], and so on, where “1” and “0” denote
rmax and rmin respectively. The different combinations rep-
resent that the classifier received the same numbers of rmin
and rmin, but at different time points. Correspondingly, pn
also takes different values although its PC is the same value,
since each reward rk is weighted by each value of β(1−β)n−k

(see Equation 5). Figure 1 plots possible predictions of all
combinations for R(0.8), which are calculated from Equa-
tion 5 where PC = 0.8, n = 10, pI = 0, rmax = 1000,
rmin = 0 and β = 0.2. As shown by this figure, the pre-
dictions depend on when it received rmax/rmin rewards.

Consequently, it is difficult to derive an estimation equa-
tion that estimates all possible predictions since we do not
exactly know when a classifier receives the rmax/rmin re-
wards. So, we derive the estimation equation based on ex-
pected reward that a classifier receives. Let Er(PC) be the
expected reward that the classifier with PC received:

Er(PC) = rmaxPC + rmin(1− PC) = 1000PC (6)

Note, this expected value does not consider the learning rate
β. In [3], Butz suggested the fully-converged prediction (i.e.
p∞) can be approximated by this expected reward. We com-
plement his approximation with two aspects. Firstly, we
claim that the fully-converged prediction p∞ may not ac-
tually converge to Er(PC) with an inadequate setting of β.
It needs a further condition to take into account this ap-
proximation. This is a well known fact, but we will explain
this point to aid understanding on our theoretical parame-
ter settings. Secondly, we extend this approximation of the
prediction p∞ to estimate pn for any experience n.

First, we explain why the system cannot take this ap-
proximation of p∞ with an inadequate setting of β. Figure
2 shows the variances of possible predictions that are calcu-
lated from all combinations for R(0.5), where PC = 0.5, n =
10, rk ∈ 1000, 0, pI = Er(0.5) = 500 and β = 0.1, 0.2, 0.3
and 0.4. Note, to investigate how much the prediction is
over-estimated from the expected value with different β, we
set pI=Er(0.5)=500. This figure shows, with larger β values,
i.e., β = 0.3, 0.4, the possible predictions are not values near
the expected value Er(0.5) = 500. However, with smaller β
values, i.e., β = 0.1, 0.2, the possible predictions have a ten-
dency to be values near Er(0.5) = 500. Accordingly, to take
into account the approximation that estimates the predic-
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Figure 2: The variances of classifier prediction p10,
where its true classification accuracy PC = 0.5 and its
experience n = 10, its initial prediction pI = Er(0.5) =
500 and the 1000/0 rewards.

tion using the expected reward, the learning rate β should
be set as small as possible.

We derive an equation that estimates pn for any experi-
ence n. In Equation 5, now we suppose the reward rk can be
replaced with Er(PC) for each experience k. Let p̂n(PC) be
the approximated prediction of classifier with PC for total
experience n. From Equations 5 and 6, p̂n(PC) can be:

p̂n(PC) = (1− β)npI +

n∑
k=1

β(1− β)n−kEr(PC),

= 1000PC − (1− β)n(1000PC − pI) (7)

Here, p̂∞(PC) converges to 1000PC , which is the same value
as the fully-converged value introduced by Butz [5].

Prediction Error Estimation. Next, we estimate the
prediction error of a classifier. Let εn be the prediction error
of classifier cl after experience n. Again, an initial prediction
error εI (n = 0) can take any value as its initial value is set
in the covering operator or in the GA when it is generated.
In the same manner as we derived Equation 5 from Equation
3, Equation 2 can be rewritten as

εn = (1− β)nεI +

n∑
k=1

β(1− β)n−k|rk − pk−1|. (8)

Note, p0(k = 1) is the initial prediction pI ; and as shown
by Equation 2, εk is updated with the previous prediction
pk−1. The absolute error |rk − pk−1| also depends on when
the classifier receives rmax/rmin rewards. Accordingly we
calculate the expected value of absolute error. Let Eε,n(PC)
be the expected absolute error, for experience n, that is
|rn − pn−1| ' Eε,n(PC). Eε,n(PC) can be written as

Eε,n(PC) = |rmax − pn−1|PC + |rmin − pn−1|(1− PC)

' |1000− p̂n−1(PC)|PC + |0− p̂n−1(PC)|(1− PC)

= 2000(PC − PC2)

− (1− β)n−1(1− 2PC) (1000PC − pI) . (9)

Note that, 0 ≤ p̂n−1(PC) ≤ 1000. We estimate the approxi-
mated prediction error from Equations 8 and 9. Let ε̂n(PC)
be the approximated prediction error of classifier with PC
for experience n. ε̂n(PC) can be written as Equation 10;
ε̂∞(PC) converges to 2000(PC − PC

2), which is the same
fully-converged prediction error introduced by Butz [5].

ε̂n(PC) = (1− β)nεI +

n∑
k=1

β(1− β)n−kEε,k(PC)

= (1− β)nεI + 2000(PC − PC2) [1− (1− β)n]

− nβ(1− β)n−1(1− 2PC) (1000PC − pI) . (10)

In summary, we derived two estimation equations that
calculate the prediction and the prediction error, both are
valid for any experience n. Again, β should be set as small as
possible. Next we discuss how we can determine the setting
of β and the standard accuracy ε0 based on these equations.

3.3 System Parameter Derivation
We theoretically determine the system parameter values

of ε0, θsub and β, which satisfy the condition εn < ε0, n >
θsub. We firstly give two specific conditions derived from the
condition εn < ε0, n > θsub;

• From the condition εn < ε0, for both an accurate clas-
sifier cl∗ and an inaccurate classifier cl′ which the system
wants to identify them as accurate and inaccurate respec-
tively, the accurate classifier should have a prediction error
cl∗.εn∗ < ε0; while the inaccurate classifier cl′ should have
cl′.εn′ ≥ ε0, i.e., cl∗.εn∗ < cl′.εn′ should be satisfied;

• Additionally, from the condition n > θsub, the above con-
dition cl∗.εn∗ < cl′.εn′ should be satisfied for any experience
n∗, n′ > θsub; n

∗, n′ are experience of accurate/inaccurate
classifiers respectively and can be different values.

Let PC
∗ and PC

′ be the true classification accuracy of cl∗

that XCS wants to identify as accurate, and that of cl′ that
XCS wants to identify as inaccurate, respectively. XCS nor-
mally attempts to find maximally accurate classifiers with
the 100% classification accuracy, and so we set PC

∗ = 1.0
and 0.5 ≤ PC

′ < PC
∗ (see Appendix for detailed configu-

ration of PC
′). From the above discussions, the condition

εn < ε0, n > θsub can be rewritten as;

ε̂n∗(PC
∗) < ε̂n′(PC

′), (11)

where, ε̂n∗(PC
∗) and ε̂n′(PC

′) are the approximated predic-
tion errors of cl∗ and cl′, and n∗, n′ are the experience of
cl∗ and cl′, respectively. Note that n∗, n′ > θsub.

Equation 11 includes classifier parameters, i.e., pI
∗, εI

∗,
n∗ for cl∗ and pI

′, εI
′, n′ for cl′, as well as system parame-

ters β (see Equation 10) and θsub, which are now treated as
variables. The approximated prediction errors ε̂n∗(PC

∗) and
ε̂n′(PC

′) can take different values depending on these vari-
ables. Accordingly Equation 11 needs to be satisfied for any
values of these variables. Thus, we consider the worst vari-
able values given that classifiers are updated the maximum
times to satisfy Equation 11; that is, the worst values max-
imize ε̂n∗(PC

∗) whilst they minimize ε̂n′(PC
′). Then, the

worst values of variables in Equation 11 except for β, θsub
can be set to constant values by the following conditions;

arg max
pI
∗,εI∗,n∗

ε̂n∗(PC
∗), arg min

pI
′,εI ′,n′

ε̂n′(PC
′). (12)
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When any constant values of PC
′ and θsub are given, we

can firstly decide pI
∗ = 0, εI

∗ = 1000, pI
′ = 1000 and

εI
′ = 07. With these values, ε̂n∗(PC

∗) and ε̂n′(PC
′) can

be a monotonic decreasing function for n∗ and a mono-
tonic increasing function for n′ respectively, i.e., at experi-
ence n∗=n′=θsub+ 1, ε̂n∗(PC

∗) is the maximum value while
ε̂n′(PC

′) is the minimum value. Thus we can determine
n∗ = n′ = θsub + 1 as their worst values.

Again, to satisfy Equation 11 for any variables’ values,
except for β, we only need to prove Equation 11 under the
above worst values. Consequently, the learning rate β can be
a variable that decides whether Equation 11 is satisfied un-
der the worst values of the other variables. There may be dif-
ferent ways to decide β, but we here take a simple approach.
First, we calculate a value of β∗ that satisfies a boundary
equation at the experience n∗ = n′ = θsub: ε̂θsub(PC

∗) =
ε̂θsub(PC

′) with the worst values. This boundary equation
cannot be solved for β, but we can calculate an approximate
β∗ by numerical computation methods, such as Newton’s
method. Again, since ε̂n∗(PC

∗) is the monotonic decreasing
function for experience n∗, for n∗ = θsub+1, ε̂θsub+1(PC

∗) is
smaller than ε̂θsub(PC

∗). In contrast, ε̂θsub+1(PC
′) is larger

than ε̂θsub(PC
′). Therefore, Equation 11 is always satis-

fied for any experience n∗, n′ > θsub; and we can decide
β = β∗ and ε0 = ε̂θsub(PC

∗) = ε̂θsub(PC
′) with β∗. Note

that, ε̂n∗(PC
∗) and ε̂n′(PC

′) both with the worst values can
also be a monotonic decreasing or increasing function for
β respectively. Hence, Equation 11 with the worst values
can also be satisfied for any β ≥ β∗. However, as discussed
in Section 3.2, β should be set as small as possible to take
into account our approximation of expected values. Thus, β
should be set to β∗ as the possible minimum value.

Let us organize the above procedure to derive the param-
eter settings of ε0, θsub and β that guarantees XCS correctly
identifies only the classifiers having the maximum classifica-
tion accuracy as accurate. First, we decide a value of θsub.
Next, given PC

′ (and PC
∗ = 1.0), calculating β∗ from the

boundary equation ε̂θsub(PC
∗) = ε̂θsub(PC

′) with the worst
values of other variables. Then, we obtain β = β∗ and
ε0 = ε̂θsub(PC

∗) = ε̂θsub(PC
′) from Equation 10 with β∗.

3.4 Best Parameter Setting Derivation
Equation 11, decided by the presented procedure, is ide-

ally satisfied for any θsub. But θsub should be set to be equal
to or more than the minimum value that XCS ideally needs
to identify the accurate classifiers. In the other words, when
θsub is set to the minimum value, we can derive the best
parameter settings of ε0, θsub and β which enable XCS to
correctly identify the accurate classifiers in as few updates
as possible. Here we decide the minimum value of θsub.

To identify a classifier either as accurate or as inaccurate,
inaccurate classifiers should be updated via new instances
until they receive at least one incorrect reward rmin. The
inaccurate classifiers having PC

′ ideally receive n(1 − PC ′)
incorrect rewards (see Section 3.2). Thus the minimum ex-
perience nmin where inaccurate classifiers receive at least
one incorrect reward can be; nmin = 1/(1 − PC

′). This
means all classifiers that have been updated nmin times can
be identified as accurate or inaccurate. Thus, the minimum
value of θsub can be set to nmin−1 = 1/(1−PC ′)−1. Then,
our theory suggests the best settings of β and ε0, using the

7Note, 0 ≤ pI , εI ≤ 1000; n∗, n′ ∈ N.

 1

 10

 100

 1000

 0  10  20  30  40  50

P
re

d
ic

ti
o
n
 E

rr
o
r 

(L
o
g
 s

c
a
le

)

Experience

 

 

θsub = 31

 

 

ǫ̂n∗(PC
∗)

ǫ̂n′(PC
′)

ǫ0≃58.53

nmin = 32

 50

 55

 60

 65

 70

 0  10  20  30  40  50

P
re

d
ic

ti
o

n
 E

rr
o

r

Experience

 

  

 

ǫ̂n∗(PC
∗)

ǫ̂n′(PC
′)

ǫ0≃58.53 θsub = 31

nmin = 32

a) β=β∗=0.1387005, ε0 = ε̂θsub(PC
∗)=ε̂θsub(PC

′)

 1

 10

 100

 1000

 0  10  20  30  40  50

P
re

d
ic

ti
o
n
 E

rr
o
r 

(L
o
g
 s

c
a
le

)

Experience

 

 ≃99.36

θsub = 31

nmin = 32

ǫ0

 

 

ǫ̂n∗(PC
∗)

ǫ̂n′(PC
′)
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Figure 3: The curves of ε̂n∗(PC
∗) and ε̂n′(PC

′) with
different values of β for experience n, where PC

∗

= 1, PC
′ = 0.96875, θsub = 31, pI

∗ = εI
′=0 and

εI
∗=pI

′=1000.

procedure explained in Section 3.3, with the minimum θsub.
Our minimum value is an ideal number and it is not con-
sidered probabilistically. This issue is out of scope in this
paper, but θsub can be set to the probable minimum value
and then our theory can derive the best parameter settings.

3.5 Example
Here we show an example of how to set β, ε0 and θsub

using our theory on the multiplexer problem [14]. The mul-
tiplexer (MUX) [14] is defined over a binary string of k+ 2k

bits; the first k bits represent an address pointing to the re-
maining 2k bits. For instance, with k = 2, the input string
110001 will return 1 as an answer (i.e., class), while when ap-
plied to 110110 it will return 0. When the system performs
the correct action, it receives a 1000 reward, otherwise it
receives 0. In the 20-MUX (k = 4), there are optimal classi-
fiers (PC

∗ = 1); for instance 1111#· · ·#1:1. The inaccurate
classifiers that have the highest true classification accuracy
is8, for instance, #####1 · · · 1:1; 31 of all 32 instances
that this classifier matches, return correct rewards, and so
PC
′ is 31/32=0.96875, and thus θsub = nmin−1 = 31 where

nmin=32. We can get β∗ ' 0.1387005 by Newton’s method.
Accordingly, we can determine β = β∗ ' 0.1387005 and

then we can get ε0 = ε̂n∗(PC
∗) = ε̂n′(PC

′) ' 58.53. Figure 3
a) shows the values of ε̂n∗(PC

∗) and ε̂n′(PC
′) for experience

n with β = 0.1387005 (the left side) and its expanded figure
at the right side. As we noted, both ε̂n∗(PC

∗) and ε̂n′(PC
′)

monotonically decrease or increase respectively; and that
ε̂θsub(PC

∗) is equal to ε̂θsub(PC
′) at experience θsub = 31.

8A problem includes inaccurate classifiers with different true
classification accuracies 0.5 ≤ PC

′ < PC
∗, but we can con-

sider only the inaccurate classifiers with the highest true
classification accuracy. Since not-highest true classification
accuracies result in larger prediction errors than that of the
highest true classification accuracy, Equation 11 is always
satisfied for any 0.5 ≤ PC ′ < PC

∗.

477



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 50 100 150 200 250 300

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Test problem (×10000)

XCS MAM

XCS NOMAM

	XCS THEORY
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
P

o
p

u
la

ti
o

n
 s

iz
e

 (
/1

0
0

0
)

Test problems (×10000)

XCS MAM

XCS NOMAM

	XCS THEORY

Figure 4: Average Performances (left) and popula-
tion size (right) on the 70-bit multiplexer problem.

At experience 32 where the accurate classifiers can be iden-
tified with the minimum experience nmin = 32 according
to our theory, ε̂n∗(PC

∗) is smaller than ε0 while ε̂n′(PC
′) is

larger than ε0. When n is further increased, ε̂n(PC
∗) and

ε̂n′(PC
′) are also smaller or larger than ε0 respectively. Thus

inaccurate classifiers having PC
′, which have been updated

more than 31 times, are never identified as accurate and so
subsumption does not use them.

Next, we explain why β < β∗ is inadequate against our
best parameter settings. We here set β = 0.12 < β∗. Since
ε̂θsub(PC

∗) is not equal to ε̂θsub(PC
′) with the inadequate

β, we consider two cases; ε0 is set to ε̂θsub(PC
∗) and to

ε̂θsub(PC
′). Then, we can get ε0 = ε̂θsub(PC

∗) = 99.36 and ε0
= ε̂θsub(PC

′) = 57.04. For ε0 = ε̂θsub(PC
∗) = 99.36, as shown

in Figure 3 b), at experience nmin = 32, both ε̂n∗(PC
∗) and

ε̂n′(PC
′) are smaller than ε0. Thus, both the accurate clas-

sifiers and the inaccurate classifiers will be identified as ac-
curate. Thus, subsmption wrongly performs as a classifier
can be subsumed to the inaccurate classifiers, and so over-
generalization can occur. For ε0 = ε̂θsub(PC

′) = 57.04, as
shown in Figure 3 c), at experience nmin = 32, both accu-
rate and inaccurate classifiers would not be identified as ac-
curate since both ε̂n∗(PC

∗) and ε̂n′(PC
′) are larger than ε0;

at experience 36, ε̂n∗(PC
∗) is smaller than ε0 and ε̂n′(PC

′) is
larger than ε0. Accordingly XCS can identify the accurate
classifiers, but it requires 36 update times larger than the
minimum experience nmin = 32; XCS cannot identify them
in as few updates as possible.

4. EXPERIMENT
We compare the performances of XCS with our theory

and with the standard parameter settings on two classifica-
tion problems. The first problem is the multiplexer problem
[14], which is a binary-class classification problem. The sec-
ond problem is a class-imbalanced multiplexer problem [12],
which has a more complex classification boundary than the
standard multiplexer problem due to class-imbalance. We
also test our theory on XCSSMA, to determine if it extends
to an XCS-based system, with a complex overlapping prob-
lem (i.e. the majority-on problem).

4.1 Experimental Setting
This paper uses the following experimental paradigm: dur-

ing learning problems, the system selects actions randomly
from those represented in [M ], and during test problems,

the system selects the action with highest expected return.
Learning problems and test problems alternate. When the
system performs the correct action, it receives rmax = 1000,
otherwise it receives rmin = 0. The genetic algorithm and
the update of classifier parameters are enabled only during
learning problems, and those are turned off during test prob-
lems. We compare the three versions of XCS: 1) XCS MAM,
which uses the MAM update and the standard parameter
settings; 2) XCS NOMAM, which does not use the MAM
update, but does use the standard parameter settings; 3)
XCS THEORY, which does not use the MAM update, but
uses our theoretical parameter settings. We use the clas-
sification accuracy as an evaluation criterion, which is the
rate of correct actions the system executed during the test
problems. All the plots are averages over 30 experiments.

4.2 Results
70-bit multiplexer problem. This paper uses 70-MUX
as it has a large search space of 270 inputs. Although a
recent work showed an extension of XCS [9] solves the 135-
MUX with 2135 inputs, 70-MUX is still a useful large space
problem with a feasible running time.

We use the following standard parameters [9]; N=30,000;
β=0.2, ε0 = 10, θsub = 20, α = 0.1, δ = 0.1, ν = 5,
θGA = 25, θdel = 20, χ = 0.8, µ = 0.01, P# = 1.0,
fitness reduction = 0.1, The action set subsumption and
the GA subsumption are turned on, the uniform crossover
and the tournament selection with the tournament size τ =
0.4 are used. For the theoretical parameter settings, β, ε0
and θsub are determined as follows; in the 70-MUX, PC

∗ is
1 and PC

′ is 0.9921875; the inaccurate classifiers with the
highest true classification accuracy is, for instance, ####
###1 · · · 1:1, which matches 128 (=27) inputs including
one incorrect input 00000001 · · · 1 with the correct class 0
and other inputs have the correct class 1, and thus, PC

′ =
127/128 = 0.9921875. Thus, θsub is set to 127 as the min-
imum experience and we can calculate β = β∗ ' 0.04739
and ε0 = ε̂θsub(PC

∗) = ε̂θsub(PC
′) = 15.36777.

Figure 4 shows the classification accuracy of the three ver-
sions of XCS on the 70-MUX. In addition, we here com-
pare the population size which is a number of classifiers
in the population. The plots are reported as moving av-
erage of 50,000 test problems with 95% confidence interval.
XCS MAM and XCS NOMAM averagely reach 100% clas-
sification accuracy after 2,700,000 test problems, but both
XCSs unstably performs with a wide confidence interval.
XCS THEORY significantly outperforms the other versions
of XCS. XCS THEORY reaches optimal and stable perfor-
mance after 550,000 with a very narrow confidence interval.
Consequently, XCS THEORY evolves a small population
size faster than other versions, which indicates that XCS
accurately generalizes classifiers.

Class-Imbalanced Multiplexer problem. The l-bit class-
imbalanced multiplexer problem or l-IMUX [12] generates a
binary string of l = k+ 2k bits as an instance. If the answer
of its instance, which is computed as in the normal l-MUX,
belongs to the minority class, then its instance is sent to
XCS with probability 1/2i, where i is the imbalance level.
If the answer belongs to the majority class, its instance is ac-
cepted as the input at all times. Accepted inputs are sent to
the XCS, and we set the minority class to 0 and the majority
class to 1. Note that, during test problems, the instances for
both the majority class and the minority class are sent to
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Figure 5: Average Performances (left) and Best per-
formance (right) on the 11-bit class-imbalanced mul-
tiplexer problem with ir = 10.
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Figure 6: Average Performances (left) and Best per-
formance (right) on the 11-bit class-imbalanced mul-
tiplexer problem with ir = 11.

XCS with the same probability as in l-MUX. A recent work
showed an extended XCS derives a sub-optimal performance
on the 11-IMUX with i = 9 [11]. We here consider a more
complex problem 11-IMUX with i = 10, 11.

For the standard parameter settings, we use the special-
ized settings for class-imbalance [12]; N = 800, ε0 = 1,
θsub = 200, P# = 0.6, µ = 0.04, β = {0.0025, 0.00125}, and
θGA = {3200, 6400}, both for i = {10, 11} respectively, ac-
tion set subsumption is turned off, but GA subsumption is
turned on. Two-point crossover and roulette-wheel selection
are used; for other parameters we use the same settings in
the previous experiment of 70-MUX. In the IMUX, an ad-
equate evolutionary pressure is required in order to solve
these problems. Hence, θGA is set to a high value so that
all niches will receive approximately the same opportunities
during evolution [12]. For the theoretical parameter settings,
β, ε0 and θsub are determined as follows; in the standard 11-
MUX, PC

∗ is 1 and PC
′ is 0.9375 9, but due to the bias of

the class-imbalance, PC
′ depends on the imbalance level i

for the 11-IMUX. The modified PCi
′ for the imbalance level

i can be calculated as

PCi

′ =
PC
′ × (1− 2−i)

PC
′ × (1− 2−i) + (1− PC ′)× 2−i

, (13)

9The inaccurate classifiers with the highest true classifica-
tion accuracy is, for instance, ####1 · · · 1:1. Accordingly,
PC
′ = 15/16 = 0.9375.

and thus, we can obtain PC10
′ = 0.999934836, PC11

′ =
0.999967433. Since XCS is required to distinguish accu-
rate classifiers (100% accurate) from inaccurate ones (about
99.99 % accurate), 11-IMUX with i = 10, 11 is a very dif-
ficult problem. We set θsub = {15345, 30705}, β = β∗ '
{0.0007472, 0.000398}, ε0 = ε̂θsub(PC

∗) = ε̂θsub(PC
′) ={0.13

0206, 0.06 5016}, for i = {10, 11} respectively.
Figure 5 shows the classification accuracy on the 11-IMUX

with i = 10. The figure on the left side shows the aver-
age performances of the three versions of XCS tested here;
the figure on the right side shows the best performance the
system based on one run of the 30 runs. XCS-MAM and
XCS-NOMAM completely fail to solve the problem, while
XCS-THEORY reaches 86% average classification accuracy
but does not reach 100% on average. We can suppose this
is because an evolutionary pressure still fails to evolve clas-
sifiers evenly for all niches; XCS evolves classifiers focusing
on the majority class, and so the accurate classifiers for the
minority class cannot be evolved successfully. However, the
results still suggests that our theory enables XCS to identify
the maximally accurate classifiers. This is highlighted in the
graph of best classification accuracy. The best classification
accuracy of XCS-THEORY eventually reaches 100% classi-
fication accuracy. Similar to the result on 11-IMUX ir = 10,
as shown in Figure 6 with ir = 11, XCS-THEORY robustly
performs well with near 100% classification accuracy. This
indicates that XCS with our theoretical parameter setting
can potentially solve 11-IMUX ir = 10, 11. The perfor-
mance could improve with enhanced evolutionary pressure.

Majority on Problem. We test our theory on a derived
version of XCS (i.e., XCSSMA). In the majority-on problem
(MOP), if the number of ones is greater than the number of
zeros, the problem instance is of class one, otherwise class
zero. In majority-on problem domain, the complete solution
consists of strongly overlapping classifiers, so is therefore
difficult to learn [8]. Iqbal reported XCSSMA completely
solves the 7-bit MOP, but XCS fails to reach 100% per-
formance [8]. We test the three versions of XCSSMA on
11-bit MOP. We use the following parameter settings from
[8]; P# = 0.5, χ = 0.8, number of states = 5, input al-
phabet Σ = {0, 1}, output alphabet ∆ = {0, 1}; for other
parameters we use the same settings as in the multiplexer
problems. Note N should be set to a large value to support
all niches in problems containing the overlapping classifiers
[2], and so we set N = 6000. In the 11-bit MOP, the PC

∗

is 1 and PC
′ is 0.984375, and then we set β = 0.081998,

ε0 = ε̂θsub(PC
∗) = ε̂θsub(PC

′) = 30.233279 and θsub = 63 for
XCSSMA with our theory 10.

Figure 7 shows the performances on the 11-bit MOP. The
figure on the left side shows the average performances of
three versions of XCS as usual; the figure on the right side
shows the best performance the system based on one run
of the 30 runs. Average performance of all LCSs does not
reach to 100% performance due to the more complex over-
lapping classifiers than the 7-bit MOP. This is because, as
we discussed in the class-imbalanced problem, an evolution-
ary pressure needs to be designed to evolve classifiers to
evenly support all niches, since overlapping classifiers cause
imbalance of niches sizes [2]. However, XCSSMA with our

10The inaccurate classifiers that have the highest true clas-
sification accuracy is, for instance, ######1 · · · 1:1. Ac-
cordingly, PC

′ = 63/64 = 0.984375.
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Figure 7: Average Performances (left) and Best per-
formance (right) on the 11-bit majority-on problem.

theory outperforms other LCSs. Additionally, the best per-
formance of XCSSMA with our theory reaches to near 100%
performance. This suggests that the parameter settings sug-
gested by our theory can potentially solve the 11-bit MOP.
An adequate evolutionary pressure is required to completely
solve problems containing overlapping classifiers in order to
produce a stable performance.

5. CONCLUSION
We presented a theory for XCS that mathematically guar-

antees that the XCS classifier system identifies maximally
accurate classifiers, both correctly and quickly without the
need for infinity-based assumptions. The main assumption
made here is knowing, or being able to estimate, the perfor-
mance of the best inaccurate classifier. A further benefit is
the ability to estimate the future approximate value of clas-
sifier parameters for any given experience by considering the
effect of the learning rate. The best parameter settings of
three system parameters (the learning rate, the standard
accuracy and the threshold for subsumption) can now be
determined, which enables XCS to identify the maximally
accurate classifiers in as few updates as possible. These set-
tings improve the performance of XCS and derivative ver-
sions of XCS (e.g. XCSSMA). This determines a bound by
which to judge future XCS improvements. We assumed clas-
sifiers are updated without the MAM update, so investigat-
ing the effects of MAM would be useful for further analysis
of classifier parameters and the learning rate.

APPENDIX
XCS evolves two types of accurate classifiers; the positive ac-
curate classifier cl∗p with its true classification accuracy PC

∗
p

(normally it is 1); the negative accurate classifier cl∗n with
PC
∗
n (normally it is 0). Correspondingly, we can suppose

the two type of inaccurate classifiers; the positive ones cl′p
and the negative ones cl′n. Let PC

′
p and PC

′
n be the true

classification accuracy of cl′p and cl′n respectively. If PC
′
. is

a value near to PC
∗
. , that is, |PC∗. − PC ′.| is a small value,

it would be difficult for XCS to handle accurate general-
ization11. Accordingly, the difficulties of generalization for
the positive and negative accurate classifiers can be differ-
ent. To prevent over-generalization we need to consider the
more difficult case. That is, if |PC∗p − PC ′p| ≤ |PC∗n − PC ′n|,

11Here, “.” can be p or n.

XCS needs to distinguish cl∗p with PC
∗
p from cl′p with PC

′
p;

otherwise cl∗n with PC
∗
n from cl′n with PC

′
n. For the later

case (i.e., |PC∗p −PC ′p| > |PC∗n −PC ′n|), since XCS symmet-
rically identifies positive and negative classifiers as accurate
with the same standard accuracy, we can rephrase that cl∗p
with 1−PC∗n should be distinguished from cl′p with 1−PC ′n.
This means, to prevent over generalization for all (i.e., pos-
itive and negative) possible classifiers, we can consider only
the positive case. Thus, with PC

∗
p = 1.0 and PC

∗
n = 0.0, we

can also consider a boundary of PC
′
p ≥ 0.5.

In the benchmark classification problems employed in this
paper (i.e., the multiplexer problem, the class-imbalanced
multiplexer problem and the majority-on problem), PC

∗
p=1.0

while PC
∗
n=0.0; PC

′
p is equal to 1−PC ′n for any positive inac-

curate classifiers having PC
′
p and negative ones having PC

′
n.

Then, we can always determine PC
∗ = 1.0 and PC

′ = PC
′
p.
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