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ABSTRACT
Active learning algorithms a�empt to interactively develop a subset
of data from which �tness evaluation is performed. Moreover, the
distribution of labeled content within the data subset may adapt
over time as genetic programming (GP) individuals improve. �e
basic goal is therefore to identify the most meaningful subset of
data to improve the current model. Under a streaming data context
additional challenges exist relative to the non-streaming scenario:
non-stationary processes, partial observability, anytime operation.
�is means that it is not possible to guarantee that the content of
the data subset even provides exemplars for each class that could
appear in the stream (i.e., di�erent classes appear/disappear at dif-
ferent parts of the stream). With this in mind, an investigation is
performed into the impact of adopting di�erent policies for con-
trolling the development of data subset content. To do so, a generic
framework is de�ned in terms of sampling and archiving policies.
�e resulting evaluation under several large multi-class datasets
with class imbalance indicates that adopting random sampling with
a biased archiving policy is su�cient for evolving GP classi�ers
that match or be�er the current state-of-the-art, particularly when
detecting minor classes.
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1 INTRODUCTION
Streaming data represents a challenging environment for machine
learning (ML) algorithms to operate. Data streams appear in many
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application contexts in which the processes generating the data are
non-stationary, e.g. communication networks in which services
and protocols change over time, concepts of preference in recom-
mender systems or churn prediction. Moreover, as the data set size
increases, it is increasingly likely that the data was collected over
an extended period of time (months or years). �us, the underlying
process generating the data is no longer stationary, implying that
the underlying assumptions for supervised learning are no longer
true [10].

Building (classi�cation) models under streaming data implies
that a static partition of training data can no longer be assumed,
instead the model adapts interactively with the data stream [6, 7,
9, 13, 18]. �is presents multiple challenges for ML in general, a
general short list of which might include:1

Anytime operation: implies that exemplars from the stream
are labeled by the model before the model can adapt to stream
content. From the context of genetic programming (GP), this means
that a champion individual always needs to be on hand to label
stream content.

Partial observability: implies that model building progresses
incrementally given limited access to stream content, e.g. a sliding
or non-overlapping window. �is means that the data available
does not necessarily characterize all the properties present in the
process creating the data. For example, out of a 5 class classi�cation
task, the data in the current window location might only describe
1 or 2 classes (and then only partially).

Label budgets: provide the distinction between training and
test data. Speci�cally, unlike non-streaming applications models are
constructed incrementally over the duration of the stream. Hence,
the exemplars employed for training are sampled over the course of
the stream. Any remaining data represents ‘test’ data. A label bud-
get declares how much of the stream data can be used for training
purposes.

Operation under a label budget also means that we are able to
function under environments in which labelling all the data is costly.
For example, when building models for Botnet detection from net-
work data, the types of a�ack/communication protocols assumed
by Botnets are subject to change at any point in time. Moreover, at-
tackers are explicitly a�empting to hide themselves in the network
tra�c. Constructing detectors o�ine w.r.t. previously labelled data
limits detection to previously encountered a�acks/communication
protocols. Conversely, requiring the detector to function with the
stream under a label budget results in a framework that actively
decides what to request labels for, potentially discovering new
a�acks.

1Naturally, not all streaming data applications will encounter the same set of
constraints.
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Non-stationarity: implies that the underlying process creating
the data is subject to gradual dri� and/or sudden shi�. For example,
this might re�ect variation to a user’s interests when visiting social
networks or the introduction of new services/applications into
network tra�c.

Single pass operation: implies that it is not possible to revisit
sliding/non-overlapping window locations. Once data moves out-
side of the current window location (i.e., replaced by more recent
content) it cannot be revisited. �is is because new data is continu-
ously appearing that replaces older content. Likewise, the champion
individual only receives one opportunity to predict the label, y (t )
for the current exemplar, ~x (t ). True labels are only provided a�er
the prediction, i.e. prequential operation.

Various frameworks have been proposed for enabling GP to ad-
dress these issues, either separately or as a whole [9]. Particular
highlights that inform this work include the use of a �nite sized
data subset (DS) to act as a cache of the most ‘informative’ exem-
plars from which GP �tness evaluation is performed and facilitate
the identi�cation of a champion individual for anytime operation
[20]. Several suggestions have been made regarding label budgets
including uniform sampling [19, 23], change detection [8, 16], and
active learning [19, 23]. We consider this to represent a generic
requirement for some form of sampling policy. Moreover, the is-
sue of non-stationary processes can also be addressed through a
combination of the sampling policy (de�nes which exemplars to
add to the DS) and an archiving policy (de�nes which exemplars to
replace from the DS).

An earlier work adopted a speci�c combination of sampling and
archiving policies [12]. In this work, the goal is to isolate the various
contributions of each component and identify whether the initial
assumptions were correct. In doing so, we are able to explicitly
recommend the combination of a uniform sampling policy and
biased archiving policy. �is appears to be more e�ective than the
previously proposed combination of biased sampling and biased
archiving policies while providing a simpler algorithmic approach.

2 BACKGROUND
In this work we are explicitly interested in constructing models of
classi�cation capable of operating under the combination of the
four factors highlighted in the introduction: anytime operation,
partial observability, label budgets, and non-stationarity. One impli-
cation of these constraints are that only some fraction of the stream
may be used for constructing a model, i.e. an explicit decision
needs to be made regarding what data to query. A sampling policy
determines which exemplars need querying. Several schemes have
been proposed for this purpose, including: 1) change detection (e.g.
the distribution of data between consecutive sliding windows is
compared with a threshold of similarity [8] or the distribution of
the model output is itself modelled [16]), 2) random sampling, 3)
model speci�c statistics (e.g. how o�en di�erent leafs of a decision
tree suggest a label [21]), 4) active learning [4, 18, 19, 23]. �e later
case implies that: i) Model building is only performed against the
content of the data subset. ii) Predictions from the model can be
used to bias the composition of a data subset, e.g. those that intro-
duce most variance [23] or uncertainty [4]. Z̆liobaitė et al. make
the important observation that the impact of dri� on the ‘strong’

predictions is such that sampling should query both the certain and
uncertain predictions in order to e�ectively resist the impact of
non-stationarity [19]. Finally, we note that competitive coevolution
has also been assessed under streaming data contexts, but with
mixed results [1, 2].

�e case of active learning is particularly relevant to streaming
data as it potentially enables GP �tness evaluation to be decoupled
from the raw content of the data stream. Moreover, the underlying
distribution of exemplars in the data subset need not be the same as
that in the stream. �is means that issues such as class imbalance
can be directly addressed, i.e. at any point in the stream, it is quite
likely that only a subset of classes will be present. A generic frame-
work was recently articulated for addressing the cross section of
issues present in streaming data classi�cation under imbalanced
data using a combination of non-overlapping window, data subset
and biased sampling–archiving policies [12]. However, the contri-
bution of the various components was not explicitly established,
nor was it benchmarked against current state-of-the-art.

3 GP ACTIVE LEARNING FRAMEWORK FOR
STREAMING DATA

Figure 1 summarizes the overall active learning framework assumed
for deploying GP under streaming data applications in which all
four streaming data properties from Section 1 are present. A sam-
pling policy (S) determines which exemplars from the stream to
employ for training purposes. Such a policy has to operate under a
label budget. Naturally, exemplars employed for training purposes
should not employ label information in determining whether they
should be sampled [19, 23]. For example, in the case of a random
sampling policy each new exemplar from the stream, ~x (t − 1), is
sampled with probability 0.0 < β ≤ 1.0, where β = 1.0 implies that
all exemplars are employed. Such a scheme would ensure that over
the duration of the stream [19]: 1) the label budget is enforced, and
2) the underlying distribution of the data is retained by the samples.

A�er Gap exemplars have been chosen for training purposes
they enter the (�nite size) data subset (DS). Once the data subset
is full, an Archiving policy (A) determines which exemplars are
replaced.2 On updating the data subset withGap exemplars, τ (= 5),
GP generations are performed and a GP champion individual is
identi�ed relative to the current data subset content, DS (i ). Once
identi�ed, the GP champion provides labels, y (t ), for new stream
data, ~x (t ). �us, following the initial case of DS (i = 0), a champion
GP is always available for labeling stream content before sampling
takes place (or prequential operation). �is also implies that the
GP champion individual labeling stream content is free to change
during the course of the stream.

Table 1 identi�es a total of four policy scenarios for GP active
learning under the generic framework of Figure 1, summarized as
follows:

Random: �e next record from the stream, ~x (t − 1), is tested
for sampling with a uniform p.d.f. (or s). Instances for
which s < β are sampled. Likewise, a�er the data subset is
full, instances are selected for replacement with uniform
p.d.f. Such a scheme enforces the label budget without

2We assume that under the ‘cold start’ case of an empty DS the �rst |DS | exemplars
are copied straight from the stream to the DS.
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Figure 1: GP active learning framework for streaming data.

Table 1: Streaming GP con�gurations. Random denotes ei-
ther sampling or archiving data using a uniform p.d.f. Like-
wise biased implies either the sampling or archiving data
under the corresponding biased policies.

Model Sampling Policy Archiving Policy
Random (Rnd) Uniform Uniform

Archive Uniform Biased
Sample Biased Uniform

Both Biased Biased

prior access to label information. Z̆liobaitė et al. show
that the probability density of the (labeled) data subset will
approximate that of the (unlabeled) stream as more of the
stream is encountered [19].

Archive: As per the Random policy scenario, each record
from the stream is tested for sampling with a uniform
p.d.f. (or s) and instances for which s < β are sampled.
However, unlike Random, a�er the data subset is full, Gap
exemplars are prioritized for replacement with reference to
label information, i.e. once sampled, the label information
is available. �e ‘oldest’ exemplars from the over repre-
sented class (compared to the current DS distribution of
exemplar labels) are replaced by each new labeled exem-
plar from Gap. �us, following repeated sampling from
the stream, the distribution of exemplars in the DS will
no longer represent the distribution from the stream. �e
most frequent classes will see more replacement and each
class encountered will tend to be represented equally. �e
motivation for pursuing such a policy is that with a bal-
anced representation of classes in the data subset there is
less likelihood of rewarding ‘degenerate’ GP classi�ers.

Sample: Instead of sampling from the stream with a uni-
form p.d.f. an additional test is included. �is time any
record (stochastically) sampled from the stream, ~x (t −
k ) where k > 1, has its corresponding predicted label,
y (t −k ), provided by the GP champion. We except ~x (t −k )
with probability 1/C̄ ′ where C̄ ′ = 1 − C ′ and C ′ is the

proportion of class C ′ currently within the data subset
that matches y (t − k ). In short, if the label predicted by
the champion corresponds to a class under represented in
the data subset, it is more likely to be sampled from the
stream.3 OnceGap exemplars have been sampled from the
stream, Gap records from the data subset are identi�ed for
replacement with a uniform p.d.f. (as per Random).

Both: combines the biased sampling policy from ‘Sample’
with the biased archiving policy from ‘Archive’. �is was
the only scenario that Khanchi et al. [12] considered.

�e underlying motivation for a�empting to incrementally bal-
ance the class-wise distribution of exemplars in the data subset
is that, building classi�cation models relative to a balanced class
distribution tends to optimize robust performance metrics (such
as area under the curve), whereas maintaining the original class
distribution leads to optimizing for accuracy, e.g. [22].

3.1 Teaming GP
�e teaming GP formulation of symbiotic bid-based (SBB) will be
assumed for the generic model of GP [14, 15]. Previous work has
demonstrated that such a framework is more e�ective than mono-
lithic (canonical) GP under o�-line classi�cation tasks [15] and
streaming classi�cation tasks [20]. In the la�er case, the teaming
component of SBB is able to more e�ectively switch useful/ redun-
dant programs in/out of the team, thus react much more e�ectively
to changes in stream content than monolithic formulations of GP.

�e SBB framework cooperatively coevolves GP individuals
through a bidding mechanism that identi�es context for an ac-
tion, in this case a class label. Each program is assigned a single
action at initialization; teams and programs are represented in inde-
pendent populations. �e only constraint on team membership is
that there must be at least two programs per team, and there must
be two di�erent actions present across all the programs participat-
ing within the same team. �us, teams need not be of the same size,
programs can appear in multiple teams, and team complement is
entirely a function of evolution.

For example, let team tmj consist of three programs {pa ,pb ,pc }.
Fitness of the team is assessed over the exemplars from the data
subset, pk ∈ DS (i ). Given training exemplar pk all three programs
from team tmj are executed relative to pk . �e single program
from team tmj with maximum output on pk ‘wins’ the right to
suggest its action. �e action is a single scalar number that each
program is initialized with, and de�ned set of available class labels
a ∈ {1, ...,C}. Should the action match that of the actual label for
exemplar pk then a correct classi�cation results, and the �tness
function is updated accordingly. SBB supports multi-class operation
without any additional features, and has source code available in
multiple languages (C++, Java, Python).4

3In order to ensure that the label budget is strictly enforced, queries are actually made
w.r.t. a non-overlapping window (0 < k ≤ L where L is the window length), until
Gap samples are made.
4h�ps://web.cs.dal.ca/∼mheywood/Code/index.html
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3.2 Fitness function and champion
identi�cation

Given that the distribution of exemplars in the data subset, DS (i ),
at any point in time is likely to be imbalanced, a robust multi-class
performance metric will be assumed. Note that DS (i ) is the only
source of data with true label information. �e performance metric
assumed will take the form of the multi-class detection rate (DR):

DR =
1
C ′

∑
DRj and DRj =

tpj

tpj + f nj
(1)

whereC ′ is the count of classes present inDS (t ); tpj and f nj are the
counts of true positive and false negative for class j, again relative
to the class distribution present in DS (i ).

Such a de�nition has no temporal properties and merely re�ects
the current content of the data subset. Moreover, we note that the
champion classi�er could potentially change as a function of each
variation in the data subset content (i.e., as a function of DS index
i), but never more than this. However, once the �rst champion
classi�er is identi�ed, anytime operation is uninterrupted as a
champion classi�er is therea�er always available.

4 EMPIRICAL METHODOLOGY
4.1 Comparator Algorithm
�e most recent comparator work is that of Z̆liobaitė et al. in which
several policies for streaming active learning are analyzed [19]. �e
work has been implemented as part of the MoA so�ware suite [3].
Speci�cally, two policies were identi�ed as particularly e�ective:
Split and Variable uncertainty. �e Variable uncertainty method
uses classi�er con�dence (i.e., w.r.t. y (t )) to bias the exemplars for
which labels are requested using a variable threshold of certainty.
In e�ect, labels are requested for exemplars distributed about the
decision boundary between classes. �e Split strategy builds two
classi�ers, one under the variable uncertainty approach the other
under the random sampling approach. �e model built under the
random scheme is used to detect change (thus exemplars added to
the data subset conform to the underlying distribution from the
stream) and the classi�er suggests the label, otherwise the variable
uncertainty model suggests the label.

A decision tree represents the model built under this se�ing.
Speci�cally, exemplars from the data subset (content controlled
by either the Split or Variable uncertainty active learning scheme)
de�ne the sample for choosing decision tree split a�ributes. �e
number of a�ributes employed for this purpose is actually statisti-
cally determined by what is known as the Hoe�ding bound [10].
�e resulting Hoe�ding decision tree (DT) is widely employed in
streaming data applications [7], and performed well with the active
learning schemes of Z̆liobaitė et al. [19].

4.2 Data sets
�ree data sets will be employed, two arti�cially designed to ex-
plicitly embed known non-stationary properties into the stream:
Shi� and Dri�. �e third represents the Forest Cover type data set
(herea�er ‘Cover’), albeit ordered using the elevation a�ribute as
per the study of Z̆liobaitė et al. [19]. All three data sets represent

Table 2: Generic properties of the streaming data sets. D de-
notes dimensionality, N cardinality, and k is the number of
classes present over the entire duration of the stream

Stream Dataset D N k ≈ Class Distribution (%)
Dri� 10 150,000 3 [74, 16, 10]
Shi� 6 6,500,000 5 [37, 25, 24, 9, 4]

Cover 54 581,012 7 [49, 36, 6, 4, 3, 1.5, 0.5]

Table 3: GP Parameters. Mutation rates control the rate of
adding/deleting programs or changing an action. DS andGap
refer to the data types in Figure 1. Team population size
and gap imply a breeder model of evolution (the worstTдap
teams are deleted each generation) [14].

Parameter Value
Data Subset size (DS ) 120
DS gap (Gap) and GP gap (Tдap) 20
Team pop. size (Psize ) 120
Max. programs per team (ω) 20
Prob. Program deletion (pd ) or addition (pa) 0.3
Prob. Action mutation (µ ) 0.1

multi-class classi�cation tasks with considerable amounts of class
imbalance (Table 2).

�e Shi� dataset models non-stationary properties in the stream
by sudden step changes in the distribution between two decision
trees (RA and RB ) used to create the data as per [23]. Speci�cally,
each decision tree de�nes a stochastic process for creating a �ve
class classi�cation problem. �e �rst 300,000 records of the stream
sample RA. �erea�er, each consecutive 100,000 records is con-
structed using a combination of RA and RB or IF γ < rnd THEN RB
ELSE RA. �e threshold γ = 0.1 in the �rst set of 100,000 records,
and therea�er increases by 0.1 at each consecutive set. At the last
set only data constructed using RB is present.

�e Dri� dataset is created using a set of d-dimensional hyper-
planes which incrementally change position every 1,000 records.
At each change event half of the parameters undergo variation (the
set of parameters is also chosen stochastically). Labels are de�ned
relative to a (normalized) threshold declared in terms of the hy-
perplane locations. Further details and the parameterizations for
creating the data follow from [21].5

4.3 Stream GP parameterization
Stream GP parameterization follows that adopted by [12] and sum-
marized in Table 3. �us, �tness evaluation is performed against
120 exemplars, and 20 exemplars are replaced at a time (Gap), or a
‘DS update’. Likewise the team population is 120, of which 20 are
replaced per generation (Tдap). Khanchi et al. introduced the con-
cept of performing multiple GP �tness evaluations per DS update
(τ = 5). �e probabilities of deleting/adding a program to a team
are relatively high in order to help promote diversity.

5�e work of [12] also employed Shi� and Dri� and have made the datasets available
publicly h�ps://web.cs.dal.ca/∼mheywood/Data/index.html.
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4.4 Performance metrics
Given the ease with which rate based metrics may explicitly quan-
tify multi-class performance [11], we will adopt such a metric for
this work. Moreover, rate based metrics can be updated incremen-
tally during the course of the stream [9, 17]. �e starting point
is generally the confusion matrix in which the leading diagonal
represents the count of true positives (for each class). Moreover,
the remaining distribution of false negative counts w.r.t. each col-
umn characterizes how the hypothesized/predicted labels were
distributed across the remaining classes. �us, given the confusion
matrix for some point in the stream, t , each class is characterized
in terms of the corresponding detection rate at that point in the
stream:

DRc (t ) =
tpc (t )

tpc (t ) + f nc (t )
(2)

where t is the exemplar index, and tpc (t ), f nc (t ) are the respective
online counts for true positive and false negative rates, i.e. up to
this point in the stream. Note that f nc (t ) re�ects the total number
of predictions falling across all other classes. Moreover, as we are
estimating detection rate for each class, the false positive rate of
class c is ≈ ∑i 1 − DRi (t )∀i , c .

�e multi-class detection rate assumed by this work now has
the form:

DR (t ) =
1
C∗

∑
c=[1, ...,C∗]

DRc (t ) (3)

where (for continuity) we assume that C∗ re�ects the true count of
total number of classes encountered over the course of the stream.6
As 0.0 ≤ DRc (t ) ≤ 1.0 for all t, we now have a metric for charac-
terizing multi-class performance at any point in the stream. Each
class will contribute a maximum of 1

C∗ to DR (t ). �us, should 90%
of the stream represent a single class (the major class), a degenerate
classi�er might label the entire stream the major class. Under an
accuracy or prequential performance metric this would tend to
result in an accuracy (prequential error) tending towards 90% (10%),
whereas the multi-class detection rate would never exceed 1

C∗ .

5 RESULTS
Experiments will be performed under two label budgets, or β =
{0.05, 0.005}, i.e. 5% and 0.5%. �is implies that a�er the cold start,7
the number of exemplars sampled over the duration of the stream
is ≈ βN . Moreover, a prequential model of operation is enforced in
which the model (i.e. GP champion) provides the prediction, y (t ),
for each record. Performance is therefore a distribution of detection
rate per class over the entire stream, where the underlying goal
is to maximize the DR (t ) (Section 4.4). We can now also consider
performance from the perspective of the per class detection rate, i.e.
the dynamic behaviour across the stream. Having established the
impact of di�erent design decisions on classi�cation performance,
we go on to analyze how the same design decisions are re�ected in
the capacity to in�uence the distribution of exemplars in the data

6If the true number of classes is unknown, this just means that a stepwise e�ect appears
in the metric each time a previously unseen class is encountered.
7�e �rst |DS | records from the stream �ll the data subset.

subset (Section 5.3). Both GP and non-GP runs are collected over
20 independent runs.

5.1 Overall classi�cation performance
DR (t ) provides a single scalar value expressing multi-class detection
rate over the duration of the stream (Eqn. (3)). Moreover, not all
classes have the same cost. It frequently transpires that detection of
the least frequent class costs more than detecting the most frequent
(herea�er minor and major class respectively). With this in mind,
we build DR (t ) for overall performance and minor class alone for
each data set and both values of β (Table 4).

�e Friedman test provides a non-parametric equivalent to the
repeated-measures ANOVA, and therefore represents a more ro-
bust approach for testing multiple algorithms over multiple datasets
[5, 11]. Speci�cally, the Friedman statistic (χ2

F ) �rst identi�es the
average rank, Rj , of each algorithm across the set of datasets (lower
is be�er) and measures the degree to which a pa�ern in the ranks
exists or not. In this case there are k = 6 algorithms and n = 3
datasets. �e null-hypothesis is rejected if a pa�ern exists. More-
over, the Friedman statistic is typically renormalized in the form
of the F-distribution (FF ) with k − 1 and (k − 1) (n − 1) degrees of
freedom [5, 11].

Should the null-hypothesis be rejected, then a Nemenyi post-hoc
test de�nes the critical di�erence: CD = qα

√
k (k + 1) ÷ (6n) by

which models should di�er for a signi�cant di�erence to appear.
Table 5 summarizes the result of applying the Freidman test un-
der the all class and minor class scenarios. Table 4 indicates the
following general trends:

• All algorithms perform well under Shi� at the 5% label rate,
even for the minor class. However, at the 0.5% label rate
both Hoe�ding DT policies (Split and Var) undergo the
most reduction, especially under the minor class scenario.
Similar pa�erns of behaviour appear for Dri� and Cover.
�e resulting null-hypothesis test is rejected for 0.5% at
the minor class scenario (Table 5). A Critical Di�erence for
the Nemenyi post-hoc test identi�es Hoe�ding DT policies
as signi�cantly worse than any Stream GP policy.

• Under the higher (5%) label budget, the control Stream GP
policy of random sample and archiving (Rnd) is consis-
tently ranked last, so much so that the null-hypothesis is
rejected and the post-hoc test identi�es Rnd as signi�cantly
worse than the remaining algorithms.

• Generally, the best Stream GP policies are Both and Archive,
with Archive always receiving the best ranking irrespec-
tive of test scenario. Both was ranked second for all but
the 0.5% test over all classes.

In short, the most e�ective active learning polices for use with
GP under streaming data are Archive and Both. �ese two policies
are at least as good as the best (non-GP) comparator algorithms and
can be be�er, particularly in the case of minor class performance.

5.2 Class-wise detection rates
�e overall performance evaluation of Section 5.1 hides many prop-
erties behind a single scalar number (in this case multi-class detec-
tion rate). When the datasets are multi-class and a single perfor-
mance measure is used to characterize the ability of an algorithm to
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(a) StreamGP–Rnd (b) StreamGP–Sample (c) StreamGP–Archive

(d) StreamGP–Both (e) Hoe�ding–Split (f) Hoe�ding–Var

Figure 2: Multi-class Detection Rate of StreamGP and Hoe�ding decision tree on Cover dataset for β = 5%

adapt over the course of a data stream, there are many behaviours
that can result in the same scalar measure of performance. Figure
2 summarizes how detection rate for each class adapts over the
stream for the four con�gurations of active learning in Stream GP
(5% label budget). Class 1 through 7 are ordered largest (class 1) to
smallest (class 7), see Table 2 for the overall distribution.

Figure 2(a) represents the base case in which records are sam-
pled from the stream and replace instances from the data subset
stochastically. It is no surprise that the three most frequent classes
are detected most e�ectively, albeit with class 3 detected much
more e�ectively than class 2 throughout the majority of the stream.
Class 4 is barely detected at all, whereas class 7 (representing 0.5%
of the dataset) is detected at a rate of 20% throughout the stream.
�is seems to indicate that class 4 is particularly non-stationary
whereas class 7 is essentially stationary.

Introducing biased sampling of records (Sample) results in be�er
detection for all classes other than class 5 (Figure 2(b)). Switching
back to random sampling from the stream, but introducing targeted
replacement of exemplars from the data subset (Archive) results in
all the minor classes being detected with a minimum DR of ≈ 35%
(as opposed to less than 10% under Rnd or Sample). Supporting both
biased sampling and archiving (Both) improved class 4 in particular
(Figure 2(d)). However, Class 6 is now detected at a rate of 30% as
opposed to 40% under Archive.

Figures 2(e) and 2(f) summarizes the class-wise detection rate for
Hoe�ding decision tree (DT) under Split and Variable uncertainty
active learning policies. Stream GP detection rates for class 1 and
3 are approximately 40% whereas the Hoe�ding DT combination
returns about 80% detection rates for class 1 and 3. Conversely,
Stream GP detected class 2 at a relatively constant rate throughout
the stream, whereas Hoe�ding DT experienced considerable �uctu-
ation. Moreover, all the remaining classes (4 through 7) were never
detected at the rates achieved when Stream GP assumes Archive or
Both active learning policies.

5.3 Data subset distributions
Classi�cation performance provides one approach for quantifying
the impact of the various Stream GP active learning policies. In
this section, we assess the di�erent active learning policies through
their impact on the distribution of exemplar classes retained in the
data subset during the stream. Space precludes analysis over all
three data sets, so for consistency with Section 5.2, we concentrate
on the Cover dataset (similar observations appearing for Shi� and
Dri�).

Figure 3 details the resulting representation of exemplars from
each class during the stream for each active learning policy in
Stream GP. Two basic behaviours are now evident. �at illustrated
by Rnd and Sample (Case 1) versus that by Archive and Both (Case
2). Under Case 1 the two major classes dominate the distribution

950



Properties of GP Active Learning for Streaming Data GECCO ’17, July 15-19, 2017, Berlin,Germany

(a) Rnd (b) Sample

(c) Archive (d) Both

Figure 3: Distribution of exemplar classes in StreamGP data subset on Cover dataset for β = 5%

of exemplars retained within the data subset over the course of
the stream. Conversely, the active learning policies of Case 2 are
able to achieve a much more balanced distribution of the exemplars
retained per class. Two features distinguish Archive from Both.
Under Archive, class 4 (which appears for the �rst time around the
30% mark in the stream) only sees gradual representation over the
interval between 40 and 70%. Conversely, the Both active learning
policy manages to immediately populate the data subset to slightly
less than 100

7 % ≈ 14% of the data subset. In e�ect, the predictions
from the GP champion for class 4 were accurate and therefore
resulted in new instances of class 4 being quickly prioritized for
inserting into the data subset. We associate this property with the
70% DR of class 4 during the mid-point of the stream for SteamGP–
Both combination (Figure 2(d)).

�ere is also a di�erence between Archive and Both in the way
that class 6 is addressed. Class 6 is actually present from the be-
ginning of the stream. However, the biased nature of the Both
policy results in this class being ignored until ≈ 8% of the way
through the stream. Conversely, the Archive policy samples data
for inserting into the data subset with uniform probability. �is
results in the earlier recognition of this class, ultimately resulting
in the SteamGP–Archive combination detecting class 6 at a 10%
higher detection rate.

6 CONCLUSION
Design decisions for GP active learning as applied to streaming data
classi�cation tasks is formulated in terms of a sampling policy and
an archiving policy. Speci�cally, �tness evaluation is performed
against a data subset, as opposed to the stream directly. �e sam-
pling policy de�nes what exemplars to select for inclusion within a
data subset, whereas the archiving policy de�nes how to replace
exemplars from the data subset with new content. Given a base
case of a uniform stochastic process for both, we incrementally
introduce biased sampling of the stream (using label predictions
from the champion classi�er) and biased replacement of exemplars
from the over represented class(es) in the data subset, resulting
in the data subset class distribution incrementally becoming more
balanced.

Two active learning con�gurations result in particularly robust
GP streaming classi�ers: Both and Archive. Moreover, both policy
combinations match or be�er current state-of-the-art, particularly
respect to the detection of minor classes. We also investigate the
capability of the framework to actively balance (or not) the distribu-
tion of exemplars in the data subset during the course of the stream.
Finally, we note that the Archive con�guration provides results as
good as the more complex Both policy combination, thus facilitat-
ing true online operation (Both assumes a non-overlapping window
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Table 4: Median stream DR (t = N ). Bold indicates a best
case result for each test condition. Any policy marked with
an ‘*’ denotes a policy with a statistically signi�cant worse
result (following Friedman test and Nemenyi post-hoc test).
Rj denotes the average rank for each policy.

All classes (β = 5%)
Dataset Shi� Dri� Cover Rj
Both 94.4 72.1 41.0 2.33
Archive 95.1 72.7 40.1 2.0
Sample 93.8 63.9 37.9 5.0
Rnd* 90.8 66.4 31.8 5.66
Split 97.8 68.4 38.5 2.67
Var 96.3 69.8 37.4 3.33

Minor Class (β = 5%)
Both 87.7 72.6 56.3 2.67
Archive 93.2 76.3 55.2 2.0
Sample 87.3 60.2 50.9 4.17
Rnd 80.8 73.6 19.0 4.67
Split 97.3 54.1 50.9 3.5
Var 94.5 60.0 44.4 4.0

All classes (β = 0.5%)
Both 84.4 52.0 26.0 4.0
Archive 85.9 54.2 26.8 2.67
Sample 83.3 47.2 28.3 3.67
Rnd 80.3 51.1 26.8 4.33
Split 78.1 53.3 28.5 3.33
Var 79.1 56.9 27.0 3.0

Minor Class (β = 0.5%)
Both 68.6 48.7 38.6 2.33
Archive 78.9 59.3 40.6 1.0
Sample 68.0 42.2 34.1 3.33
Rnd 65.9 52.5 27.3 4.0
Split* 66.8 29.8 2.9 5.0
Var* 66.2 34.2 0.1 5.33

Table 5: Freidman test χ2
F and corresponding value for F-

distribution FF . �e critical value F (5, 10) for α = 0.1 is 2.522.
Bold font indicates FF for which the null-hypothesis is re-
jected.

Percent labels (β) 5% all 5% minor 0.5% all 0.5% minor
χ2
F 9.67 4.28 1.67 11.57

FF 3.63 0.8 0.25 6.75

interface). As such this improves on the earlier con�guration as
proposed by Khanchi et al. [12].

In the case of future work, we are interested in deploying such
schemes to the detection of botnet tra�c, i.e. a speci�c applica-
tion scenario in which the operation under label budgets and the
detection of minor classes is extremely important.
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[19] I. Z̆liobaitė, A. Bifet, B. Pfahringer, and G. Holmes. 2014. Active Learning With
Dri�ing Streaming Data. IEEE Transactions on Neural Networks and Learning
Systems 25, 1 (2014), 27–54.

[20] A. Vahdat, J. Morgan, A. R. McIntyre, M. I. Heywood, and A. N. Zincir-Heywood.
2015. Evolving GP classi�ers for streaming data tasks with concept change and
label budgets: A benchmarking study. In Handbook of Genetic Programming
Applications. Springer, Chapter 18, 451–480.

[21] Y. Huang W. Fan, H. Wang, and P. S. Yu. 2004. Active mining of data streams. In
Proceedings of SIAM International Conference on Data Mining. 457–461.

[22] G. M. Weiss and F. Provost. 2003. Learning when training data are costly: �e
e�ect of class distribution on tree induction. Journal of Arti�cial Intelligence
Research 19 (2003), 315–345.

[23] X. Zhu, P. Zhang, X. Lin, and Y. Shi. 2010. Active learning from stream data
using optimal weight classi�er ensemble. IEEE Transactions on Systems, Man,
and Cybernetics – Part B 40, 6 (2010), 1607–1621.

952


	Abstract
	1 Introduction
	2 Background
	3 GP Active Learning Framework for Streaming Data
	3.1 Teaming GP
	3.2 Fitness function and champion identification

	4 Empirical Methodology
	4.1 Comparator Algorithm
	4.2 Data sets
	4.3 Stream GP parameterization
	4.4 Performance metrics

	5 Results
	5.1 Overall classification performance
	5.2 Class-wise detection rates
	5.3 Data subset distributions

	6 Conclusion
	7 Acknowledgements
	References

