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ABSTRACT
Pit planning and long-term production scheduling are important
tasks within the mining industry. �is is a great opportunity for
optimisation techniques, as the scale of a lot of mining operations
means that a small percentage increase in e�ciency can translate
to millions of dollars in pro�t. �e precedence constrained produc-
tion scheduling problem (PCPSP) combines both of these aspects
of mine optimisation and aims to �nd a solution which tells a min-
ing company what part of the orebody to mine, and at what time
during the life of the mine. �is paper presents a GRASP-Mixed
Integer Programming hybrid metaheuristic algorithm for solving
the PCPSP which consists of two parts: a fast, period-by-period,
random construction phase and a local improvement heuristic. It is
compared to the current published state-of-the-art results on well
known benchmark problems from minelib [5] and is shown to give
be�er quality results in four of the six instances, and within 2% of
the LP upper bound in the remaining two. �e PCPSP is a good
candidate for hybrid metaheuristics as the size of the problems
make solving them with mathematical solvers alone intractable.
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1 INTRODUCTION
Open-pit mining is a very important industry in Australia and
around the world. Two of the most critical tasks within the life-
cycle of an open-pit mine is planning and production scheduling.
�ese tasks allow the mine operator to estimate the total value of the
mine over its life and also to identify areas for excavation that will
yield the most value. Proper planning of a mine ensures maximum
pro�t for the operator and because this is typically talked about in
the hundreds of millions of dollars, it is an excellent application
for optimisation techniques as very small changes in e�ciency can
still translate to signi�cant sums of money [10].

In order to make this problem solvable by combinatorial methods,
the earth to be mined (known as the orebody) is typically discretised
into a three-dimensional array of blocks with a given value based on
the ore content and the cost required to excavate it. �ese values
are calculated by taking core samples and using geological and
statistical methods to estimate the value of each block.

Problems in mine planning and production scheduling are very
large and tend to have few side-constraints (o�en well under a
hundred), but many blocks and many, many more precedence con-
straints governing when blocks can be mined [1]. �is means
traditional mathematical solvers are unable to solve these problems
without �rst using some form of decomposition, making these prob-
lems perfect candidates for metaheuristics and metaheuristic-MIP
hybrids, despite there being very li�le in the literature.

Due to the sensitive nature of information surrounding mining
enterprises, obtaining problem data for academic research can be
challenging, however the website minelib [5] has a repository of
problems and results that are freely available for the general pub-
lic. �ese sets contain data for versions of the problem such as
the ultimate pit limit (UPIT), constrained pit limit (CPIT) and the
precedence constrained production scheduling problem (PCPSP). It
is this la�er set that will be considered here.

�is paper presents a Greedy Randomised Adaptive Search Pro-
cedure (GRASP)-Mixed Integer Programming (MIP) hybrid algo-
rithm that is shown to be be�er than the current state-of-the-art
in four of six of the minelib instances, and within 2% of the linear
programming (LP) upper bound for the remaining two. It uses a
period-by-period decomposition technique to obtain a population
of fast, feasible solutions of reasonable quality before employing a
local improvement heuristic with a sliding window mechanic that
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considers smaller parts of the larger problem individually. Due
to the size of the search space and complexity of the constraints,
applying sophisticated evolutionary methods may not be straight-
forward; Singh et. al [14] suggested that simpler heuristics worked
be�er than genetic algorithms on a similarly large-scale mining
problem.

�is paper is organised as follows: Section 2 introduces this
interesting and unique problem, gives a mathematical formulation
and discusses how the problem is modelled and gives some of the
techniques currently used to solve various forms of the problem.
Section 3 discusses the period-by-period formulation, developed to
provide a way of decomposing the problem into manageable parts.
Section 4 presents the proposed algorithm and discusses its various
aspects and a�ributes. Section 5 details the experiments performed
and gives descriptions of the datasets used from minelib. Section 6
presents and discusses the results obtained from the experiments
in Section 5; it also gives a discussion of the various parameters
that are used to control the algorithm. Finally, Section 7 brings
together the conclusions drawn from the results and outlines some
directions for potential future research.

2 BACKGROUND
�is section gives a description of the problem, introduces ways
in which it can be modelled and gives a brief survey of how other
researchers have approached solving it.

2.1 Problem description
To make planning the mine easier, the orebody is divided up into
discrete blocks and each one given a value based on the percentage
of ore and the cost to mine it (Figure 1). �ese values are typically
calculated using deep core drilling samples at certain points, how-
ever as the values are given in the data sets, exactly how the values
are arrived at is not relevant here.

4

5 6 -3

1 -2 -2 -2 -2

Figure 1: Vertical cross-section of an orebody model with
value of blocks1.

Typically, there are two destinations in the given data sets: min-
ing a block and sending it to be processed; and mining a block and
sending it to a waste stockpile. �e values shown in Figure 1 are
the maximum of the pro�t from mining and processing a block and
the cost of just mining it.

Precedence constraints. In open cut mines a block cannot be
mined unless the block directly above it is also mined. �is property
is known as a precedence constraint and can be represented in the
structure of the problem by creating a graph where each block is a
1Figures 1, 4 and 5 in this section are adapted from an example given in the survey
paper by Meagher et. al. [10].

node and the precedence constraints are arcs pointing from a block
to block below that can be mined a�er it (Figure 2).

Figure 2: Immediate precedence constraints indicate that
each block cannot be mined before the one above.

Using immediate precedence constraints alone would allow for
narrow, vertical sha�s to be dug in the mine. In order to let the
digging and extraction equipment to be brought in, the walls of the
mine have to be dug with a certain slope angle. �is means that a
block may not be mined, unless the block directly above it and the
blocks all around that block are mined. �ese extra precedence con-
straints can also be encoded into the problem structure by adding
extra arcs from the block to all of its successors. A 2-dimensional
example is given in Figure 3; however, in practice, each (non-edge)
block will have at least 9 predecessors.

Figure 3: Precedence graph constructed from Figure 1 with
both immediate precedence and slope constraints.

Resource constraints. Along with precedence constraints, there
are also resource constraints which control how many blocks can
be mined and sent to a certain destination. To this end, there are
resource limits associated with each resource/destination. �ese
resource limits e�ectively control how much mining can be done
within a certain time period. �e resources do not accumulate
over time periods - if a particular resource is not exhausted in
the current time period, it will not continue to be available in the
next period. �e constraints would be typically derived from the
available capacity of the bo�leneck operation. For example this
might be the available machine hours of the dragline excavators in
the pit.

Discount rate. A discount rate is applied to the pro�t obtained by
mining a particular block at a particular time. �is means that the
later a block is mined, the less pro�t it generates from processing.
Conversely, the later a block is mined, the smaller loss it will make
from mining it if it is negatively valued.

�e objective of the problem is to maximise the net present value
(NPV) of the mine, taking into account the following restrictions:

(1) Each block is mined at most once.
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(2) �e predecessor blocks must be mined in the same period
or earlier.

(3) Each block must be sent (possibly fractionally) to the des-
tinations in the period in which it is mined.

(4) �e resource limits consumed in sending blocks to their
destinations must not be violated.

It should be made clear that this is a signi�cantly simpli�ed problem
but one that captures the essential characteristics of this challenging
optimisation problem. In real life, additional considerations include
grade targeting (ensuring a consistent product in terms of impurities
and other characteristics), more complex constraints on pit shape
from operational constraints (push-backs), uncertainty in block
composition and other mine or business speci�c considerations.

2.2 Modelling the problem
Mathematical formulation. �e data for this problem consists of

the following sets and parameters:

B the set of blocks;
T the set of time periods;
D the set of destinations. Typically, |D | = 2;
R the set of resources. Typically, |R | = 2;
P the set of precedences. a → b if (a,b) ∈ P means block a

must be mined before block b;
pbdt the pro�t for sending block b to destination d at time t (can

be negative if it is a cost only). For the minelib data this is
simply pbd

(1+discount)t for some base cost pbd and a discount
value that is typically in (0, 1);

qbdr the amount of resource r required by block b if sent to
destination d ; and,

Rr t the amount of resource r available in time period t .

�e variables used to solve this problem are:

xbt is a binary variable that is one if block b is mined in period
t or earlier (that is, the block has been removed by the end
of period t )

ybdt the fraction of block b sent to destination d at time t

Using this notation, the problem is wri�en as:

max
∑
b∈B

∑
d∈D

∑
t∈t

pbdtybdt , (1)

s.t.,
xbt ≤ xat ∀ (a, b ) ∈ P, t ∈ T , (2)
xbt ≤ xb,t+1 ∀ b ∈ B, t ∈ T , (3)∑
d∈D

ybdt = xbt − xb,t−1 ∀ b ∈ B, t ∈ T , (4)∑
b∈B

∑
d∈D

qbdrybdt ≤ Rr t ∀ r ∈ R, t ∈ T , (5)

xbt ∈ {0, 1}, ybd ≥ 0 ∀ b ∈ B, d ∈ D, t ∈ T . (6)

Note: for correctness, in (4) for the �rst time period, no previous x is to
be subtracted.

In the above formulation, constraint (2) says that block a must
be mined before block b and represents the precedence and slope
constraints; (3) states that if block b is mined at time t , it must also
be mined at time t + 1; (4) ensures that, although a fraction of a
block can be sent to di�erent destinations, the entire block must
be either mined or not mined within a single time period; (5) are
the resource constraints; and (6) says that xbt must be integral, but
ybd may be fractional.

Network flow approach. By relaxing constraints (5) and (4), the
problem then becomes a ma�er of �nding the set of blocks that
are worth mining at all throughout the whole process. �is is
known as the UPIT problem, and represents an upper bound on the
constrained problem.

�e structure of the problem dictates that the solution to the UPIT
problem is also the maximum closure of the precedence constraint
graph where the values of the blocks are the weight of the graph
nodes. A closure of a graph is a partitioning of that graph into
two sets such that all arcs between nodes in both sets are all of
the same direction; either into, or out of the closure. A maximum
closure is obtained when the value of the nodes in the closure is
the maximum possible value. �e blocks that are to be included in
the ultimate pit all fall inside the maximum closure and those that
will never be mined are outside.

Picard [12] showed how to �nd the maximum closure of a graph
using maximum network �ow algorithms, and these algorithms can
be used to solve the UPIT problem quite e�ciently. �e existing
arcs in the precedence graph are given in�nte capacity - as they
are only there to preserve predence and slope constraints - and
“dummy” nodes representing the source and sink are added with
arcs from the source node to each negatively valued block, and arcs
from each positively valued block to the sink (Figure 4).

t
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Figure 4: Network �ow graph constructed from Figures 1
and 3.

�e problem can then be solved as a normal network �ow prob-
lem, the closure containing any blocks with unsaturated residual
�ow arcs to the sink and their predecessors (Figure 5).

�e way this technique works is to “push” losses from negative
valued blocks, down to higher valued blocks in order to balance
these losses out. If, a�er these losses have been balanced out, there
is still value (�ow) remaining in the positively valued block (its arc
is still unsaturated), this indicates that it is worth mining all of the
blocks above in order to reach it.
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Figure 5: Solving the network �ow problem gives the max-
imum closure. Dashed arrows indicate saturated �ow arcs
and the bold line indicates the maximum closure.

�is aproach can also be used to solve sub-problems anywhere
a partition of the graph is needed. Empirically, the best algorithms
found to solve these maximum closure problems are the Boykov-
Kolmogorov [3] and the CPLEX network simplex algorithms.

2.3 Related work
Despite the problem having been formalised as early as the 1960s,
due to limits in computing power most of the earlier work focuses
on solving the UPIT or CPIT problems [4, 9]; for a good survey of
research in these related areas, see [7, 10]. Another area of related
research is solving the LP relaxation, a modi�ed version of the
algorithm from Bienstock and Zuckerberg’s paper [1] is used to
compute the LP upper bound on minelib. �ere are a few papers
that focus on solving the PCPSP as used in this research and this
section outlines some of the methods used.

In order to alleviate the problems caused by the enormous num-
ber of blocks in a problem (see Table 1), Jélevez et. al. [8] uses an
aggregation heuristic to group blocks into larger blocks that will
all be selected or not at the same time. �is method also uses a
separate disaggregation heuristic to ungroup blocks when a more
�ne-grained search is required.

Bley et. al. [2] present a strengthened MIP formulation for the
PCPSP. �ey include additional constraints derived by combining
precedence and production constraints. In their experiments, they
�nd that these additional constraints serve to reduce the compu-
tation time needed to solve their custom instances using CPLEX.
�ey did not use their techniques on the minelib instances, likely
because they are too large for CPLEX to solve.

�e masters thesis of Gonzalo Muñoz [11] provides the results
that are reported on minelib and used for comparison in this paper.
�is algorithm uses a modi�ed version of the Bienstock and Zucker-
berg algorithm to solve the LP relaxation and then use a topological
sorting algorithm, similar to that used in [4] to construct a feasible
solution from this relaxation.

3 SINGLE PERIOD PCPSP
Modelling the fully constrained problem as a network �ow requires
signi�cant expansion of the problem graph. Figure 6 shows that
each destination requires an extra block node and arc; and each

time period requires an extra copy of the full problem graph. �is
is because the model in Equations 1-6 requires decision variables
ranging over blocks, destinations and time periods. Clearly this
expansion makes large instances of the problem intractable for most
algorithms, so some kind of decomposition technique is required.

3.1 Reduced formulation
�ere is nothing that can be done about the increase in problem
size that comes from adding destinations, as the destinations are
inextricably linked to the resource constraints; and the increase of
the size of the problem is only BD, where B is the number of blocks
and D the number of destinations. However, signi�cant reductions
in problem size can be made by removing any reference to time
from the formulation and solving the problem one time period at a
time. Removing time considerations from equations (1) to (6) gives:

max
∑
b ∈B

∑
d ∈D

pbdybd , (7)

s.t.,
xb ≤ xa ∀ (a,b) ∈ P, (8)∑
d ∈D

ybd = xb ∀ b ∈ B, (9)∑
b ∈B

∑
d ∈D

qbdrybd ≤ Rr ∀ r ∈ R, (10)

xb ∈ {0, 1} ybd ≥ 0 ∀ b ∈ B,d ∈ D. (11)

�is, much simpler, formulation can then be solved iteratively
for each period, using any MIP solver such as CPLEX, by �xing
the blocks mined in each previous period, until all blocks in the
ultimate pit have been mined.

4 GRASP HEURISTIC
�is Section outlines the proposed greedy randomised adaptive
search procedure (GRASP) heuristic named minePS+LI. As with
most GRASP heuristics, it consists of two phases; a randomised
solution construction phase and a local improvement phase [13].

4.1 Random solution construction
Deterministic solutions to the problem can be greedily constructed
using the basic single-period CPLEX-based model discussed pre-
viously. However, in order to be considered a GRASP heuristic, a
method of generating randomised solutions is required.

�e CPLEX model works by �nding the optimal subset of blocks
to mine in that period from a superset of blocks that are included
in the original model. By default, this superset is the entire set of
blocks available in the UPIT solution but there are a number of
drawbacks to this method. Firstly, due to resource constraints, not
every block in the UPIT solution is reachable in every period; this
means that there are a signi�cant number of blocks included in the
model for a given period which will never be mined because there
is just not enough resources to reach them. Secondly, as problem
size increases, the inclusion of every reachable block in the model
still results in very large models; and therefore signi�cantly slower
solution times. Finally, including the same blocks in the model
every time results in the same (or extremely similar, due to CPLEX’s
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time period 0, destination 0 time period 1, destination 0

time period 0, destination 1 time period 1, destination 1

Figure 6: Time and destination expanded problem graph for two time periods and two destinations. An extra node and arc is
added for each destination, and a full copy of the destination expanded graph is added for each time period.

random processes) solutions being generated. All three of these
issues can be addressed by random cone selection.

In order to excavate a block, all of its predecessor blocks must
�rst be excavated. �ese predecessors take the shape of a cone,
which starts with its vertex at the block in question and extends
upward and outward until it reaches the surface. �e total value
of these cones can be calculated by summing up the maximum
pro�t for each of the blocks contained within the cones and this
information can be used to determine which blocks are included in
the model. �e minimum resources required to excavate a cone can
also be computed while calculating the value of the cone, and this
information can be used to determine whether a block is reachable
in a given period and therefore if it should be included.

Random cone selection works by computing all such cones in
the orebody model and then selecting with some probability p
(typically, 0.5), cones which consume ρ fraction of the resources
available for the current period and whose base block is not a
member of another cone. �e cones are �rst sorted by value, in
order to bias the algorithm towards selecting high-valued cones,
and selected by adding all blocks from the current cone into the
model. �is continues until some multiple µ of the resource limit for
the current period is exceeded a�er adding all blocks in a selected
cone. A full description of these parameters is given in Section 6.

Having populated the model with the blocks it is allowed to
choose from, a MIP is solved to �nd the best subset of blocks to
mine in the current period. �e blocks from this solution are then
added to the model as “�xed”, their resource usage added to the total
resource limit and the whole process starts again by computing and
selecting cones for the next period.

As this process, with suitable values chosen for p, ρ and µ, is
relatively fast; n random solutions are �rst generated, with the best
being selected for further local improvement.

4.2 Local improvement heuristic
If there was no discount rate included in the problem description,
then any feasible solution to the problem which mines all blocks
identi�ed in the solution to the UPIT problem within the given
time periods would be optimal. �e inclusion of a discount rate
says that the later a block is mined, the closer to zero its value
becomes; meaning that be�er solutions will have positively valued
blocks mined earlier and negatively valued blocks later. It is this
principle behind the local improvement phase of the proposed
GRASP algorithm.

Operating similarly to the bubblesort algorithm [6], a window of
size ω (typically two periods long) is moved back and forth along
a time-expanded version of the randomly constructed solution,
searching for high-valued blocks that can be moved earlier in time
and loss-making blocks that can be moved to later (Figure 7). Once
all possible swaps have been made within a window, that window is
then moved along while still overlapping at least one period so that
blocks swapped in the previous search may potentially be swapped
further in the current one.

. . .

. . .

. . .

. . .

i + 1

i

. . . τ − 3 τ − 2 τ − 1 τ τ + 1 τ + 2 τ + 3 . . .

. . . τ − 3 τ − 2 τ − 1 τ τ + 1 τ + 2 τ + 3 . . .

b

b

ω

ω

Figure 7: Window slides along the solution with each itera-
tion; unfreezing ω periods at a time and allowing block b to
move from period τ + 1 to τ − 1 over two iterations.

Although this method requires a full, time-expanded solution,
because only the blocks that are mined within the current window
are included in the model; the model is much smaller than that
needed to solve the original problem and therefore tractable, even
for very large problem sizes. Blocks that are included are free
to take any time value within the window (that does not violate
any precedence or resource constraints), while blocks that are not
included are �xed at their current value in the solution.

�e random construction phase aims to use as much of the
resource limit as possible for each period meaning that swapping a
block from one period to another which is near its resource limit
requires a reciprocal swap from a block in the period it is trying to
swap to - otherwise the resource constraints will be violated. For
this reason, it makes sense to start sliding the window from the last
period rather than the �rst, as the last period will not have reached
its resource limit and therefore will allow blocks to be swapped into
it without needing to �nd a reciprocal swap. �is, in turn, frees up
space in the previous period so that blocks from the period before
that can be swapped easily, and so on down the line, making the
whole process run faster.
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4.3 Algorithm
Algorithm 1 details the procedure by which the minePS+LI algo-
rithm functions.

tmax ← number of periods in problem
Rt ← amount of resources allowed in period t
initialise MIP model
�x all variables to 0
for t = 0 to tmax do

calculate cone values
while used resources < µ × Rt do

add cones to model by un�xing their member blocks
end while
solve MIP model
�x blocks in solution to present value
update resource constraints

end for
while not converged or time limit reached do

for t = tmax − ω − 1 down to 0 do
initialise empty MIP model
add all blocks in periods t to t + ω to model
solve model using current solution as warm start

end for
end while
Algorithm 1: Pseudocode for minePS+LI algorithm.

5 EXPERIMENTAL DESIGN
�is Section gives the details of the datasets from minelib and
outlines the experiments that were performed.

5.1 Datasets
Table 1 shows the characteristics of the problem instances used to
test the algorithms. �e �rst column gives the instance name; the
second column gives the number of physical blocks in each orebody
model; the third gives the number of block precedences in the
orebody model; the fourth displays the number of decision variables
requried, based on the the formulation given in Equations (1-6);
and �nally, the last column gives the total number of constraints
in this same formulation. It can be seen from this Table that all
problem instances except for newman1 have too many variables and
constraints to be tractable for conventional mathematical solvers.

�e full minelib dataset contains 11 di�erent instances, 6 of
which have been chosen for comparison in this research. Several
instances were omi�ed due to several factors. No .pcpsp prob-
lem �le was available (p4hd), problem instance references more

Table 1: Characteristics ofminelib datasets.

Instance Blocks Precedences Periods Variables Constraints
newman1 1,060 3,922 6 19,080 46,864
zuck small 9,400 145,640 20 564,000 3,514,440
kd 14,153 219,778 12 509,508 3,203,468
zuck medium 29,277 1,271,207 15 1,317,465 20,502,708
marvin 53,271 650,631 20 3,196,260 16,422,004
zuck large 96,821 1,053,105 30 8,713,890 40,694,384

than two resources (w23) and problem instances were too large
for the algorithm in its current form (sm2, mclaughlin limit,
mclaughlin).

5.2 Experiments
�e experiments were run on an Intel® CoreTM i5-6200U processor
(2.30GHz) with 8GB RAM running Linux. All code was implemented
in C++ with GCC-4.8.0. �e boost library implementation of the
Boykov-Kolmogorov algorithm was used to solve the UPIT problem
and CPLEX Studio 12.7 operating with up to 4 parallel threads was
used to solve the MIPs.

Comparisons were made on instances of the minelib dataset
between a greedy algorithm, the random solution construction
algorithm without the local improvement, the full GRASP heuristic
with random solution construction and local improvement and the
published state-of-the-art results from minelib.

�e greedy search algorithm is deterministic, and therefore its
solution does not change with the number of runs, so it was only
run once for each instance. Two versions of the proposed heuristic
were tested; minePS is the period-by-period solution construction
heuristic and minePS+LI is the construction phase with additional
local improvement heuristic.

�e experiments designed to test the random solution construc-
tion were run for 30 times each instance with the mean and stan-
dard deviation being recorded. �e experiments that test the full
minePS+LI algorithm were run 10 times each, with a stopping con-
dition of either no change to objective value a�er two full passes
of the sliding window, or 10 hours wall time.

Finally, experiments testing the sensitivity of the ω parameter
were run to compare the amount of wall time taken to perform one
full pass of the window-based local improvement heuristic. �e
same starting solution was used for each run and each run was
performed 5 times for ω = 2 and ω = 3 for the given instances with
the mean and standard deviation reported.

�e parameter se�ings for all of the experiments were p = 0.5,
ρ = 0.4, µ = 1.1, n = 5 and ω = 2 (except for the exepriments
testing ω). Section 4.1 gives a description of these parameters and
Section 6.2 discusses the choice of their values.

6 RESULTS AND DISCUSSION
�is section gives the results of the experiments outlined in the
previous section and discusses the outcomes.

6.1 Experiments onminelib dataset
Table 2 shows the results of the experiments described in the previ-
ous section. As no time information was published for the minelib
results, comparison had to be on solution quality alone. Due to the
randomised nature of the algorithms, the mean and standard devia-
tion was recorded for the minePS and minePS+LI results. �e LP
upper bound, reported in minelib and computed using a modi�ed
version of the Bienstock & Zuckerberg algorithm [1] is shown to
give an indication of the quality of the heuristic results.

Table 2 shows that for 4 out of 6 instances, minePS+LI is able
to beat the current state of the art published results as obtainable
on the minelib website [5]. In the two instances that the algorithm
was unable to match the published results, the objective value is
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Table 2: Results on minelib dataset instances. Mean and standard deviation reported only for minePS and minePS+LI, as
greedySearch is deterministic andminelib had no other information reported.

LP Upper bound minelib greedySearch minePS minePS+LI

Instance mean std. dev mean std. dev.
newman1 2.45E+07 2.37E+07 2.16E+07 2.38E+07 1.83E+05 2.41E+07 0.0
zuck small 9.06E+08 8.72E+08 6.30E+08 7.94E+08 3.05E+06 8.91E+08 1.24E+06
kd 4.11E+08 4.07E+08 4.87E+07 3.73E+08 3.49E+06 4.02E+08 6.60E+05
zuck medium 7.51E+08 6.76E+08 3.54E+08 6.67E+08 4.16E+06 7.28E+08 4.48E+06
marvin 9.12E+08 8.86E+08 5.30E+08 7.91E+08 6.61E+06 8.97E+08 2.91E+06
zuck large 5.79E+07 5.73E+07 5.50E+07 5.12E+07 1.20E+05 5.70E+07 1.22E+05

Table 3: Times (wall, seconds) taken to complete a full pass
of thewindow based local improvement heuristic withω = 2
andω = 3. ∆ob j is the percentage of improvement in solution
quality over the full pass.

ω = 2 ω = 3
Instance mean (s) std. dev. (s) ∆ob j (%) mean (s) std. dev. (s) ∆ob j (%)
newman1 1.20 0.45 0.70 2.60 0.55 0.91
zuck small 17.20 0.45 1.50 215.40 6.73 2.50
kd 20.75 4.92 8.22 230.00 11.98 12.56
zuck medium 678.20 7.43 2.53 8,466.60 103.44 6.22
marvin 32.80 2.28 1.37 137.40 3.91 2.46
zuck large 344.08 15.85 4.05 1342.67 44.79 6.34

within 1 percent of the upper bound provided by the LP relaxation,
and therefore very close to optimal. In these cases minePS+LI is
able to produce results within 2 percent of the LP upper bound.

newman1 reported a standard deviation of 0.0 because the result
is optimal, this is provable as the problem size is small enough for
CPLEX to solve the full, time-expanded formulation without any
decomposition. �e rest of the instances report heuristic results
which are feasible and within the LP bounds, but are almost cer-
tainly sub-optimal. �e reason for convergence in these cases is
most likely window size; havingω = 2 means that it is hard to swap
a block to a time period two (or more) steps away, if it does not give
an immediate increase in objective value when swapped to a period
one step away. Increasing the window size allows blocks to make
bigger jumps between periods which increases the chances that the
algorithm is able to escape local optima and allows the algorithm
to �nd higher quality solutions. �is comes at a signi�cant cost
of computation time, as increasing the window size increases the
number of blocks included in the model. �is is clearly illustrated
in Table 3, where it can be seen that although the solution quality
can double with an increase in ω, the time taken to compute the
result can multiply by up to 10 times.

Finally, it is worth noting that although the algorithm was al-
lowed up to 10 hours wall time to complete, in the cases where the
algorithm was able to beat the minelib results, the time taken to
achieve a be�er objective value was signi�cantly less than the full
10 hours allowed. Table 4 gives a summary of the time needed for
the local improvement heuristic to �nd a solution with the same or
be�er objective value than the reported results on minelib.

Table 4: Time (wall, seconds) taken to achieve sameobjective
value or better than publishedminelib results usingwindow-
based local improvement heuristic.

Instance Time (s)
newman1 < 1.0
zuck small 1343
kd N/A
zuck medium 523
marvin 1565
zuck large N/A

6.2 Parameter choice
�e majority of the parameters are used in the random solution
construction phase of the algorithm (p, ρ, µ and n) whereas only
one (ω) is used in the local improvement heuristic. �e �rst 3 (p, ρ
and µ) are used to control the random cone selection, and have the
biggest impact on the quality and diversity of generated solutions.

p controls the probability with which a cone is selected; because
the cones are ordered by value, se�ing this value to very high will
mean that cones of high value will usually be selected, however
there will be a tendency for the same cones to be selected every
time, meaning diversity of solutions will su�er. Se�ing p to a very
low value will result in a great diversity of solutions but the trade
o� will be that they will not necessarily be very high quality, as low
valued cones will have a much greater chance of being selected as
high valued ones. A good trade-o� between quality and diversity
was found to be p = 0.5. p has no impact on the speed of the search,
other than at very low values it can cause the cone selection process
to skip many cones, but this increase is negligible.

�e parameter which controls how much of the available re-
sources a cone can consume before it is elligible for selection is ρ.
If this is set very low the cones will typically be much smaller; al-
lowing more to be selected and increasing the breadth of the search
which means that the algorithm has more options of areas to �nd
high valued cones in the following periods. Conversely, se�ing ρ to
a very high value will result in much larger cones with fewer being
selected; this results in a much more directed search toward high
value blocks that are reachable in the current period, but restricts
the space in which the algorithm can select from in subsequent
periods. A good trade-o� between directed and broad search was
found to be ρ = 0.4. ρ has no impact on the speed of the search
except in the case where ρ is very high and a cone consumes 90%
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of the allowed resources, so the algorithm must select two cones,
adding enough blocks to consume 1.8 times the allowed resources
and so slowing down the computation.

�e parameter µ has the biggest impact on computation time
during solution construction; µ is a multiplier of the allowable
resources for that period and e�ectively controls how many blocks
can be added to the model for a period. Se�ing µ = 1.0 means
that cones can only be added until there are enough blocks to
satisfy the resource limits for the current period (plus some extras
that come from having to add a full cone); this means that the
MIP solver will be reasonably quick, because most of the blocks
included in the model will be mined as there are not many others
to select from once the resource limit is reached. Making µ take
a higher value increases the time taken to solve the MIP because
there are more blocks added to the model so the size of the model
will be much greater and the solver must search within a space
of many more possible combinations. In order to ensure faster
computation times and allow for multiple solutions to be generated
before improvement a value of µ = 1.1 was used in the experiments.

�e �nal parameter used in the random solution construction
phase is n which controls the number of solutions that should be
generated before one is selected for improvement. �is parameter
has a linear e�ect on the time taken to generate a solution and
therefore to solve the problem. A good value was found to be n = 5
and this was used in the experiments in this paper.

�e only parameter which is used in the local improvement
heuristic is the one which controls the window size, ω. �is param-
eter has a big e�ect on both the solution quality and the convergence
time; the value of ω providing a trade-o� between the two. Increas-
ing ω allows the algorithm to move blocks over larger distances in
time, le�ing it to explore a more diverse set of solutions at once so
it is less likely to get trapped in local optima and therefore produces
solutions of a higher quality. �e price that is paid for this is that
increasing window size signi�cantly increases the time taken for
each iteration of the window search (Table 3). �is happens for two
reasons; the �rst is that more blocks are included in the model; the
second is that for each block there are more time periods to choose
from, increasing the number of variables in the model.

7 CONCLUSIONS AND FUTUREWORK
�is paper has presented a GRASP-MIP hybrid algorithm for solving
the precedence constrained production scheduling problem in large
scale mining applications. �e proposed algorithm was developed
using a period-by-period decomposition approach with a window-
based local improvement heuristic. Comparative experiments were
carried out on well-known benchmark problems against the current
state-of-the-art, a simple greedy heuristic and two incarnations of
the proposed algorithm; one with the local improvement heuristic
and one without. In 4 of the 6 instances tested, minePS+LI was
found to produce be�er results than the current published state-of-
the-art, and within 2% of the LP upper bound for the other two.

While the minePS+LI was able to beat the published state-of-
the-art results in most of the tested instances, the idea is relatively
simple and there is still a lot of scope for improvement to both
e�ciency of computation and quality of solutions.

Solution quality could be improved by embedding the algorithm
within a variable neighbourhood search (VNS) framework by in-
creasing the window size when the algorithm converges prema-
turely. Once a be�er solution is found, the window size can be
reduced again to allow faster computation.

One possibility to improve computation time with larger window
sizes is to employ some of the ideas from the random cone selection
used in the solution construction. Presently, the algorithm includes
all blocks from every period in the current window, but if that
number can be reduced to only include the “important” blocks, it
could potentially allow for larger window sizes.

Another avenue to investigate, regarding reducing computation
time is to use aggregation techniques like those in [8]. By grouping
blocks that will most likely always be mined (or not mined) together,
this will reduce the number of variables in the model and speed up
the operation of the MIP solver.

Finally, in order to solve the very large scale instances in the
dataset, some work could be done on re-structuring the code so
that it does not initialise the entire model at the start and then
freeze and un-freeze variables as it needs; but rather constructs a
small part of the full model with every period, only consisting of
the blocks that are members of the included cones. �is might slow
the MIP solver down as it needs to reconstruct a model for every
period, but hopefully it will allow the larger instances to be solved.
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