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ABSTRACT

Finding an optimal design for a truss structure involves optimizing
its topology, size, and shape. A truss design problem is usually
multimodal, meaning that the problem offers multiple optimal de-
signs in terms of topology and/or size of the members, but they
are evaluated to have similar or equally good objective function
values. From a practical standpoint, it is desirable to find as many
alternative designs as possible, rather than finding a single design,
as often practiced. A few metaheuristics based methods with nich-
ing techniques have been used for finding multiple topologies for
the truss design problem, but these studies have ignored any em-
phasis in finding multiple solutions in terms of size. To overcome
this issue, this paper proposes to formulate the truss problem as a
bilevel optimization problem, where stable topologies can be found
in the upper level and the optimized sizes of the members of these
topologies can be found in the lower level. As a result, a new bilevel
niching method is proposed to find multiple optimal solutions for
topology level as well as for the size level simultaneously. The
proposed method is shown to be superior over the state-of-the-art
methods on several benchmark truss-structure design problems.
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1 INTRODUCTION

The optimal design of truss structures is an important research
topic in structural optimization. A truss structure comprises of the
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Figure 1: Illustration of (a) 11-member, 6-node ground struc-
ture and (b), (c), and (d) its three different design solutions.

number of distinct members that are connected by means of pin
joints called nodes. In truss, supports are used at both ends by using
the hinged joints or rollers for transferring the structural loads to
the ground, as shown in Fig. 1. Three types of optimization in
truss design can be identified: size, shape, and topology [4]. In size
optimization, the cross-sections (A) of truss members are optimized
by considering the coordinates of nodes and connectivity among
various members of the truss to be fixed. Shape optimization op-
timizes the nodal coordinates (¢) of existing nodes, whereas the
topology optimization deals with the selection of nodes and their
connectivity. The goal of these optimization tasks is to find an opti-
mal (i.e., light-weight) truss structure under specified conditions.

Basically, truss problems are governed by the user-defined objec-
tives and constraints such as stress and displacement [14]. These
constraints often conflict with the objective function and thus find-
ing an optimal solution for such a problem is a challenging task. In
addition, both the objective function and constraints (which are of-
ten nonlinear) cause the search space of a truss problem to become
highly multimodal. There is a good chance that multiple optimal
solutions not only may exist at the topology level (see Fig. 1(b) and
Fig. 1(d)), but also may exist in terms of size for each fixed topology
(see Fig. 1(b) and Fig. 1(c)). From a practical viewpoint it is often
desirable for the decision maker to choose from among multiple
equally good solutions in terms of both topologies and sizes.
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In the past decade, several meta-heuristic algorithms have been
proposed for the truss optimization [4, 9, 21, 23]. Generally speak-
ing, two approaches can be found in literature for handling truss
design problems, either a one-stage approach [4, 21] or a two-stage
approach [8, 19, 20]. In the two-stage approach, topology, size, and
shape variables are assumed to be linearly separable. Given this as-
sumption, these methods find different topologies in the first stage
by considering an equal cross-sectional area for each member of a
truss structure. In the second stage, the size (cross-sectional areas)
and shape variables (nodal coordinates) of the found topologies
are optimized. It is obvious that with this approach, the optimal
designs may not be attainable since these variables are often not lin-
early separable in practice [4]. On the other hand, the single-stage
approach optimizes all these three types of variables together simul-
taneously to find out the stable topologies for a given truss problem,
where each topology has the different size solutions [4, 6, 21? ].
However, the way they formulated the truss problem is not suitable
in terms of finding multiple optimal solutions at both the topology
and size levels simultaneously in one optimization run.

In this paper, we propose a bilevel formulation for the truss prob-
lem. The proposed formulation treats the topology optimization
as the upper level optimization task and the size and shape opti-
mization as the lower level optimization task. The goal is to obtain
multiple truss designs by considering both its topology and size
simultaneously using a new bilevel niching method. The contribu-
tions are as follows:

o The truss optimization problem is formulated as a bilevel
optimization problem.

o A bilevel niching method is developed to find multiple op-
timal solutions for the bilevel truss optimization problem.

e The numerical studies are carried out using three well-
known benchmark truss problems. Our results demon-
strate that the proposed bilevel niching method is able to
find multiple optimal truss structures, some of which equal
or outperform the best solutions found in literature.

The rest of the paper is organized as follows: Section 2 presents
the related work. Section 3 describes the bilevel formulation of
the truss optimization problem. Section 4 describes the proposed
niching method. This is followed by experimental studies in Section
5. Our concluding remarks are provided in Section 6.

2 RELATED WORK

In the last decades, several techniques based on classical optimiza-
tion methods have been developed for the optimal design of truss
structures [13]. Recently, meta-heuristic algorithms have also been
adopted because of their appealing properties, e.g., they do not
make certain mathematical assumptions hence possess better global
search abilities than the traditional exact methods. For example,
Rajeev and Krishnamoorthy [26] proposed a discrete genetic algo-
rithm for the truss optimization problems, where a penalty-based
method is used to transform a constrained truss problem into an
unconstrained problem. Deb and Gulati [4] proposed a real-coded
genetic algorithm to efficiently handle the truss optimization prob-
lems, where GA operators are directly applied to real-value coded
variables instead of binary strings. Furthermore, mixed encoding
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schemes including both binary, floats, and integers are also em-
ployed to code the variables of the truss problems in a GA [27].
This encoding scheme, so called surrogated reproduction is adopted
for the creation of offspring from the parent solutions. Like GA,
many other meta-heuristic algorithms including harmony search
(HS) [15] and particle swarm optimization (PSO) [23] have been
proposed for the truss optimization problems. The optimization
results provided by HS and PSO showed that they can provide bet-
ter optimized trusses as compared to those using the GA based
methods. It can be observed that despite having multiple optimal
solutions, all the above methods were designed for obtaining a
single optimal or near optimal solution for the truss optimization
problems in one optimization run.

Niching methods are well-suited optimization methods for find-
ing multiple optimal solutions in a single optimization run [7].
Classic niching methods include fitness sharing [7], clearing [25],
speciation [16], and SPSO [24]. Niching methods were first adopted
in [19] for truss optimization, where an ant colony algorithm is com-
bined with fitness sharing with an aim to obtain multiple topologies
for the truss design problems. They also incorporate the fitness
sharing concept into a modified binary PSO (MBPSO) for multi-
modal optimization [20]. In both these methods [19, 20], the truss
problem is formulated as a multi-stage optimization problem where
the topology, size, and shape variables are assumed to be linearly
separable. In such a multi-stage approach, different topologies are
obtained in the first stage by assuming an equal cross-section area
for each member of a ground structure. In the later stage, the area
of each member of these obtained topologies is optimized to real-
ize the optimal design of a truss problem. It is apparent that the
true optimal/near-optimal designs of a truss structure may not be
achievable by such a method, since these three types of variables are
actually not linearly separable [4]. Furthermore, the truss problem
formulated in a single-stage [19, 20] or bilevel [6? ] are not capable
of locating multiple solutions for all variables at different levels,
i.e., the topology level, size level, and/or shape level simultaneously.
This motivates us to propose a new bilevel formulation for the truss
problem, which is described in the subsequent section.

3 PROBLEM FORMULATION
3.1 A general bilevel problem

In bilevel optimization [2], two different levels of optimization take
place, with one level (i.e., lower level) of optimization being nested
within the other (i.e., upper level). For a bilevel problem, if the
upper level optimizer wants to optimize its objective, then it needs
to obtain the optimal response of the lower level optimizer. For the
upper level objective function F and lower level objective function
f, the bilevel optimization problem can be expressed as:

min  F(R, %)
Xu €Xy, X1 €EX]

s.t. &y € argmin{f (6, X7) : gj(x3, %) < 0,j=1...]}
X1€X]
G(oxy,x;) <0,k=1---K,
1)
where Gy represents the upper level constraints and g; represents
the lower level constraints, respectively. In this formulation, the

upper level objective function evaluates the performance of the
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lower level objective function through f{x7,,X}), which is obtained
by solving the lower level variable X for fixed x,. Based on this
idea, the truss problem can be formulated as a bilevel optimization
problem, as described in the following section.

3.2 Truss as a bilevel problem

We begin the bilevel formulation for a truss problem by considering
its ground structure, which is a complete truss with all possible
member (m) connections among all nodes (n) in the structure. Fig.
1(a) shows the ground structure of 11-member and 6-node truss,
where the nodes with load and support are called basic nodes and
remaining nodes are called non-basic nodes. For the bilevel formula-
tion, the topology variables of such a ground structure are treated
as the variables of the upper level problem, and at the same time,
size and shape variables are treated as the variables of the lower
level problem. Considering this, the objective functions of the upper
level problem and lower level problem are provided below.

Upper level: For a given set of members M and nodes N of a
ground structure, the upper level optimization task is to select a
subset of members to find a stable topology subject to the given
constraints. In this case, we consider X € Mx N as a found topology
of the ground structure consisting of m’ members and n’ nodes.
Lety € A’ x £’ be the variable of the lower level problem, where A’
represents the set of member cross-sectional areas and ¢’ represents
the set of nodal coordinates of topology X. Considering the upper
level variable X and lower level variable g, the objective function of
the upper level problem is formulated as:

Find X
to minimize W(X, 7))

subject to Gy : Truss is acceptable to the user,

Gy : Truss is internally and externally stable,

Gs : i € argmin{w(X,7) : g;(X,4) < 0,j=1...J}.
GeAXE
(2)

In Eq. (2), the function W represents the weight of the topology X,
constraint Gy ensures that the truss consists of all the basic nodes,
and constraint Gy ensures the internal and external stability of the
truss. The internal and external stability of a truss can be checked
by the following equations:

m’ > 2n" -3,

3)
and

m' +r>2n,

4)
where m’ is the number of members, r denotes the number of
reaction components [14], and n’ denotes the number of nodes in
truss. Finally, constraint G3 associates with the lower level problem
which is described below.

Lower level: In a bilevel truss problem, the lower level task is
associated with the size and shape optimization of a topology pro-
vided by the upper level, subject to the given constraints. The
goal of the lower level optimization is to minimize the weight of
a topology X (the upper level problem) by choosing the optimal
value for its member cross-sectional areas and nodal coordinates.
To achieve this goal, the lower level problem is expressed as a
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nonlinear programming problem (NLP) in the following way:

B
w(@i) = ) pii(E EDA;
i=1

min
JeA'XE'
subject to g1 : Truss is kinematically stable
g2 S; 2 0i(A,E), i=1,2,...,m, (5)
g3 O 2 8(ALE), j=1.2,.. .0
i Al <AL S A i=1,2,.,m
95 Emin S & S Epaxs J= 12,10

where m’ and n’ represent the number of members and nodes of the
topology ¥, respectively. The parameters p; and ¢ are the material
density and length of the i-th member, respectively. Here, the
length ] depends on the start coordinate ¢; and end coordinate ¢f
of the i-th member of topology X. The parameter A} represents the
cross-sectional area of the i-th member. In this equation, constraint
g1 ensures that the kinematical stability of the truss is checked
by determining the positive definiteness of the stiffness matrix.
Constraint gz ensures that the stress o; of a member is less than
or equal to the allowable stress S;. Constraint g3 ensures that the
displacement 6; of j-th node is less than or equal to the allowable
displacement 5}"“" . Constraint g4 ensures that the value of A} is
within the limits [A] ., A}, ;] Finally, constraint g5 is used to
ensure that the coordinates of the j-th node ¢ J’ is within the limits

[ min-tmax]-

4 NICHING FOR BILEVEL TRUSS PROBLEMS

The bilevel truss problem proposed in the above section can be used
to obtain multiple designs in terms of topology as well as the size
of the truss problem. Although it is possible to apply niching at
both the upper and lower levels, applying niching to the upper level
alone seems to be sufficient in providing the necessary diversity in
topology and size spaces. Hence, there is no need to apply niching
again to the lower level. Furthermore, by applying niching only
to the upper level, for each given topology defined from the upper
level, its corresponding search space is only optimized by a standard
optimizer, which will reduce the search space substantially. Fig. 2
shows an example where niching is applied only to the upper level,
but only a standard optimizer is used at the lower level.

Following the above, the proposed method uses a binary nich-
ing method as the upper level optimizer based on a well-known
niching method, speciation-based PSO (SPSO) [24]. Here, the idea
of SPSO is implemented using a modified BPSO (MBPSO) which
is referred to as the binary SPSO (B-SPSO). For the lower level
problem, the proposed method uses a standard PSO. For clarity, a
brief description of PSO and MBPSO is presented first in the follow-
ing sections, before introducing the working steps of the proposed
niching method.

4.1 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is originally proposed in [11] for
optimizing the continuous problems. In PSO, particles (i.e., individ-
uals of a swarm) are first initialized by placing them randomly in
the d-dimensional search space. In the subsequent iterative process,
each particle (or the i-th particle in the swarm) knows about two
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pieces of information: its best position visited so far, i.e., its personal
best position p;=[pi1, piz2, . - ., piq] and the global best position of
all particles in the swarm pg=[pg1, pg2. - - ., pgal- At each iteration,
the velocity vi=[vi1,vi2, . .., v;q] of i-th particle of the swarm is
updated according to the following equation:

vi-‘“ = wvi.< + clr{<

(6)

where k represents the current iteration, w the inertia weight pa-
rameter for maintaining a good balance between exploration and
exploitation, and d denoting d-th dimension. r; and ry are two ran-
dom numbers drawn from (0,1) for each dimension, and ¢; > 0
and cp > 0 are the cognitive and social coefficients, respectively.

In practice, once v{.‘” updated, a limit vy, 4y is placed on it to
ensure that the velocities do not exceed this limit. After that, the
position x; of i-th particle is updated according to the following

equation:

(p¥ — x¥) + cork (pk — xF),

K1 = gk gyt

7)
4.2 Modified binary PSO (MBPSO)

To tackle discrete/combinatorial optimization problems, Kennedy
and Eberhart developed the first binary version of PSO (BPSO) [12].
Like the continuous PSO, the original binary PSO (BPSO) defines
the flight of particles through their velocity and position updates
in the binary search space, in order to find the best solution. BPSO
uses Eq. (6) for updating the velocity vk+1 of the i-th particle, and

i
» » ‘ S oy
the following equation for updating the position x;™:

k1 |0 ifrand() > Sp(vEtY),
x; = ) 8)
1 otherwise.
where rand() is a random number drawn from 2/(0,1) and St (vi.< +

denotes a sigmoid transfer function, which is determined by the

Ground structure
Topology A Topology B Topology C
L] L] L
:§§>¥ :2§>¥ b

" Upper level
decision space .~

@c.... “Ni

Optimal
response

Particles

Optimized designs

Figure 2: Illustration of an example where niching is applied
in the upper level and a standard optimizer is used at the
lower level to optimize a bilevel truss problem.
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Figure 4: Illustration of the time-varying sigmoid transfer
function (TV7).

following:

1

Sr(vith) = )

_k+1l”
1+e Vi
Basically, the sigmoid transfer function St (vi.‘“) (see Fig. 3) pro-
vides the probabilities (in the range of [0,1]) of the bits in x{.‘“
taking the value of 0 or 1.

It is reported that BPSO has difficulties in providing a good
balance between exploration and exploitation [1, 22]. It is shown
in [18] that for p{.‘ = p’!;, BPSO provides a smaller vif“ =~ ( in the
first few iterations, after that vf *+1 reaches to the maximum limit
(+Umax) and remain constant for the rest of the iterations. With
the higher velocity, the sigmoid transfer function provides very low
bit flipping probability (see Fig. 3). In this case, the sigmoid transfer
function promotes a higher level of exploitation than exploration.
Thus BPSO cannot maintain a balance between exploration and
exploitation. This study suggests a remedy to this by introducing
a time-varying parameter ¢ into the sigmoid transfer function,
creating a new time-varying transfer function (TV7), as illustrated
in Fig. 4. The curves in Fig. 4 are produced by this time-varying
sigmoid transfer function TV as defined below:
1
vk+1

14+e »

TVT(V{.H'I, ®) = (10)

where v{? *+1js the velocity of the i-th particle at (k+1)-th iteration; ¢
is a time starting with a large value (¢=4.0) and gradually decreased
to (¢=0.5) as the run progresses. With TVr, the new modified BPSO
(MBPSO) updates v; and x; according to the following equations:



Multimodal Truss Structure Design Using Bilevel and Niching Based EAs

v{s+1 = vf + clrf(p{.C - x{?) + czréc(p’gii - xf), (11)
and
K 0 ifrand() > TVT(v{F“,(p), (12)
! 1 otherwise,

respectively, where p, ; denotes the local best of the i-th particle,
and other symbols have their usual meaning as in Eq. (6).

MBPSO provides a better balance between the exploration and
exploitation in the following way: for each given velocity value, the
curve TVr(Vi, @max) provides the highest amount of bit flipping
probability (i.e., exploration), because the curve is the closest to
the probability value of 0.5 than any other curves. On the other
hand, TV1(vi, ¢min) provides the lowest amount of bit flipping
probability for changing the position x; of i-th particle (i.e., ex-
ploitation). Based on this observation, we propose MBPSO to adopt
curves TVr(V;, @max) at the start of a run in order to provide a
stronger exploration; TV (vi, max-2.5) to TVr(Vi, ®max-3.0) in
the intermediate stage of the run to provide a moderate level of ex-
ploration; and towards the final stage of the run TV (v, ¢nin+0.3)
to TVr(vi, @min) to have a stronger exploitation.

4.3 The proposed niching method

The proposed niching algorithm is described in detail here. In this
algorithm, U/u and L/l denote the parameters of the upper level op-
timizer (B-SPSO) and the lower level optimizer (PSO), respectively.
The working steps of the proposed niching method are described
as follows.

Step U1-Generate an initial swarm: For a truss ground structure
with m members and n nodes, a population of Ny, particles is initial-
ized randomly in the m-dimensional search space. The velocity of
i-th particle is denoted by v}’ which is drawn from U(-vmax.Vmax)-
The position of i-th particle is denoted by x}. Each element of
x} holds a binary number 1 or 0 that represents the presence (or
absence) of a member of a ground structure. For example, con-
sider a 6-node and 11-member ground structure (see Fig. 1), the
position x}=[10110011010] represents a topological solution of this
structure where the elements 1, 3, 4, 7, 8, and 10 are present and
the element 2, 5, 6, 9, and 11 are absent from the structure. Each
initialized particle represents an initial truss structure based on the
random bit information contained in this position vector x}'.

Step U2-Evaluate x!': Tf the truss structure corresponding to x}'
is not feasible to the constraints G; and Go, then a large penalty is
assigned to x}' to indicate that this solution is not a good solution
and B-SPSO will follow the next step Step U3. Otherwise, the
truss structure corresponding to x¥ will be sent to the lower level
optimizer for the size optimization. In this case, the standard PSO
is used (see section 4.1) whose working steps in terms of the truss
size optimization are described below.

Step L1-Generate an initial swarm: For a given truss topology
with n” nodes and A’ cross-sectional areas of m’ members. A pop-
ulation of Nj particles is initialized randomly in m’-dimensional
search space. For the j-th particle, the velocity vj. is drawn from

U(A], ;- Amax) and the position x! is drawn from U(0,4%,4y)s
where A7 . and A}, . are the lower and upper bounds of the
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cross-sectional areas of the members of the topology obtained by
the upper level optimizer.

Step L2-Update rule: To evaluate the topology of the j-th parti-
cle, the fitness value considered constraint violation from [4] are
adopted in this study:

if g is violated,

107,
13
c (13)

J Al £ —
P = { . otherwise,

where C=w/(4’, &) + 10° g;’l | < g >|+10° zg;l | <gf>1
Here, f/(A’, ") and w/ (A’, £’) denote the fitness value and weight
of the truss structure corresponding to the j-th particle. The opera-
tor < . > is the bracket-operator penalty term [3]. Note that since
the standard PSO allows the size variables and shape variables to
be bounded within specified limits [A} ; A7, ] and [ . .& 0]
the constraints g4 and g5 are automatically satisfied.

After calculating the fitness value of j-th particle, PSO determines
the personal best position pjl. of this particle and the best global
position plg for the whole swarm. Subsequently, PSO updates vj.
and x} of j-th particle according to Eq. (6) and Eq. (7), respectively.

Step L3-Stopping criteria: The PSO run is terminated once a
predefined number of iterations is reached, otherwise it goes back
to Step L2.

Step L4-Returning the optimized truss: The optimized truss that is
held by g! is returned to the i-th particle of the upper level optimizer
for upper level optimization, as follows.

Step U3-Sort all the particles: In this case, all the particles of
B-SPSO are sorted in an ascending order according to the fitness
values of their personal best p}'. The B-SPSO stores these sorted
particles in a list called Py zeq-

Step U4-Determine the species and their seeds: In this step, B-
SPSO uses Pgyrieq to determine the species based on the niche
radius rs, as described in [24]. Since the upper level optimization is
associated with the binary-value, the species can be determined by
comparing the Hamming distance between the particles in Py seq-
After that we use the same procedure as in [24] for determining
the species seeds which are stored in an another list called Lgge -

Step U5: Assign p;’i = xls.eed, where x?eed is the i-th seed of
the list L eq-

Step U6: Update v} and x¥ according to Eq. (11) and Eq. (12),
respectively.

Step U7-Stopping criteria: B-SPSO is terminated once a prede-
fined number of iterations is reached, otherwise go to Step U2.

5 NUMERICAL EXAMPLES

Three well-known truss design benchmark problems are considered
to demonstrate the effectiveness of the niching algorithm proposed,
including the 11-member ground structure [4, 5, 21], 25-member
ground structure [4, 10, 17], and two-tier 39-member ground struc-
ture [4, 20, 23]. The experimental setup for the proposed niching
algorithm is provided in Table 1. In this study, the value for r¢=1,
Omax=5. @min=1, N;=100, and N;=10 have been set based on some
preliminary study, making sure that these values are robust. Note
that in all our experiments we consider only topology and size
optimization, leaving out the shape optimization for future studies.
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Table 1: Parameters used in B-SPSO (upper level) and PSO
(lower level) of the proposed niching method.

M. J. Islam et al.

Table 2: Members areas (in’) of the optimal trusses for 11-
member, 6-node ground structure.

Parameters B-SPSO PSO

No. of particles (N, and Nj) 100 10

No. of function evaluations (FEs) 6000 10000
Niche radius (rs) 1 -
Acceleration constant ¢; and cp 2.00 2.00
Initial inertia weight (Wmax) 1 0.9
Final inertia weight (wpip) 1 0.2
Velocity limit [Umin,Umax] [-6.6]  [A],in>Amax]
Position limit [xin.Xmax] [0,1] [0, A%, 0x]
Control parameter limit [¢min.@max] [1,5] -

5.1 11-member, 6-node truss

The 11-member, 6-node ground structure is presented in Fig. 1(a).
To optimize this truss, the following parameters are used: Length of
each member is 360 inches (in), young’s modulus is 10* ksi, density
is 0.1 Ib/in3, allowable stress is 25 ksi, and allowable displacement
is 2 inches. The lower (A] ; ) and upper (A7,,,) bounds on the
member areas are considered to be 0.0 in? to 35.0 in®. The crit-
ical member area is set to 0.09 in%. A vertical load 100,000 Ib is
considered at node 2 and 4, respectively.

Fig. 5 shows the four optimal designs obtained by the proposed
method. It can be seen that all four optimal trusses are the same
in terms of the topology, but they are different in terms of the
cross-sectional area (size) of the members, as presented in Table
2. According to Table 2, these optimal trusses have the similar
weight values, but the cross-sectional area of their members are
slightly different from each other. It is evident that the weight (on
average 4875.38 Ib) of the designs in Fig. 5(a)-5(d) are much lower
than the weights (4899.15 b, 4899.15 b, and 5109 1b, respectively)
provided by Deb and Gulati[4], Miguel et al. [21], and Flager et al.
[5], respectively. To the best of our knowledge, the weight of the
design solution presented in Fig. 5(a) is the best weight ever found
for 11-member, 6-node ground structure.

(a) Weight=4874.37 Ib  (c) Weight=4875.36Ib
1

(3) (3)

100 kib

100 klb

(b) Weight=4874.42Ib (d) weight=4877.53 Ib

Figure 5: Four optimal solutions obtained by the proposed
method, from 11-member, 6-node ground structure.
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Member  Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d) Deb [4] Miguel [21] Flager [5]
Aq 29.5041  29.5387  30.0065  30.3603  29.6800 29.6800 33.7000
Ay - - 0.0000 0.0001 - - 0.1000
Az 22.303 22.163 21.753 22.1216  22.0700 22.0700 23.6800
Ay 15.0666  14.9324  15.4647 14.5404  15.3000 15.3000 13.3300
As 0.0000 0.0000 - 0.0000 - - 0.1000
Ag 0.0001 - 0.0001 0.0002 - - 0.1000
Az 21.1486  21.1028  21.4445 21.958  21.4400 21.4400 19.1800
Ag 6.0352 6.0425 6.0646 6.0447 6.0900 6.0900 7.1920
Ag 0.0001 - 0.0005 - - - 0.1000
Ay 21.2708 214799  20.7167  20.4089  21.2900 21.2900 23.680

Weight (Ib) 4874.37 4874.42 4875.36 4877.53 4899.15 4899.15 5109

5.2 25-member, 10-node ground structure

For this experiment, we choose a widely-used 3-D truss structure
which has an 25-member and 10-node ground structure [4, 10, 17],
as presented in Fig. 6. Here, members are grouped considering
the symmetry on opposite sides, as done by Deb and Gulati in
[4]. Material properties and design parameters are set as follows:
Young’s modulus and density of the materials are the same as before.
The allowable stress and displacement are set to 40 ksi and 0.35
inches, respectively. The lower (A7 ;) and upper (A}, ,) bounds
on the member areas are set to 0.0 to 3.0 inZ, respectively. The
critical member area is set to 0.005 inZ. According to [4, 10, 17],
this truss is optimized by applying four forces: (1000; 10000; -5000)
on node 1, (0; 10000; -5000) on node 2, and (500; 0; 0) on node 3 and
6, respectively.

Fig. 7 shows four design solutions obtained for the 25-member,
10-node truss problem, which has the same overall weight. Like the
previous example, all these four design solutions of 25-member truss
structure are the same in terms of the topology, but they are different
in terms of the members cross-sectional area. The cross-sectional
areas of the active members of these optimal trusses are provided in
Table 3. According to Fig. 7, the proposed method is able to provide
the same design as Deb and Gulati [4]. However, the weight (524.99
1b) obtained by the proposed method is much lower than the weights
(544.85 1b, 545.19 1b, 545.09 Ib, respectively) provided by Deb and
Gulati [4], Li [17], and Kaveh et al. [10], respectively. Note that,

Figure 6: Illustration of 25-member, 10-node ground struc-
ture.
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(a) Weight=524.99 Ib (c) Weight=524.99 Ib

AN AN

(b) Weight=524.99 Ib (d) Weight=524.99 Ib

AN AN

Figure 7: Four optimal solutions obtained by the proposed
method, from 25-member, 10-node ground structure.

Table 3: Member areas (in?) of the optimal trusses of 25-
member, 10-node ground structure.

Mem. No.  Fig. 7(a) Fig. 7(b) Fig. 7(c) Fig. 7(d) Deb [4] Li[17] Kaveh [10]
Ay 0.0000 - 0.0000 - 0.010 0.010
A1-Ay 2.0840 2.0787 2.1109 2.1113 2.0370 1.970 1.910
As-Ag 2.4451 2.4537 2.4346 2.4382 2.9690 3.016 2.798
Ag-A1z - - 0.0000 0.0000 - 0.010 0.010
A3-Ats 0.8880 0.8917 0.8893 0.8878 0.6990 0.694 0.708
A17-Ag 1.1924 1.1870 1.1791 1.1781 1.6440 1.681 1.836
Aj1-Agy 3.0000 3.0000 3.0000 3.0000 2.6580 2.643 2.645
Weight (Ib)  524.99 524.99 524.99 524.99 544.85 545.19 545.09

the weight obtained by the proposed niching method is the lowest
weight ever found for the 25-member and 10-node ground structure.

5.3 Two-tier, 39-member, 12-node ground
structure

A two-tier, 39-member, 12-node ground structure is employed here
for topology and size optimization, as shown in Fig. 8. For this
experiment, the following parameter settings are considered: the
material properties and maximum allowable displacement are the
same as in 11-member ground structure problem, except the allow-
able stress is 20 ksi. In addition, according to [4, 20], the lower
(A;m. ,) and upper (A},,4x) bounds of the member areas are set to
0.0 and 2.5 in?, respectively and a critical member area of 0.05 in®
is chosen.

Fig. 9 shows the four optimal/near-optimal designs obtained by
the proposed niching method. The member areas of these trusses
are listed in Table 4. It can be observed that the obtained trusses
have almost the similar weight values (191.16 Ib, 191.18 1b, 192.80
Ib, and 193.42 Ib), but either their members’ connectivity i.e., topol-
ogy, or members’ cross-sectional areas i.e., sizes, are very different
from each other (see Table 4). This shows that for the 39-member
truss, the proposed method can provide multiple topology and size
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Figure 8: Illustration of a two-tire, 39-member, 12-node

ground structure.

(b)

Weight=191.18 Ib

(a)

Weight=191.16 Ib

Figure 9: Optimal trusses for 39-member, 12-node ground
structure derived employing the proposed niching method.

(a) (b) Weight=193.01 Ib

Weight=195.52 Ib

Figure 10: Optimal trusses derived employing (a-b) PSO algo-
rithms by Luh and Lin [20], and (c-d) GA by Deb and Gulati

[4].

solutions simultaneously in a single run. Fig. 10(a-b) illustrates two
optimal trusses employed by Luh and Li [20] with overall weights
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Table 4: Weights and member areas (i.e., solutions) found by the proposed method and those from literature for 39-member,
12-node truss problem. Note that the solutions provided by the proposed method (Fig. 9(a-c)) are better than those from

literature (Fig. 10).

Member cross-sectional area (in.%)

Design ~ Weight  Aj;-A;  As-Ay  As-Ag A7-As Av-An An-A Ap-Au Ais-Ate Ai-Ais Aw-Ap Asi-Apy Aps-Apy Ass-Aze Apr-Aps Asi-Asp Asz-Asy Ass-Asze  Asg Az
Fig. 9(a) 191.161b 0.9951 1.4952 1.4072 1.1125 0.9951 0.9951
Fig. 9(b) 191.181b 0.9949  1.4926 0.0006  1.407 0.0006 0.0001 1.1127 0.0009 0.0001 0.9949
Fig. 9(c) 192.801b 0.017 0.7463 1.4812 1.0504 0.0001 0.0177 1.0474 0.2561 0.5563 0.9951
Fig. 9(d) 193.421b 10791  1.4928 1.4072 1.1125 0.9952
Fig. 10(a) 195.521b  0.043 1.000 1.500 1.415 0.045 1.119 1.061 1.000
Fig. 10(b)  193.011b  0.039  0.750 1.500 1.061 1.061 0.250 0.560 1.000
Fig. 10(c) 198.001b  0.050 1.001 1.501 1416 0.050 0.050 0.050 1.118 1.002
Fig. 10(d) 196.541b 0.751 1.502 0.051 1.061 0.051 1.063 0.052 0.251 0.559 1.004

of 195.52 Ib and 193.01 Ib, respectively. In addition, Fig. 10(c-d)
illustrates two other optimal trusses obtained by Deb and Gulati
[4] with overall weights of 198 Ib and 196.54 Ib, respectively. It can
be observed that the trusses in Fig. 9(a), 9(b), and 9(d) are similar to
the trusses in Fig. 10(a) and 10(c). However, the weights (191.16 Ib,
191.18 b, and 193.42 Ib, respectively) of the obtained trusses in Fig.
9 are less than the weights (195.52 1b and 198 Ib, respectively) of the
trusses in Fig. 10. Likewise, the weight (192.80 1b) of the obtained
truss in Fig. 9(c) is also less than the weight (193.01 1b and 196.54
Ib, respectively) of the trusses in Fig. 10(b) and 10(d).

6 CONCLUSIONS

This paper has presented a bilevel formulation for the truss opti-
mization problem, making it possible to consider multiple optimal
solutions in terms of both topology and size. This is usually difficult
to achieve with existing formulations of the truss problems. For
this bilevel formulation, a binary SPSO niching method has been
applied at the upper level while a standard PSO is applied at the
lower level. In the binary SPSO, a time-varying transfer function
is employed to enhance its search ability. The performance of the
proposed method is evaluated over three well-known truss prob-
lems. The numerical studies show that the proposed method has
the ability to locate multiple optimal solutions (topologies) for the
upper level of the bilevel truss problem. In addition, it can provide
different optimal combinations of the member cross-sectional areas
for the same topology, i.e., multiple solutions for the lower level of
the bilevel truss problem as well. The results show the superiority
of the proposed niching method over the traditional single and
two staged methods for the truss problems that can be found in
literature.
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