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ABSTRACT

At present the !tness-distance-ratio particle swarm optimizer (FDR-

PSO) has undergone no form of theoretical stability analysis. "is

paper theoretically derives the conditions necessary for order-1

and order-2 stability, under the well known stagnation assumption.

Since it has been shown that particle stability has a meaningful

impact on PSO’s performance, it is important for PSO practitioners

to know the actual criteria for particle stability. "is paper validates

its theoretical !ndings against an assumption free FDR-PSO algo-

rithm. "is empirical validation is necessary for a truly accurate

representation of FDR-PSO’s stability criteria.
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1 INTRODUCTION

Particle swarm optimization (PSO) is a well known stochastic

population-based search algorithm originally developed byKennedy

and Eberhart [24]. Since PSO’s inception it has be e$ectively ap-

plied to solve numerous real world optimization problems [30].

Given PSO’s popularity there have been numerous alterations pro-

posed to PSO algorithms in an a#empt to improve performance.

"e proposed alterations vary from changing the construction of

PSO’s underlying social network structure to more fundamental

changes to the PSO’s update equations. Detailed discussion of some

the numerous PSO variants can be found in the review articles

[2, 3, 5, 20, 33].

While the original PSO has undergone thorough theoretical

analysis [6, 7, 13, 14, 17, 18, 21, 22, 26–28, 31, 32, 35, 36], most PSO

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi#ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’17, Berlin, Germany

© 2017 ACM. 978-1-4503-4920-8/17/07. . .$15.00
DOI: h#p://dx.doi.org/10.1145/3071178.3071256

variants have never undergone theoretical analysis, which makes

it di%cult for PSO practitioners to make informed choices when

utilizing the PSO variant.

In this paper, the early PSO variant, !tness-distance-ratio PSO

(FDR-PSO) [29] is analyzed theoretically for the !rst time. Specif-

ically, the criteria necessary for FDR-PSO’s particles to converge

to a point in expectation (order-1 stability), and a constant vari-

ance (order-2 stability) are derived. It has been shown that PSO

particle stability (order-1 and order-2) has a substantial impact of

performance [11]. Speci!cally, it was shown in [11] that parameter

con!gurations that resulted in particle instability almost always

caused PSO to perform worse than random search. Given the rela-

tionship between particle stability and performance it is important

to understand the criteria that will ensure particle stability in PSO

variants.

"e theoretically derived region for particle stability of FDR-PSO

is also empirically validated utilizing the assumption free method-

ology for convergent region validation, as presented in [8, 10], and

used in [9, 12].

A brief description of FDR-PSO is given in section 2. "e theo-

retical derivation of FDR-PSO’s order-1 and order-2 stable regions

are presented in section 3, along with a discussion on the in&uence

of FDR-PSO’s time dependent inertia coe%cient on stability. "e

experimental setup and results validating the derived stable regions

are presented in sections 4 and 5 respectively. Section 6 presents a

summary of the !ndings of this paper.

2 FITNESS-DISTANCE-RATIO PARTICLE
SWARM OPTIMIZER

"e FDR-PSO was developed by Peram et al [29] as an extension of

the inertia PSO as proposed by Shi and Eberhart [34]. "e authors

proposed the introduction of a third a#ractor, in addition to the

usual social and cognitive a#ractors. "e aim of the new a#ractor

is to pull particles towards particles that are both nearby, and of

higher !tness. "is third a#ractor is constructed componentwise

by selecting components from neighboring particles such that the

relative !tness distance ratio is maximized.

"e velocity and position update equations of FDR-PSO are

de!ned as follows:

vi (t + 1) = wvi (t) + c1r1 ⊗ (pi (t) − x i (t))

+ c2r2 ⊗ (ni (t) − x i (t))

+ c3r3 ⊗ (κ i (t) − x i (t)) (1)

x i (t + 1) = x i (t) +vi (t + 1) , (2)

where r1, r2, r3 ∼ U (0, 1)d , and d is the dimension of the prob-

lem PSO is a#empting to solve. "e operator ⊗ is used to indicate
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component-wise multiplication of two vectors. "e positions pi
and ni are the “best” positions that particle i and particle i’s neigh-

borhood of particles have visited. In this paper “best” is de!ned

as the location where a particle has obtained the lowest objective

function evaluation. "e coe%cients c1, c2, andw are the cognitive,

social, and inertia weights respectively. "e new a#ractor κ i is

constructed as

κi, j = x∗j such that max
x ∗∈Ni

θ (f (x∗) − f (x i ))

|x∗
j
− xi, j |

, (3)

where j indicates the vector component andNi is the set of particle

i’s neighbor’s personal best positions.

In the introduction of FDR-PSO the case of x∗j = xi, j was not

explicitly catered for, in this paper if x∗j = xi, j , then of the x∗’s with

x∗j = xi, j the one that maximizes θ (f (x∗) − f (x i )) is selected. "e

term θ is set to 1 for maximizing problems and −1 for minimization

problems. "e new coe%cient c3 controls the in&uence of the

a#ractor κ i , however, it was not named in the introduction of

FDR-PSO.

"e driving feature of PSO and its variants is social interaction,

speci!cally the way in which knowledge about the search space is

shared amongst the particles in the swarm. In general, the social

topology of a swarm can be viewed as a graph, where the nodes

represent particles, and the edges are the allowable direct commu-

nication routes. "e social topology chosen has a direct impact on

the behavior of the swarm as a whole [15, 23, 25]. Some of the most

frequently used social topologies are discussed below:

• Star: "e star topology is one where all the particles in

the swarm are interconnected as illustrated in !gure 1a.

"e original implementation of the PSO algorithm utilized

the star topology [24]. A PSO utilizing the star topology is

commonly referred to as the Gbest PSO.

• Ring: "e ring topology is one where each particle is in

a neighborhood with only two other particles, with the

resulting structure forming a ring as illustrated in !gure 1b.

"e ring topology can be generalized to a network struc-

ture where larger neighborhoods are used. "e resulting

algorithm is referred to as the Lbest PSO.

• Von Neumann: "e Von Neumann topology is one where

the particles are arranged in a grid-like structure. "e 2-D

variant is illustrated in !gure 1c, and the 3-D variant is

illustrated in !gure 1d.

"e FDR-PSO algorithm is summarized in algorithm 1.

3 THEORETICAL DERIVATION

"is section presents the theoretical derivation of the criteria for

order-1 and order-2 stability for the FDR-PSO algorithm, along with

the point of particle convergence (in expectation). "e impact of

the time dependent inertia weight, as suggested for FDR-PSO in

[29], on particle stability is also discussed.

Firstly, the stagnation assumption is used, speci!cally it is as-

sumed that дi (t) = д, ni (t) = n and κ i (t) = κ for all t . "e

accuracy of the subsequent theoretical derivation is tested without

the stagnation assumption in sections 4 and 5. Given that there

is no dependence between the vector components of the update

equation, it is possible to without loss of generality focus on a

(a) Star topology. (b) Ring topology.

(c) 2-D von Neumann topology. (d) 3-D von Neumann topology.

Figure 1: Common social topologies

one dimensional particle trajectory. "e particle subscript i is also

dropped for notational convenience.

"e position update equation (2) can be rewri#en into the fol-

lowing form:

xi (t + 1) + α1xi (t) + α2xi (t − 1) = α3 (4)

where

α1 = −(1 +w) + c1r1 + c2r2 + c3r3

α2 = w

α3 = c1r1p + c2r2n + c3r3κ (5)

"e application of the expectation operator to equation (4) results

in the following equation:

E[xi (t + 1)] + E[α1]E[xi (t)] + E[α2]E[xi (t − 1)] = E[α3] (6)

where:

E[α1] = −(1 +w) +
c1

2
+

c2

2
+

c3

2
E[α2] = w

E[α3] =
c1p

2
+

c2n

2
+

c3κ

2
. (7)

In order to obtain the order-1 region, equation (6) is rewri#en into

the following matrix form:
�

�

�

�

xi (t + 1)

xi (t)

�

�

�

�

= M

�

�

�

�

xi (t)

xi (t − 1)

�

�

�

�

+

�

�

�

�

E[α3]

0

�

�

�

�

(8)

where

M =

�

�

�

�

−E[α1] −E[α2]

1 0

�

�

�

�

(9)
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Algorithm 1 FDR-PSO algorithm

1: Create and initialize a d-dimensional swarm, Ω (0), of N parti-

cles uniformly within a prede!ned hypercube.

2: Let f be the objective function.

3: Let pi represent the personal best position of particle i , initial-

ized to x i (0).

4: Let ni represent the neighborhood best position of particle i ,

initialized to x i (0).

5: Initializevi (0) to 0.

6: repeat

7: for all particles i = 1, · · · ,N do

8: if f (x i ) < f (yi ) then

9: pi = x i

10: end if

11: for all particles î with particle i in their NBD do

12: if f (pi ) < f (nî ) then

13: nî = pi

14: if f (nî ) < f (д) then

15: д = nî
16: end if

17: end if

18: end for

19: end for

20: for all particles i = 1, · · · ,N do

21: update velocity of particle i using equation (1)

22: update position of particle i using equation (2)

23: end for

24: until stopping condition is met

Now, if ρ(M) < 1, order-1 stability is obtained [1], where ρ is the

spectral radius of the matrix. "e two eigenvalues ofM are

−E[α1] ±
√

E[α1]2 − 4E[α2]

2
(10)

which means that the simpli!ed conditions needed for ρ(M) < 1

are

|w | < 1 and 0 < c1 + c2 + c3 < 4(w + 1) (11)

In the presence of order-1 stability a !xed point γ for equation

(6) exists. Speci!cally, γ can be calculated as

γ =
c1p + c2n + c3κ

c1 + c2 + c3
(12)

by se#ing

E[xi (t + 1)] = E[xi (t)] = E[xi (t − 1)] = γ

in equation (6) and solving for γ .

In order to obtain the conditions necessary for order-2 stability,

the following theorem from Blackwell [4] is use,

Theorem 3.1. For all PSO algorithms that can be rearranged into

the following form:

xi (t + 1) + axi (t) + bxi (t − 1) = c(Ni ), (13)

were a and b are random variables, and c(Ni ) is a random variable

that also depends on stagnant neighborhood position information.

If the sequence (xi (t)) is order-1 stable and the following conditions

hold,

1 + E [a] + E [b] , 0 (14)

1 − E
[

a2
]

− E
[

b2
]

+

(

2E [ab]E [a]

1 + E [b]

)

> 0 (15)

then the sequence (xi (t))) is also order-2 stable.

Equation (4) is already in the correct form to use theorem 3.1

with a = α1, b = α2, and c = α3. In order to utilize theorem 3.1

a number of expected value calculations are needed, which now

follow:

E[α1]
2
= (1 +w)2 − (1 +w)(c1 + c2 + c3) +

(c1 + c2 + c3)
2

4
,

E[α2] = w , E[α2]
2
= w2

,

E[α1α2] = E[α1w] = −w(1 +w) +
c1w

2
+

c2w

2
+

c3w

2
.

In order to calculate E[α21 ], α
2
1 is !rst calculated as

α21

= (−(1 +w) + c1r1 + c2r2 + c3r3)
2

= (1 +w)2 − (1 +w)c1r1 − (1 +w)c2r2 − (1 +w)c3r3+

− (1 +w)c1r1 + c
2
1r

2
1 + c1r1c2r2 + c1r1c3r3

− (1 +w)c2r2 + c1r1c2r2 + c
2
2r

2
2 + c2r2c3r3

− (1 +w)c3r3 + c1r1c3r3 + c2r2c3r3 + c
2
3r

2
3

= (1 +w)2 − 2(1 +w)(c1r1 + c2r2 + c3r3)

+ 2c1r1c2r2 + 2c1r1c3r3 + 2c2r2c3r3

+ c21r
2
1 + c

2
2r

2
2 + c

2
3r

2
3

Applying the expectation operator to equation (16) leads to

E[α21 ]

= (1 +w)2 − 2(1 +w)(c1E[r1] + c2E[r2] + c3E[r3])

+ 2c1c2E[r1]E[r2] + 2c1c3E[r1]E[r3] + 2c2c3E[r2]E[r3]

+ c21E[r
2
1 ] + c

2
2E[r

2
2 ] + c

2
3E[r

2
3 ]

= (1 +w)2 − (1 +w)(c1 + c2 + c3) +
c1c2

2
+

c1c3

2
+

c2c3

2

+

c21
3
+

c22
3
+

c23
3

Using the calculated expected values it is now possible to obtain

the conditions necessary for order-2 stability. "e !rst condition

obtained from equation (14) leads to

1 − (1 +w) +
c1

2
+

c2

2
+

c3

2
+w , 0

=⇒

c1 + c2 + c3 , 0 (16)
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"e second condition obtained from equation (15) lead to

1 −

(

(1 +w)2 − 3c(1 +w) +
5

2
c2
)

−w2

+

2w
(

3
2c − (1 +w)

)2

1 +w
> 0

(17)

where c = c1 = c2 = c3 for simplicity and based on the recom-

mendation in [29] to use equal coe%cients. Using |w | < 1 and

c1 + c2 + c3 > 0, from the order-1 stable region of equation (11),

equation (17) can be simpli!ed, by completing the square and rear-

ranging the equation, to

c <
6(1 −w2)

5 − 4w
(18)

In order for a particle’s movement to be seen as convergent it should

exhibit order-1 and order-2 stability. As such the criteria for particle

convergence is merged as

c1 + c2 + c3 > 0 (19)

|w | < 1 (20)

c1 + c2 + c3 <
18(1 −w2)

5 − 4w
(21)

when c1 = c2 = c3. "is merger is possible because the region

de!ned by equation (18) is a subset of the region de!ned by 0 <

c1 + c2 + c3 < 4(w + 1). "e stability criteria are illustrated in !gure

2.

Stable region

 0  1  2  3  4  5

c1+c2+c3

-1

-0.5

 0

 0.5

 1

w

Figure 2: FDR-PSO region of stability

In the proposal of FDR-PSO [29] it was stated that the following

time dependent inertia coe%cient could be used

w(t + 1) =
(w(t) − 0.4)(T − t)

T − 0.4
(22)

where T is the maximum number of iterations the PSO will be run

for. "e immediate question is what the e$ect of this time dependent

inertia coe%cient is on particle stability. "e relationship between

equation (22) and particle stability can be understood by checking

how o*en during a run the criteria of equations (19), (20), and (21)

are satis!ed. Ideally an explicit version of the recurrence relation in

equation (22), would be used. However, despite the simple appear-

ance of equation (22), the type of non-linearity makes !nding an

usable explicit version nontrivial. "erefore, an empirical approach

is used to assess how o*en the stability criteria are satis!ed. In the

original work of FDR-PSO it was recommend that c1 = c2 = c3 = 1

should be used, but an initial inertia weight,w(0) was not recom-

mended. In table 1, for T = 5000, the percentage of a run that FDR-

PSO is stable is shown, for initial inertia weights −1 ≤ w(0) ≤ 1, in

step sizes of 0.2 and for 0.2 ≤ c = c1 = c2 = c3 ≤ 1.4, in step sizes

of 0.2.

It is apparent from table 1 that the initial inertia, w(0), has a

negligible e$ect on stability of FDR-PSO during the course of a

run. Speci!cally, for the same value of c , di$erent values of w(0)

resulted in approximately the same percentage of time the FDR-

PSO algorithm was stable. More interestingly, it is clear from table

1 that the use of the recommend parameters c1 = c2 = c3 = 1 in

conjunction with equation (22) to control the inertia weight is not

actually advisable, as particle behavior is unstable for over 67% of

the run. Increasing c to 1.2 is catastrophic for stability, as FDR-PSO

is unstable for 98% of the run. A detailed empirical justi!cation for

why particle instability is bad for PSO performance can be found in

[11]. Similar observations have been made for a collection of self

adaptive PSO variants [19]. "e amount of time that FDR-PSO is

stable increased as the parameter c decreased, which is in line with

what would be expected, because the acceptable range ofw clearly

increases as c decreases as illustrated in !gure 2. However, even

for low values of c over 31% of the run is unstable. "e data from

table 1 indicates that the use of equation (22) is not well suited if

particle stability is a concern.

Table 1: Percentage of Time FDR-PSO is stable

w(0)\c 0.2 0.4 0.6 0.8 1.0 1.2

−1 67.94 63.42 57.20 48.00 32.64 0.02

−0.80 67.94 63.42 57.20 48.00 32.64 0.02

−0.60 67.94 63.42 57.20 48.00 32.64 0.02

−0.40 67.96 63.42 57.20 48.00 32.64 0.02

−0.20 67.96 63.44 57.20 48.00 32.64 0.02

0.00 67.98 63.44 57.22 48.00 32.64 0.02

0.20 67.98 63.46 57.22 48.02 32.64 0.02

0.40 68.00 63.46 57.24 48.02 32.66 0.04

0.60 68.00 63.48 57.24 48.04 32.66 0.04

0.80 68.02 63.48 57.26 48.04 32.68 0.04

1.00 68.02 63.50 57.26 48.06 32.68 0.06

4 EXPERIMENTAL SETUP

"is section utilizes a method for empirically investigating the

convergence region of PSO variants as proposed by Cleghorn and

Engelbrecht [8, 10].

"e experiment utilizes a population size of 64, and 5000 itera-

tions. Particle positions were initialized within

15
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(−100, 100) and velocities were initialized to 0 [16]. "e analysis

is done in 5, 10, 20, 30, 40, and 50 dimensions, with the maximum

possible distance between particles in the initial search space be-

ing 447.214, 632.456, 894.427, 1095.445, 1264.911, and 1414.214

respectively. "is maximum distance is referred to as ∆max (d)

from this point forward, where d is the search space dimension.

Reported results were bounded at the respective ∆max s to prevent

highly divergent parameter con!gurations from obscuring the data,

and to form a classi!cation boundary between stable and unstable

parameter con!gurations.

"e empirical measure of convergence used in this paper is:

∆ (t + 1) =
1

k

k
∑

i=1

‖x i (t + 1) − x i (t) ‖2. (23)

"e objective function used is:

CF (x) ∼ U (−1000, 1000) , (24)

which was shown to be an e$ective objective function for stability

analysis in [8]. "e value of CF , for each x in the domain of CF , is

calculated and stored the !rst time it is required in the execution of

the PSO algorithm. "e calculated value for each x in the domain of

CF remains static a*er its initial computation. Objective function

values are generated anew for each independent run of the PSO

algorithm.

"e experiment was conducted over the following parameter

region:

w ∈ [−1.1, 1.1] and c1 + c2 + c3 ∈ (0, 5.6] , (25)

where c1 = c2 = c3, with a sample point every 0.1 along w and

c1 + c2 + c3. A total of 1288 sample points from the region de!ned

in equation (25) were used. "e results reported in section 5 are

derived from 50 independent runs for each sample point.

5 EXPERIMENTAL RESULTS AND
DISCUSSION

"is section presents the results of the experiments described in

section 4.

A snapshot of all parameter con!gurations’ resulting conver-

gence measure values are presented in !gures 3, 4, and 5 for the

5000th iteration for FDR-PSO in 5, 20, and 50 dimensions respec-

tively. "e reported convergencemeasures are themaximum recorded

over the 50 independent runs. "e maximum is used because un-

stable particle behavior occurring in any run for a given parameter

con!guration indicates that the parameter con!guration is not truly

stable.

"e number of parameter con!gurations that empirically agree

or disagree with the stable/unstable behavior predicted by the the-

oretically derived stability region of equations (19), (20), and (21) is

presented in table 2. Eight measurements are given in table 2: the

number of parameter con!gurations that are theoretically stable

(TS) and unstable (TUS), the number of parameter con!gurations

that where empirically stable (ES) and unstable (EUS), the number

of parameter con!gurations that were found to be empirically stable

despite the theory predicting unstable behavior (ES despite TUS),

the number of parameter con!gurations that were found to be em-

pirically unstable despite the theory predicting stable behavior (EUS

despite TS), and lastly the percentage error and agreement between

∆
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Figure 3: FDR-PSO stability results for 5 dimensions

∆
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Figure 4: FDR-PSO stability results for 20 dimensions

the theoretical derivation and the empirical !ndings. A parameter

con!guration is classi!ed to be stable if the value of the recorded

convergence measure of equation (23) is less than ∆max (d), and

unstable if greater than or equal to ∆max (d), in accordance with

the approach of Cleghorn and Engelbrecht [10].

It is clear that the actual stable region remains constant as the

dimensionality increases, as there is only a negligible amount of

di$erence between the stable regions for 5, 20 and 50 dimensions as

seen in !gures 3, 4, and 5 respectively. In all cases both the shape

and size of the empirically obtained region in !gures 3, 4, and 5 are

16
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Table 2: "eoretical prediction versus empirical !ndings

Dimension TS TUS ES EUS ES despite TUS EUS despite TS Error Agreement

5 553 735 557 731 22 18 3.11% 96.89%

10 553 735 558 730 24 19 3.34% 96.66%

20 553 735 559 729 23 17 3.11% 96.89%

30 553 735 563 725 25 15 3.11% 96.89%

40 553 735 560 728 25 18 3.34% 96.66%

50 553 735 558 730 24 19 3.34% 96.66%

"e measurements presented are the number of parameter con!gurations that are theoretically stable (TS) and unstable (TUS), the number of parameter con!gurations that where
empirically stable (ES) and unstable (EUS), the number of parameter con!gurations that were found to be empirically unstable despite the theory predicting unstable behavior (ES
despite TUS), the number of parameter con!gurations that were found to be empirically unstable despite the theory predicting stable behavior (EUS despite TS), and lastly the

percentage error and agreement between the theoretically derivation and the empirical !nding.

∆
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Figure 5: FDR-PSO stability results for 50 dimensions

in agreement with the theoretically predicted region as illustrated

in !gure 2.

As can be seen in table 2 the empirically obtained region of par-

ticle stability is in strong agreement with the theoretically derived

region, as de!ned using equations (19), (20), and (21), with the high-

est and lowest level of agreement across all test case being 96.89%

and 96.66% respectively. "ere is a very small variance of 0.126% in

the percentage of agreement across dimensions, implying that the

accuracy of the theoretically derived stability region is consistent

across all dimensions.

It is clear that the theoretically derived region for particle sta-

bility as described by equations (19), (20), and (21) is an accurate

representation of the real world parameter con!gurations necessary

to ensure particle stability.

6 CONCLUSION

"is paper theoretically derived the order-1 and order-2 stable re-

gions for FDR-PSO, along with !xed point of particle convergence,

in expectation. "e derived order-1 and order-2 stable regions can

be utilized by PSO practitioners to make an informed choice when

selecting control parameters of FDR-PSO. "e derived criteria for

stability were validated empirically utilizing the method veri!ed

by Cleghorn and Engelbrecht [8], where no simplifying assump-

tions were made on the FDR-PSO algorithm. Given the empirical

validation, the theoretical derivation is an accurate representation

of FDR-PSO’s stability criteria despite the criteria being derived

under the stagnation assumption.
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