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ABSTRACT
This paper introduces new hybrid coordination techniques for
searching mobile targets in dangerous and dynamic environments.
Situations like this arise for example during and after natural or
human caused disasters. The approach presented combines algorith-
mic concepts from ant colony and particle swarm optimization with
an adaptive network approach that utilizes principles stemming
from slime-molds. The objectives are to achieve a sufficiently wide
distribution of the search team in order to cover and explore the
area, to send the searchers towards the suspected position, and to
safeguard against passing unsafe areas. In addition, the technique
proposed can react fast towards environmental changes. Two main
algorithms were developed. They are investigated in a series of
experiments showing promising first results.
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1 INTRODUCTION
The search for mobile targets with a team of robots has received
more and more attention. With the help of robots or more gen-
erally with the help of autonomous vehicles, search tasks can be
performed in hazardous environments unsuited for human oper-
ators. Applications can be found in the civilian sector as e.g. for
search-and-rescue missions and for military or security related
operations.

In order to combine information from multiple sources, multi-
sensor data fusion techniques are applied [15]. The gathering and
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merging of dynamic and uncertain information is of considerable
importance in order to make reliable predictions regarding e.g. the
position of a drifting vessel at sea or of a person in a area affected
by an earthquake. But how can the information obtained be used
to guide the searchers towards better positions in order to locate
the target? How can we coordinate the search itself? This paper
addresses the questions above and focuses on a search for a mobile
target in dynamic and hazardous environments. We present a novel
hybrid approach combining methods stemming from several fields
of natural computing. The approach is an extension of the method
introduced in [14].

The task described is considered in several research fields, e.g. in
the area of swarm robotics [19]. It also belongs to the area of search
and pursuit-evasion games which have a long research tradition [3].
To solve the task several techniques have been applied. They range
from stochastic heuristics [8] to specialized branch-and-bound op-
timization approaches [18].

The paper is structured as follows. First, the swarm of searchers
and the task are described. Afterwards, we provide details con-
cerning the model and the assumptions used. The next section is
concerned with the algorithm and introduces its procedures in de-
tail. The resulting approach is investigated in a series of experiments
which aim to provide more insights into its potential advantages
and weaknesses.

1.1 Searching with Swarms
A team ofK autonomous vehicles s1, . . . , sK or robots (called swarm
in the following) is employed for a search task. The objective is
to locate a moving target the position of which is uncertain. The
search can be divided into several phases depending on the amount
of available information concerning the targets and on the location
of the searchers w.r.t. the target. If no information concerning
potential target positions is obtainable at present, the searchers
must cover the area. To this end, terrain covering techniques that
stem from the search for stationary targets can be applied. If the
searchers are able to obtain measurements, a likelihood function
for the target location can be derived and used in turn to guide the
search. Regions with sufficiently large likelihood values should be
prioritized. If they are in the vicinity of a searcher, they should be
inspected first, otherwise, a robot should move towards the search
regions with the largest likelihood of containing the target. To do
so, the searcher should follow a swift and safe path as it can be
obtained by applying the dynamic network approach introduced
later.

The swarm members are assumed to be equipped with sensors
and communication devices. As it is common in literature on swarm
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robotics, we assume omni-directional sensors as well as an omni-
directional communication. The communication devices may have
a limited radius and may also be impaired by environmental condi-
tions. The same holds for the sensors. The communication radius
is denoted by rc > 0. In the following, we say that searcher sk is in
the communication neighborhood of searcher si , i.e. sk ∈ CN i , if
they are able transfer data directly, that is, if the distance of their
positions psk and psi is smaller than the radius, i.e., ∥psk −psi ∥ ≤ rc .
When a searcher is inside the communication range of another ro-
bot, data is exchanged and measurements are combined. The swarm
operates with dynamic neighborhood topologies depending on the
cohesion of the swarm with respect to the communication range.
For this reason, the neighborhood structure may vary from fully
connected topologies to extremely sparse structures.

1.2 Of Likelihoods and Risks
In the following, several definitions are introduced that are required
in the remainder of the paper. The environment the searchers op-
erate in is called the search space S with S ⊂ R2. For the algo-
rithm, it is modeled in a first step as a two-dimensional area or
map C = {ci |i = 1, . . . ,N } ⊂ R2 which is discretized into cells ci
of constant size and regular form. The cell type depends on the
characteristics of the robots, i.e., on their speed, on their sensing
radius, and on their maneuverability. For each cell ci the neighbor-
hood environment Ni contains all other cells that can be reached
directly from ci . The target is found, if it occupies the same cell as
a searcher. The estimate of the target positions µ (x, t ) can be aggre-
gated to provide the general likelihood µti for the cell containing
the object of the search at time t , e.g. µti = maxx∈ci µ (x, t ). In order
to ensure a stable behavior of the algorithm that is introduced later,
a minimal value ϵµ > 0 is introduced. The spatial representation
of theMt

µ := (µti )i=1, ...,N will be referred to as a likelihood map.
If it pertains to a single searcher sk , it is denoted asMt

µ (sk ). The
coordination technique introduced will be based on normalized
values, i.e., µti ∈ [0, 1] holds. Since exchanging and combining in-
formation requires the original values, the minimal and maximal
values used in the transformation must be stored. Similarly, a risk
value ρti for the cell ci can be derived. Following a risk averse ap-
proach, the maximal value inside the cell ρti = maxx∈ci ρ (x, t ) is
utilized. Here, ρ (x, t ) denotes the estimate of the risk. Once the
values are obtained, they are normalized so that ρti ∈ [0, 1]. The
associated spatial risk map is denoted as Rt with Rt (sk ) standing
for the distinct set of searcher sk . In contrast, the safety of passage
ηti := 1 − ρti indicates the preference of a cell due to its low risk.

Using the measures introduced above, the concept of a neighbor-
hood is refined by considering the admissible neighborhood of a cell
ci which is denoted as all directly reachable cells that a searcher may
pass in safety, i.e., where the safety exceeds a predefined threshold
ηmin > 0 as AN t

i = {c j |c j ∈ Ni ∧ ηti ≥ ηmin}. Areas with high
risk values are termed unsafe regions Xt = {ci |ηti < ηmin}. The
minimal values ηmin and ϵµ are also used to initialize the cell val-
ues when no information is available. In order for the swarm to
cover the search region, the current area of interest must be divided
among the swarm members. Several coordination methods can be
applied for this task including e.g. auctioning. This paper presents
an approach based on particle repulsion.

1.3 From Maps to Graphs
For the path planning, the search space S, or more correctly, the
map C, is represented by a graphG = (V ,E), withV = {v1, . . . ,vN }
denoting the set of nodes and E the set of edges. The cell structure
can be transformed into graph form in several manners, here, we let
the nodes vi stand for the centers of the cells ci whereas the edges
of the network result from the neighborhood structure in other
words ei j ∈ E ⇔ c j ∈ Ni . The edges are undirected and weighted
with costs di j := ∥vi −vj ∥ > 0 standing for the Euclidean distance
between the centersvi andvj . In a slight misuse of the notation we
say that vj is in the neighborhood of vi and denote it by vj ∈ Ni
if c j ∈ Ni . The same holds for vj ∈ AN t

i . The positions of the
searchers s1, . . . , sK are denoted by ptsk and defined for ptsk ∈ V , i.e.,
we do not update the position on the edges. Concerning the target
and its estimated location, we defineMt

max = {c j |j ∈ argmaxi µti }
as the cells andVt

max = {vj |j ∈ argmaxi µti } as the nodes with the
largest values or in other words the best guesses for the current
target location. Again, each searchermay have its distinct parameter
set. Let v ∈ V be a node in the graph. The closest maximal point
is then given by ptMk (v ) ∈ M

t
max := argminu ∈Mt

max
∥u −v ∥ . For

a searcher we have the same definition, i.e., ptMk (sk ) ∈ M
t
max :=

argminu ∈Mt
max
∥u − ptsk ∥ denotes the closest best guess for the

searcher sk . Without loss of generality, we assume that there exists
only a single point. Otherwise, the tie would be broken by selecting
it at random.

2 COMBINING SWARMS AND SLIME-MOLDS
This section introduces the hybrid swarm coordination which is
realized as an online approach. It uses an adaptive network based
on slime-molds to derive fast and safe paths towards the assumed
target position. The resulting path lengths is then considered in
the movement planning for the searchers. The decisions in each
iteration are based on several factors. They are described in detail
in this section.

2.1 Path Planning in Hazardous Environments
Path planning for autonomous vehicles or robots has a long research
tradition. In general, offline and online techniques are distinguished.
While the first class uses information available beforehand to gen-
erate a path, the second takes place when the searcher is already
in motion and can adapt to situational changes making it more
suitable for dynamic and uncertain environments. Since this equals
the application scenario considered, we adopt also an online ap-
proach. In the following, two examples are briefly described. Wen
et al. [22] consider for example online planning for unmanned arial
vehicles operating in uncertain and dangerous environments. They
apply several methods resulting in a rapidly exploring random tree
based planning algorithm. Ok et al. [16] also used a combination of
approaches or more exactly planners in their Voronoi Uncertainty
Fields. The higher level planner computes Voronoi diagrams which
it uses to determine a connected path. The path is then corrected
based on uncertainty estimations with the help of artificial poten-
tial fields. The techniques proposed, also applies a combination of
several techniques or a two-stage process. We use a path finding al-
gorithm in order to identify suitable pathways to the current target
position. The information gained then enters the second phase of
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the actual movement planning. The path planning considers several
objectives simultaneously: While short paths to the target are im-
portant, their safety carries also considerable weight. Both have to
be taken into account. The approach presented is based on adaptive
networks or on slime mold optimization. Slime mold optimization
(SMO) represents a relatively new optimization technique based
on models of the tube dynamics of real slime molds [21]. It can
be applied to network flow and linear programming problems and
has been used among others for routing and transportation, see
e.g. [10]. Typically, the slime-mold covers the complete graph. In
the case of large graphs, problems may appear: SMO approaches
consider an artificial nutrient flow from sources to targets and adapt
their structure accordingly by shrinking connections that are not
profitable with respect to the nutrient transport. For this reason,
[12] introduced a dynamic, adaptive network with two main phases:
growth or re-growth and tube dynamics. The first ensures that start
and target node for the path planning are connected and provides
a sufficiently large network structure so that appropriate parts of
the graph are covered. Once the subgoal is established, the sec-
ond phase, the tube dynamics, is started. During this process, the
adaptive network withdraws from edges that impair the solution
quality w.r.t. an optimal path to the target until the network reaches
a stable steady state.

As stated, instead of covering the complete graph, the adaptive
network approach grows from start (or sink) to target (source).
While this may result in non-optimal solutions, the smaller size
of the resulting structure improves the efficiency of the tube dy-
namics. The process, however, requires information in order to bias
the growth towards the region and the point of interest. In [12]
several indicator functions were introduced. They provide a kind
of potential field or –a nutrient gradient– followed by the slime
mold. Here, we consider an indicator function that depends on the
Euclidean distance de (vi , s ) to the source s and on the immediate
safety of passage at the nodeH (vi ) = (ηκi )/((1 + de (vi , s ))

δ ) with
the two parameters δ and κ controlling the influence of the objec-
tives [12]. The topology of the initial network that results from
the growth process depends on the choice of nodes from which
the adaptive network continues to grow and on the nodes selected
that will be newly covered. Concerning the selection of the growth
nodes, two strategies were introduced in [12]: full and partial. In
the case of the former, the network grows from all outer nodes, i.e.,
from all network nodes that have at least one neighbor not already
covered. A sparser structure is assumed when only a subset may be
used as it is the case for the partial strategy. Currently, the subset
is selected deterministically taking the indicator function values
into account. Once the growth nodes have been selected, it has to
be determined which of the free neighbors will be covered by the
adaptive network. Again, two strategies have been implemented
which influence the topology of the initial structure: a greedy ap-
proach where a connection is only established with nodes where
the indicator function attains maximal values and a so-called above
average method which takes all vertices into account where the
indicator function assumes values larger than or equal to the neigh-
borhood average [12]. Once sink and source are connected, the
tube dynamic phase replaces the growth process and the flow of
the artificial nutrients begins. In SMO, the process is modelled with

the help of Poiseulle flows where the flow Qi j along the edge ei j
is proportional to the pressure difference pi − pj at the two nodes
vi and vj connected. More information can be found e.g. in [12].
The resulting network represents either a single path solution or a
multiple path variant. Which is obtained depends on the control
parameter setting of the SMO, see the discussion in [12]. In the
present context, the focus lies on single path solutions since the
path length is used for further decision making. Therefore, we also
decided on using the partial approach concerning the growth node
selection combined with the greedy approach for finding the newly
covered vertices. It should be mentioned that the adaptive network
approach reacts to significant situational changes. If for example
the risk values for a covered edge increases above the limit allowed,
the slime-mold withdraws from it. In the case that the connectivity
between source and sink is lost, a re-growth phase is initiated until
it is reestablished. For more information, see [12].

2.2 Balancing Risk and Local Likelihood
Once the paths have been determined, the online movement plan-
ning can be started. It is based on stochastic decision making. Each
searcher takes information stemming from itself and from other
robots into account in order to select a new node from the feasible
neighbors: Consider the situation that a searcher has reached a node
vi with µl > ϵµ for at least some vl ∈ AN t

i . We assume that in
general the likelihood map provides useful information although it
may be distorted by measurement errors. Cells with large likelihood
values therefore have a high probability of containing the target
on average. Therefore, a robot should take the likelihood values in
the neighborhood into account. But the information may also be
misleading and the movement may not contribute to the ultimate
goal. For this reason, stochastic effects are introduced. The basic
equation for the selection probability of a node vj of the admissible
neighbors AN t

i reads

p (vj , sk , t ) =
(µtj )

α (ηtj )
β∑

vk ∈AN t
i
(µtk )

α (ηtk )
β

(1)

with parameters α , β ≥ 0. With their help, the influence of safety
and the most promising neighboring field can be balanced. If the
admissible nodes do not differ in their likelihood values, (1) leads to
a stochastic risk aversion. Equation (1) represents a variant of the
central probabilistic decision rule of ant colony optimization (ACO),
a well known stochastic metaheuristics [5]. Ant colony optimization
is often used in combinatorial optimization, to tackle e.g. routing or
scheduling tasks. It takes its inspiration from mathematical models
of search behavior of ant colonies. Instead of using pheromone
traces as it would be the case in ACO, the approach presented is
based on problem specific values since the focus lies on an online
mechanism which plans one step ahead and no complete path is
constructed for the swarm in the planning stage.

2.3 From Local to Global Information
Equation (1) is a variant of a stochastic greedy search heuristic. Since
it considers local information, it will tend to guide the searchers
towards the best local areas. This represents a myopic approach and
a potential problem. The algorithmmay be unable to identify prefer-
able regions in the search space. Therefore, global information as

29



GECCO ’17, July 15-19, 2017, Berlin, Germany Silja Meyer-Nieberg

obtained by the sensor measurements is utilized and the searcher’s
decision is biased with respect to the current best solution which
represents the current best estimate for the target’s position. The
approach presented is based on particle swarm optimization where
a particle has a certain tendency to move into the direction of the
best member of the swarm. Here, the searchers do not move towards
the robot that resides in a cell or in a node with the largest function
value but towards the best guess of the target location. This best
guess may differ if swarm members are outside the communication
area. Particle swarm optimization (PSO) [6] has been introduced
in the 1990s. Today, it represents an established metaheuristic for
continuous optimization. It operates with a swarm of particles. The
velocity vector of the particles is the central element of the search.
It is continuously adjusted during a run by taking the search history
into account. Here, we strive to increase the selection probability of
promising directions. These directions are defined by their distance
to the current best estimates for the target positions. They do not
need to coincide with any actual searcher position. Instead they
represent the cells or the nodes with the largest likelihood, i.e.,
ptMk (v ) for a node v in the admissible neighborhood of searcher
sk . Furthermore, let dtSMO (v ) denote the distance as obtained by
the adaptive network approach. The shorter the safe path is that
begins at the node, the more preferable is a selection. This needs to
be respected by a suitable transformation of the distance into [0, 1].
A potential choice reads f (x ) = 1/(1 + x ) with x ≥ 0. Augmenting
the stochastic rule (1) with f tj := f (dtSMO (vj )) leads to

p (vj , sk , t ) =
(µtj )

α (ηtj )
β ( f tj )

γ∑
vk ∈AN t

i
(µtk )

α (ηtk )
β ( f tk )

γ (2)

with parameters α , β , and γ ≥ 0. So far, the presence of multiple
searchers had only indirect influence. If parts of the group are able
to communicate they operate with the same situational awareness
and therefore with shared likelihood and risk maps. No mechanism
has been introduced, however, which can be used to achieve an
appropriate spreading of the swarm in the search space. If the
swarm distribution collapses and all searchers follow the same path
the potential benefits that arise with multiple searchers diminish.
While it is easier to replace units that malfunction or are destroyed
if the replacements are nearby, in general resources are wasted if the
swarm is concentrated in only small parts of the whole space. This
concerns especially a dynamic search with uncertain information.
Therefore, the next section introduces an approach to distribute
the searchers in the space.

2.4 Spreading the Search Team
The estimation function results frommeasurements of the target po-
sition. Therefore, the region or the cells with the highest values can
be assumed to be the current best estimate. However, in addition to
noisy disturbances, the function values are subject to change since
the target is mobile. The swarm must be able to track the changes
andmust be kept from collapsing into a single point. To this end, the
concept of particle repulsion is integrated. Particle repulsion stems
from charged swarms [1], a particle swarm optimization technique
developed for dynamic optimization. Charged swarms maintain
or even increase the population diversity by allowing parts of the

swarm to repel another. This serves to counteract the natural ten-
dency of the swarm to converge into a single point in the search
space. In the case of PSO, the extend of the repulsion depends on
the load carried by the particles and the distance (vector) of the
particles to each other. In the case that the distance of two particles
is smaller than a predefined radius, referred here as di0 > 0, the
particles are repelled. They move into opposite directions along
the line defined by the distance vector. The extend of the repul-
sion is proportional to the charge and reciprocally proportional
to the square of the distance. To safeguard against vast and sud-
den position changes which are usually detrimental, the repulsion
magnitude is bounded by introducing a minimal distance. Here, the
approach is extended: First of all, let Ik := {sl |∥psl −psk ∥ ≤ di0 } be
the subset of searchers that are too close to the searcher sk . They
(and sk ) will be “repelled”. In contrast to particle swarm optimiza-
tion which considers continuous search spaces and operates with
distance vectors, the coordination mechanism presented here is
based on graph representations. Therefore, the searchers are not
repelled in the strict sense. In each iteration, the searcher may only
choose one of the nodes in the neighborhood. Therefore, we imple-
ment a stochastic bias – in other words, the searcher evades the
others as far it is possible. The question of how close is too close
is addressed dynamically. To this end, let us define the expected
degree of target approach of a searcher sk as

da (sk , t ) :=
d (sk , t )

path(sk , t ) + d (sk , t )
(3)

with path(sk , t ) denoting the distance traveled so far and d (sk , t )
the current safe distance to the most likely target position. The
parameter is introduced in order to control the particle repulsion.
The intent is that the swarm spreads out and covers a wide search
region especially in the beginning of the search when only a few
measurements have been taken, the information available is highly
uncertain, and the units are potentially far away from the target po-
sition. The more time passes and the closer the searchers approach
the target, the more and more the information can be trusted. For
this reason, the threshold of the onset of the repulsion mechanism
decreases with expected degree of target approach. Furthermore, it
takes into account how close the searcher is to its particular best
guest relative to the respective distances of the other searchers in
the neighborhood

dI (sk , t ) = di0
(
da (sk , t )

) ( ∑
l ∈Ik d (sk , t )

max (dmin,d (sk , t ))

)
. (4)

The bias against nodes that bring the searcher too close to others
depends on the respective distances. For a given node vj ∈ AN t

i
and a searcher sl ∈ Ik , they are provided by

d̃ (vj ,psl , t )=



∞ d (vj ,psl ) > dI (sk , t )
d (vj ,psl ) dmin ≤ d (vj ,psl ) ≤ dI (sk , t )
dmin dmin ≥ d (vj ,psl )

. (5)

To determine the overall repulsion for the node, the distances are
first transformed so that smaller distances result in larger contribu-
tions than larger. Here, similar expressions as before can be used.
The aggregated transformed distance for a node vj and a searcher
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sk is obtained as

d (vj , sk , t ) =
∑

sj ∈Ik :sl,sk

t (d̃ (vj , sl )). (6)

The larger the repulsion (6) of a node, the smaller should the selec-
tion probability be. The final repulsion factor can then be derived
for example as r tj = 1/(1 + d̃ (vj ,psl , t )) and represents the last
factor for the probabilistic decision rule that is applied

p (vj , sk , t ) =
(µtj )

α (ηtj )
β ( f tj )

γ (r tj )
δ∑

vk ∈AN t
i
(µtk )

α (ηtk )
β ( f tk )

γ (r tk )
δ

(7)

with four control parameters α , β,γ , and δ ≥ 0. The algorithm using
(7) is called simple probabilistic search (SPS). Suitable settings for
the control parameters need to be determined experimentally. The
question of robust, optimal, or critical parameter settings will be
addressed in Section 3 with the help of data farming experiments.

2.5 Exploiting the Information
Additional algorithms are based on an efficient ant colony opti-
mization variant: ant colony system (ACS)[4]. Ant colony system
represents one of the best ACO-methods with respect to solution
quality and efficiency [5]. Most of the other ACO algorithms make
use of a similar stochastic rule to Eq. (7). Ant colony system em-
ploys a different principle: Whenever a decision is to be made, ACS
first determines whether to use the random rule (7) or whether to
proceed deterministically. In the case of the latter, the next node
is selected as the best choice in the neighborhood. For the swarm
search considered, this equals taking

vh = arg max
vj ∈AN t

i

p (vj , sk , t ) (8)

as the next node to move to. The switch between random and deter-
ministic rule is made at random following a uniform distribution.
The probability pSPS > 0 for choosing (7) instead of (8) does not
need to remain constant. Instead it may move from exploration
with (7) towards exploitation with (8). For this, we make use of
(3) which lowers the potential for exploration with the expected
approach towards the target with

pASPS (sk , t ) = d
a (sk , t )pSPS . (9)

Equation (4) does not necessarily represent a monotonously de-
creasing function with time. The resulting algorithm is termed
adaptive exploiting probabilistic search (AEPS) whereas the static
version will be denoted as exploiting probabilistic search (EPS).

3 DATA FARMING EXPERIMENTS
This section describes the experiments that were conducted to
analyze the performance of the algorithms. Since we aim at a proof
of concept, the paper addresses the question whether AEPS or EPS
lead to promising results that merits further investigations and
comparisons with other online approaches. We focus on the latter
two since preliminary experiments showed that their performance
is better than that of SPS. For results concerning the performance
of the first variants of EPS and SPS on square grids, the reader is
referred to [14] where also a comparison with random search was
conducted.

First, details concerning the methodological approach, data farm-
ing, are provided, before the performance measures used are intro-
duced. Afterwards, the experimental set-up, that is, the implementa-
tion choices made and the parameter settings is given. The section
concludes with a discussion of the results of the experiments for
hexagonal grids.

Data Farming [2] represents an iterative process which strives
to derive more information concerning potential model or system
behaviors especially w.r.t. the impact of control parameters. In
its basic form, it is strongly related to the design and analysis of
computer experiments (DACE) [17] and the design and analysis
of simulation experiments (DASE) [11]. All approaches introduce
methods by which the parameter space of the model can be explored
to gain more insights and information w.r.t. the model response.
The parameter space is screened with the help of experimental
designs which provide the value combinations for the simulation.
The design type depends on the particular analysis and its focus.
Up to now, a multitude of variants has been introduced [17]. Here,
a space-filling design is applied since the focus lies on an investiga-
tive screening of the control parameter space in order to identify
critical combinations which may also indicate weaknesses of the
method. The particular design used is a nearly orthogonal Latin
hypercube (NOLH) design which represents a compromise between
a space-filling latin hypercube and the additional criterion of low
correlations between the variables [9].

3.1 Experimental Set-Up
The methods, AEPS and EPS were implemented in Java and inte-
grated into MASON [13], an open source multi-agent discrete event
simulator, which is developed by the George Mason University.
Additionally, GeoMason [20], a geo-spatial extension which allows
to include coverages and grids has been used. In the following, the
model properties and the assumptions made are discussed. The
searchers are spawned randomly and start from the same node.
They have the same velocity as the target which is set to v = 1.
In the experiments, the target follows a Markovian motion model.
The next position of the center ctarget is chosen at random using a
uniform distribution around the old location in both dimensions.
Once the new position in the plane has been determined, it is
mapped to the nearest node. The positional uncertainty is modeled
as an ellipsoid around the center. The experiments consider dynami-
cally changing hazardous areas as they appear e.g. during wildfires,
floods, or earthquakes. The area is continuous and represented
by an ellipsoid. The length, width, and the rotation angle are ad-
justable but do not vary during a simulation run. The movement of
the centroid crisk follows again a Markov process with independent
uniform random distributions in both dimensions. The risk area
is spawned close to the target uncertainty area so that high risk
situations with the risk area overlapping the target position occur
with a high probability. Several performance measures are used. We
are interested in the first hitting time (FHT) of a run, the number
of target hits (NHT), the number of incidents (NI), and of course
in the duration of the incidents (DI). The experimental analysis
considers the following environmental and control parameters: the
number of searchers N , the probability pSPS , the minimal distance
dmin, the height, width, and angle of the target area, the height,
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width, and angle of the unsafe area, the frequency of the risk area
changes,the control parameters α , β , γ , δ , the scaling factor di0
of the influential distance, and the minimal distance dmin. Their
impact on the performance is assessed for two strategies EPS and
AEPS. The searchers start at the same randomly initialized position
whereas the target field center and the center of the disturbance
start in the same points with the target center being located in
the middle of the lower quarter of the simulation area with the
disturbance field blocking its upper left area. The simulation is car-
ried out for hexagonal grids. The grid size is set to K = 900 nodes.
As stated, the disturbance field is modeled as a Markov process
allowing independent uniform movements in the plane. For the
experiments, the maximal movement concerning the x-coordinate
is set to [-10,10] w.r.t. to the simulation area size whereas it reads
[-20,20] for the y coordinate. The hazardous area is thus able to
shift suddenly and rather widely over the search region in order
to model a hazardous search scenario which may arise e.g. during
wildfires. The NOLH design chosen results in 63 data points, each
with 30 repeats resulting in 1890 runs for the statistical analysis.

3.2 Results for Hexagonal Grids
The strategies adaptive exploiting probabilistic search (AEPS) and
exploiting probabilistic search (EPS) lead to a similar performance
on hexagonal grids. The total success rate is one for both, the
incident rate of AEPS is 0.562, whereas it reads 0.617 for EPS. This
would indicate a slight performance benefit for AEPS. However, the
more detailed measures have to be considered. First of all, we need
to note that not all results enter the statistical analysis. In the case of
AEPS 40 runs had to be discarded due to no data probably because
the searchers where initialized inside the hazardous area. In the
case of EPS 44 runs were not used. To summarize, if a statistical test,
i.e., the Wilcoxon-Mann-Whitney test, see e.g. [7], is performed it
indicates significant statistical differences at the 0.05 level. Only in
the case of the number of incidents, the zero hypothesis cannot be
discarded. However, it should be noted that the number of runs is
quite large.

Our detailed investigation starts with the box-plots of the four
measures. Figure 1 provides the results for the relative performance
measures normalized with the number of searchers and the sim-
ulation time. Concerning the number of target hits, the adaptive
exploiting search seems to have advantages which also transfers
to the time until the target is found for the first time. In the latter
case, several outliers are present. The swarm finds the target quite
early in the majority of the experiments. The distribution of the
outliers covers a very large range, however. This is underlined by
the histograms in Figures 2 and 3 which hint at skewed, heavy-
tail distributions. The decision trees suggest an influence of the
disturbance field. As the figures indicate the number of searchers
appears as an important factor for the time that the target is first
found. Apparently, the swarm sizes larger than four allow to locate
the target early. Therefore, very small swarm sizes are discouraged.
Additional factors concern the characteristics of the disturbance
field at least in the case of EPS. These affect only small swarms
with less than five members, however. Since the number of data
points for these parts of the decision tree is low, the number of
experiments should be increased in order to gain more insights

concerning swarm sizes of three and four. Small swarms, however,
are extremely sensitive to a loss or failure of a sensor platform. For
this reason, we do not investigate their characteristics further. Our
current hypothesis is that small, cohesive swarms may be suscepti-
ble to disturbances by either a large or by a frequently changing
disturbance field.

The number of target hits varies strongly, see Figs 2 and 3. The
histograms in Figs. 2 and 3 show heavy-tailed distributions. Here,
differences between AEPS and EPS arise. The data for adaptive
exploiting probabilistic search is more centered as for exploiting
probabilistic search. Differences can also be found in the decision
trees. Here, the decision trees for AEPS and EPS are split for factors
stemming from the hazardous area or more correctly, its size leading
to the conjecture, that the performance may be affected by too large
disturbance fields. It should be noted, however, the worst median
performance measure in the tree remains close to the best value
signaling a quite robust behavior for the input parameter space
considered. In the case of AEPS, the parameter α which controls the
influence of the local information appears to be additionally impor-
tant whereas in the case of EPS, the parameter pSPS appears which
determines the probability to follow either the stochastic decision
rule or to exploit the information deterministically. Apparently, if
the proportion of the deterministic decision making is too large, the
exploration capability of the swarm is affected resulting in a worse
performance. A reinforcing factor in this case is the exponent of
the safety of passage. While the number of data points is too low to
derive significant conclusions, the findings indicate that exploiting
probabilistic search may require a careful balancing of risk aver-
sion and target finding if the search is dominantly deterministic.
Similarly, if AEPS focuses too strongly on local information, it may
take longer to find the target.

Concerning the number of incidents, both strategies lead to good
results. The box-plots in Fig. 1 as well as the histograms in Figs.
2, and 3 reveal that the number of incidents remain low in the
majority of the experiments but that outliers are present and that
the distributions are heavy-tailed. The deciding factor appears to
be the movement frequency of the disturbance field. Both strategies
are strongly affected if the field relocates extremely often. This
may be aggravated additionally by its potentially large movement
speed. When the location of the field changes less frequently, in
the experiments, around every 8th time step (EPS) or 17th (AEPS),
the median number of incidents drops considerably. Concerning
the split, there may be an advantage for the exploiting probabilistic
search. While EPS may result in a slightly larger percentage of runs,
where incidents occur, it may be more robust w.r.t. the number of
affected searchers.

The duration of incidents remains low in most experiments.
Again outliers can be observed. In the case of AEPS, the decision
tree in Fig. 2 traces the most aggravating factor back to the change
frequency of the disturbance field. A larger number of relocations
impairs the performance leading to larger values of the incident
duration. Additionally, the number of searchers appear to be im-
portant. This may be due to stronger repulsion which may cause a
wider distribution in the search space and thus a more robust be-
havior. However, this needs to be investigated further since number
of corresponding data points is rather low. The same but even more
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a) number of target hits b) time until first target hit c) number of incidents c) duration of incidents
Figure 1: Box-plots for the cases of EPS and AEPS. The measures are relative to the number of searchers.

strongly holds for the left part of the tree. Concerning the decision
tree for EPS in Fig. 3, the later data splits indicate advantages for
larger swarms in some cases. This could mean that the risk for a sin-
gle swarm member would be lower. This may be interesting since
the findings may be caused by the stronger exploitation component.
More experiments must be performed, however.

4 CONCLUSIONS
This paper addressed moving target search in hazardous environ-
ments and focused on the search coordination of a team of mobile
sensor platforms or robots. Each robot is equipped with sensors
which can be used to infer the target’s position and to gain infor-
mation concerning the state of the environment. We assumed a
dynamically changing environment where hazardous areas cover a
significant part of the search space and searchers may be trapped
by rapidly changing conditions. Concepts from particle swarm
optimization and ant colony optimization together with a safe-
path finding procedure stemming from artificial slime-molds [12]
were applied. Two promising strategies, the adaptive exploiting
probabilistic search and the exploiting probabilistic search were
investigated in a series of data farming experiments. The situation
considered assumed risk areas with a potentially large cohesive
region which are able to relocated fast and frequently. The experi-
ments revealed that considering the performance measures chosen
which record the occurrences of incidents and target hits, both
strategies lead to good and robust performances. Concerning the
task of finding the target, the adaptive variant seems to offer a
slight advantage which may be due to its differing exploration-
exploitation balancing procedure. The stronger exploitation of the
second variant may be helpful in avoiding the risk areas of the
search environment. Additionally, the experiments hinted at that
the swarm size should be chosen with care with disadvantages
appearing for too small and too large swarms.
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Figure 2: Results for the adaptive exploiting probabilistic search (AEPS) on the hexagonal grid. The measures are relative to
the number of searchers.
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Figure 3: Results for the exploiting probabilistic search (EPS) on the hexagonal grid. The measures are relative to the number
of searchers.
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