
Combining Conformal Prediction and Genetic
Programming for Symbolic Interval Regression

Pham Thi Thuong
IT Department, University of

Information and
Communication Technology,

Thainguyen, Vietnam
ptthuong@ictu.edu.vn

Nguyen Xuan Hoai
HANU IT R&D Center,

Hanoi University,
Hanoi, Vietnam

nxhoai@hanu.edu.vn

Xin Yao
Department of Computer
Science and Engineering,

Southern University of
Science and Technology,

Shenzhen, China
xiny@sustc.edu.cn

ABSTRACT
Symbolic regression has been one of the main learning do-
mains for Genetic Programming. However, most work so far
on using genetic programming for symbolic regression only
focus on point prediction. The problem of symbolic interval
regression is for each input to find a prediction interval con-
taining the output with a given statistical confidence. This
problem is important for many risk-sensitive domains (such
as in medical and financial applications). In this paper, we
propose the combination of conformal prediction and genetic
programming for solving the problem of symbolic interval
regression. We study two approaches called black-box con-
formal prediction genetic programming (black-box CPGP)
and white-box conformal prediction genetic programming
(white-box CPGP) on a number of benchmarks and previ-
ously used problems. We compare the performance of these
approaches with two popular interval regressors in statistic
and machine learning domains, namely, the linear quantile
regression and quantile random forrest. The experimental
results show that, on the two performance metrics, black-
box CPGP is comparable to the linear quantile regression
and not much worse than the quantile random forrest on
validity and much better than them on efficiency.

Keywords
Genetic Programming; Quantile Regression; Linear Quan-
tile Regression; Quantile Regression Forests; Conformal Pre-
diction; Interval Prediction; Symbolic Regression.

1. INTRODUCTION
Machine learning problems have constituted a popular ap-

plication domain for Genetic Programming (GP). In partic-
ular, the symbolic regression is one of the most studied prob-
lems. The task for GP in this problem is to evolve a regressor
in symbolic form given a training set of samples. Regression
has traditionally been long studied in statistics and machine
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learning with numerous real-world applications. However,
almost all of works on using GP to solve the symbolic regres-
sion problem only focus on point prediction that is to find
a prediction point estimate Y for given X. In many risk-
sensitive application domains such as biometrics, medicine,
finance, reliability, etc point prediction would not be enough
and interval prediction is needed. The problem of interval
regression is to find a prediction interval covering the un-
known value of Y (for a given X) with a specified probabil-
ity (confidence level). To the best of our knowledge, there
has almost been no general and systematic research on using
GP for the task of symbolic interval regression.

Perhaps, using GP to evolve symbolic interval regressors
has only been reported in [13] and [4]. In the former,
Sánchez proposed an interval arithmetic-based GA-P model
that uses interval arithmetic to solve the problem of inter-
val prediction. However, the system based on the idea of
combining interval arithmetic, genetic programming, and
genetic algorithm is rather complicated and ad-hoc (with
many components/parameters to be tuned). For instance,
it must manually tune the parameters ε1 and ε2 to esti-
mate the probability that Y falls in the prediction interval.
Moreover, how to choose the number of intervals and their
initializations (as well as genetic operators for them) for a
given problem are not clear from this work. We argue that
this limits the applicability of interval GA-P as well as makes
their experimental results hard to be replicated. In the later
work, Keijzer proposed the use of interval arithmetic, in-
stead of using protected operators, to prevent peculiarities
produced by some arithmetic operators (such as division by
zero) used in GP expression trees. The output of each ex-
pression tree could be an interval but there is no statistical
reliability (confident level) attached to it.

In this paper, we investigate a simpler and more general
approach for building GP-based interval regressors. Our so-
lution is based on combining Conformal Prediction (CP) and
GP that can give the predictive range with statistical relia-
bility for each given input X. In particular, we propose two
methods called black-box conformal prediction GP (black-
box CPGP) and white-box conformal prediction GP (white-
box CPGP). We experimentally test our proposed methods
on a number of benchmarks and previously used problems.
We compare the performance of these methods with two
well known range/interval prediction methods in statistics
and machine learning domains, namely, the linear quantile
regression(LQR) and the quantile random forrest (QRF).
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The remainder of the paper is organized as follows. Sec-
tion 2 presents the background and related work including
Quantile Regression and Conformal Prediction. Our pro-
posed methods, black-box CPGP and white-box CPGP, are
detailed in Section 3. Section 4 describes the settings of
the experiments. The experimental results and analysis are
given in section 5. Finally, section 6 summarize the paper
and highlights some future work.

2. BACKGROUND AND RELATED WORK
In this section, we first give the definition of the inter-

val symbolic regression, then the related problem, namely,
quantile regression, is defined. Next, Linear Quantile Re-
gression and Quantile Random Forrest, two well-known para-
metric and nonparametric quantile regression methods are
described. Finally, the basic idea of conformal prediction is
given.

2.1 Interval Symbolic Regression
The definition of the interval symbolic regression problem

is adapted from [1, 15] as follows:

Definition 2.1. Let Z = X × Y be the sample space,
where X is the predictor space of p-dimensions, Y is the
real-value response space. Given D = {z1, ..., zn} is the set
of samples from Z, where zi = (xi, yi), find a function that
maps X to a set (interval) Γε that contains the unknown
values of Y with a given probability (1− ε), where ε ∈ [0, 1]
is a significance level. Γε said to be valid at a significance
level ε, or valid with the statistical reliability (1− ε)100%.

2.2 Quantile Regression Problem
Quantile regression aims to estimate the conditional quan-

tiles from a sample (training data) set D as follow [5, 2]:
Given Y with the cumulative distribution function (CDF):

FY (y|X = x) = Prob(Y ≤ y|X = x) (1)

The quantile function is defined as the inverse of CDF:

QY |X=x(θ) = inf{y : FY (y|X = x) ≥ θ} (2)

where θ ∈ [0, 1]. Quantile regression is nicely linked to an
optimization problem based on the observation that finding
quantiles of a distribution could be casted as optimization
(substituting order with optimization). The quantile qθ is
the solution of the following optimization problem [5]:

min
c

[E(ρθ(Y − c))] (3)

or for empirical quantiles on the sample set D of size n,

min
c

n∑
i=1

ρθ(yi − c) (4)

where, ρθ(.) = [(1 − θ)I(y ≤ 0) + θI(y > 0)]|y| is the loss
function, θ ∈ [0, 1]. For quantile regression problem, in the
place of c, we need to find a function f of X that minimizes
the expectation (or the sum for the empirical case).

2.3 Linear Quantile Regression (LQR)
Linear quantile regression is one of the most popular para-

metric quantile regression techniques in statistics. Given the

sample set D as in 2.1, the model for linear quantile regres-
sion is defined as follows:

y = Xβ(θ) + ε (5)

where, β(θ) is the vector of parameters for the generic con-
ditional quantile θ and ε is the vector of stochastic errors.
The parameters β(θ) are estimated from D by solving the
following linear programming problem [5]:

min
β(θ)

n∑
i=1

ρθ(yi − xTi β(θ)) (6)

Using the estimated quantile function, the 95% prediction
interval for the value of Y is given as follow:

Γ0.05 = [QY |X=x(0.025), QY |X=x(0.975)] (7)

It is noted that the width of Γ0.05 is dependent on x.

2.4 Quantile Regression Forest (QRF)
Quantile Regression Forests proposed by Nicolai Mein-

shausen [11] is considered as a common non-parametric quan-
tile regression method in machine learning and statistics. It
is a tree-based ensemble technique for estimating conditional
quantiles. QRF grows k trees in a similar way to regression
random forests. However, at each leaf node, it keeps all
Y values (as an empirical distribution of Y values), instead
of only the mean of Y as in normal quantile random for-
rest (more details can be seen in [11, 12]). Given an input
X = x, we can find the leaf nodes from all k trees where X
falls and the set of Yi contained in these leaves. For each Yi,
a corresponding weights wi is calculated as:

ωi(x) =
1

K

K∑
k=1

ωi(x, γk) (8)

where, ωi(x, γk) = 1
N(t)

is the weight of tree γk, N(t) is the

number of cases in l(x, γk, t) - the leaf t of the tree Tk that
contains x. Then, the conditional distribution function of Y
given X is estimated by

F̂Y (y|X = x) =

n∑
i=1

ωi(x)I(Yi ≤ y) (9)

where I(.) is the indicator function. Given a probability θ,
we can estimate the quantile QY |X=x(θ) as:

Q̂Y |X=x(θ) = inf{y : F̂Y (y|X = x) ≥ θ} (10)

The prediction interval,

Γ0.05 = [QY |X=x(.025), QY |X=x(.975)] (11)

made by QRF will contains the prediction Y with probability
95%.

2.5 Conformal Prediction (CP)
As shown in [15, 1], Conformal Prediction (CP) is the

common measure to quantify the confidence of point predic-
tors. It has a firm theoretical background developed over
these years and has been applied successfully in many tasks
in machine learning. Conformal Prediction could be used for
both on-line and off-line learning, where the samples in D
are only required to be exchangeable (weaker than the usual
assumption of independently identically distributed in many
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Algorithm 1: The Conformal Prediction Algorithm [1]

1 Set zn+1 = (xn+1, y);
2 for i=1 to n+1 do
3 Set αi = A(B, zi);

4 Set m = #{i = 1, .., n+ 1|αi ≥ αn+1};
5 Set py = m

n+1
;

6 if py > ε then
7 include y in Γε(z1, ..., zn, xn+1) ;

statistical and machine learning techniques). Moreover, it
has been proven that CP could produce a valid prediction
interval with a given probability if D is sufficiently large [1].
The off-line version of CP is used in this paper.

Let D, ε and Γε are as in section 2.1. We denote A as the
non-conformity measure (e.g, the absolute error function);
B is the bag of z1, ..., zn except zi; zn+1 = (xn+1, ?) is a
new observation. Given a point predictor that gives a point
prediction ŷ for yn+1 given xn+1. Assume that yn+1 is in fact
equal to y, how Conformal Prediction defines Γε is shown in
Algorithm 1.

3. THE PROPOSED METHODS
In this section, we describe our proposed methods for com-

bining conformal prediction with genetic programming to
solve the problem of symbolic interval regression. In the first
method, we use conformal prediction as the post-processing
step for GP, which results in black-box Conformal Prediction
GP (i.e GP is treated as black-box to conformal prediction).
In the second method, we propose to embed conformal pre-
diction into the fitness structure of GP individuals.

3.1 Computing Prediction Interval with Con-
formal Prediction

It is remarked that Algorithm 1 in section 2.5 only gives
us the testing condition for deciding to include y in Γε that
is valid at the (1−ε)100% level, but does not produce the Γε

itself. We observe that if y in Γε then py > ε must be true
(it is called condition (1)). Then, Γε could be constructed
as in the following way:

Assume that A is the absolute error function, A(B, zi) =
|yi − ŷi|, ŷi is the obtained point prediction by GP, i.e.,
αn+1 = |y − ŷn+1| with ŷn+1 is the point prediction, given
xn+1. From condition (1), we have m

n+1
> ε , or m > ε∗(n+

1). This requires at least k of αi, i = 1, .., n such that αi ≥
αn+1, k = round(ε∗(n+1)) (2). Let E = {αi|i = 1, .., n}, we
sort E in decreasing order, call ek is the kth max element of
the sorted E (3). From (2)&(3), we have ek ≥ |yn+1− ŷn+1|,
or ŷn+1 − ek ≤ yn+1 ≤ ŷn+1 + ek. Given ek, ŷn+1, so the
Γε is defined by the interval of [ŷn+1 − ek, ŷn+1 + ek] (4).
This will be the core part in calculating Γε in our proposed
methods.

3.2 Black-box CPGP
The leaning steps and evolution mechanism of black-box

CPGP is just as standard genetic programming [7]. After
a initial population is generated, the fitness evaluation are
done for all individuals of the population. While the evolu-
tion progresses, genetic operators (crossover, and mutation)
are performed on the chosen individuals to generate the new

Figure 1: Black-box CPGP

population. The best-of-the-run individual is chosen as the
learned model at the end of the evolutionary process. After
that, CP is used to compute the confidence interval Γε given
by this model in the way described in the previous subsec-
tion. The calculation of Γε is independent of the learning
process of GP, i.e it treats GP as a black-box learner and
could be applied to any GP systems. The details of black-
box CPGP are shown in Figure 1.

By treating GP as a black-box learner, this method has
some useful properties, such as (1) it allows to define how
much variation of input can influence the output, i.e to
measure the sensitivity of a GP learner; (2) it allows to
indirectly analyze qualitatively describable aspects of the
learned model such as generalization ability, bias, resistance
to noise, and so on. As shown in [1], these properties are very
useful for collaborative semi-supervised learning in which
training data is the mixture of labeled and unlabeled, or on
training data with perturbation. However, the analysis of
these aspects of black-box CPGP is left for future work.

3.3 White-box CPGP
In the white-box approach, the objective is to embed con-

formal prediction into the evolutionary process of GP. Our
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Figure 2: White-box CPGP

preliminary attempt in this paper is to allow the width of
Γε to be evolved in the evolutionary process of GP. This
could be done by modifying the fitness function in GP so as
it is the linear combination of training error, Err(D), and
the width of Γε (called PIw). The calculation of Γε and its
width is done as described in black-box CPGP. It is noted
that PIw depends on ek but be independent of zn. The
fitness of each individual is defined as:

fitness = β ∗ Err(D) + (1− β) ∗ PIw (12)

where: β ∈ [0, 1] is a tunable parameter.
By embedding conformal prediction into the fitness struc-

ture of GP individuals, i.e. to incorporate the width of Γε

(or the efficiency) into the evolutionary process, white-box
CPGP is capable of adapting Γε dependent on X. It might
also be useful for simultaneously optimizing the performance
metrics (the efficiency and the validity) by combining them
into the fitness function of the white-box CPGP. However,
this possibility is left for future investigations.

4. EXPERIMENTAL SETTING

4.1 Test problems
To test our proposed methods, we experimented black-

box and white-box CPGP on ten benchmark problems [10]
and three UCI data sets that have been used to measure
the performance of quantile random forrest in [11]. For
comparison, we also run linear quantile regression (LQR)
and quantile random forrest (QRF), the two most popu-

Table 1: Symbolic Regression Test Problems
UCIs:

# # #
ID Name features train test
U1 Abalone 8 178 332
U2 Housing 13 140 336
U3 Ozone 12 122 244

Benchmarks:
#

ID Name Definition test
B1 Kei10 xx21 10000
B2 Kei11 x1x2 + sin((x1 − 10)(x2 − 1)) 361201

B3 Kei12 x41 − x31 +
x22
2
− x2 361201

B4 Kei13 sin(x1) cos(x2) 361201
B5 Kei14 8

2+x21+x
2
2

361201

B6 Kei15
x31
5

+
x32
2
− x2 − x1 361201

B7 Vla1 e(x1−1)2

1.2+(x2−2.5)2
194481

B8 Vla5 30 (x1−1)(x3−1)

x22(x1−10)
1200

B9 Vla6 6 sin(x1) cos(x2) 93636

B10 Val8 (x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10
1089

lar parametric and nonparametric quantile/interval regres-
sors. For the benchmark problems, we follow [10] in gen-
erating the training and testing samples, with an excep-
tion that the size of the training sets are set uniformly
as 200. For the UCI problems, the data are randomly di-
vided into the training and testing samples with the ratio as
〈Train sample : Test sample〉 = 〈2 : 1〉, which is similar to
the experiments in [11]. The detail information of the tested
problems are shown in Table 1.

4.2 Performance Metrics
As shown in [1], the two most popular performance met-

rics for evaluating the quality of a range/interval predictor
are validity (V) and efficiency (E).

4.2.1 The validity
Let Z, D, ε, Γε and the example to be predicted (test

example), zn+1 are as defined in section 2.5. Assume that
the sequence (z1, ..., zn+1) of D is generated from a prob-
ability distribution P on Zn+1. A prediction interval, Γε,
is said to be valid (how reliable they are) at a significance
level ε if the probability (P ) of zn+1 /∈ Γε does not exceed
ε. In other words, a Γε is valid if it contains the truth at
least (1−ε)100% of the time. The higher validity, the better
range/interval predictor.

4.2.2 The efficiency
The efficiency is the width of the prediction interval (Γε)

where the smaller width is the better range/interval predic-
tor.

4.3 System Configurations
The setting for the evolutionary parameters of black-box

CPGP and white-box CPGP are shown in Table 2. These
settings have often been used by GP researchers and prac-
titioners [7]. In all experiments, the prediction decisions are
fixed with 95% confidence (i.e the significant level ε = 0.05).
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Table 2: Evolutionary parameters.

Parameters Black/White-box CPGP

EA Elitism, generational,

expression tree

Function set +, -, *, / (AQ)

Terminal set Regression variables;

one random constant ∈ [0, 1]

#Generations 151

Population size 500

Tour size 4

Tree creation Ramped half-and-half

(depths: 2 to 6)

Max. tree depth 15

Crossover rate 0.9

Mutation rate 0.1

#Runs 51

Fitness function RMSE

β Combinations with a step of 0.1 as

(0.1,0.2, ..., 0.9)

We build our GP systems based on ECJ [9], a widely used
evolutionary computation toolkit.

The code of QRF & LQR are available in the package
quantreg of R, which can be freely downloaded from CRAN:
http://cran.r-project.org. We run QRF & LQR with the
default settings and the number of runs is the same as CPGP
(51 runs). More detailed instruction for using LQR and QRF
can be found in [8, 6, 14].

All of experiments were run on a PC with processor In-
tel(R) Core(TM) i5-4210 CPU @ 1.70 GHz; RAM (8.00GB)
and 64-bit Operating System.

5. RESULTS & ANALYSIS

5.1 Black-box CPGP&White-box CPGP com-
parison

In the first experiment, we compared the performance of
black-box CPGP versus white-box CPGP (with 9 different
settings of parameter β). Table 3 shows p-values obtained
from the Mann-Whitney U-test for comparing the differ-
ences between black-box CPGP and white-box CPGP in
the medians of efficiency and validity over all test problems
1. In the table, the bold face indicates the statistical confi-
dence of at least 95% with (+) if black-box CPGP is better
than white-box CPGP or with (-) if white-box CPGP is bet-
ter. From Table 3, it can be seen that black-box CPGP was
usually better or equal to white-box CPGP on both validity
and efficiency. For small values of β, black-box CPGP was
better both in validity and efficiency (except for the case of
(0.2,0.8)). When β is big (0.8 and 0.9), the validity of white-
box CPGP tended to be similar to black-box CPGP, while

1Due to the limited space, the detailed median of validity
and efficiency of the two systems are omitted

Table 3: p-values obtained by comparing the dif-
ferences in the median of efficiency (E) and va-
lidity (V) by the black-box CPGP against white-
box CPGP (with nine different settings includes
(0.1,0.9), (0.2,0.8), ..., (0.9,0.1)) using the Mann-
Whitney U-test on all problems from U1 to B10.
Bold face indicates a confidence of at least 95% with
(+) if the black-box CPGP is better than white-box
CPGP (β, (1− β)) respectively, else with (-).

(0.1,0.9) (0.2,0.8) (0.3,0.7)
ID (E) (V) (E) (V) (E) (V)
U1 0- 0+ 0+ 0+ 0- 0+
U2 0.32 0+ 0.45 0+ 0.06 0.01+
U3 0.16 0.27 0.07 0.52 0- 0.73
B1 0.17 0+ 0.60 0+ 0.16 0+
B2 0.01+ 0.13 0.10 0.42 0.02+ 0.11
B3 0+ 0+ 0.08 0+ 0.06 0+
B4 0.05+ 0+ 0.26 0+ 0.07 0+
B5 0.32 0+ 0.95 0+ 0.22 0+
B6 0.02+ 0+ 0.05- 0+ 0.02+ 0+
B7 0+ 0.10 0- 0.03- 0+ 0.63
B8 0.01+ 0+ 0- 0+ 0.12 0+
B9 0.35 0.08 0.54 0.05+ 0.98 0.01+
B10 0+ 0.73 0- 0.39 0+ 0.49

(0.4,0.6) (0.5,0.5) (0.6,0.4)
U1 0- 0+ 0- 0+ 0- 0+
U2 0.15 0+ 0.01- 0.02+ 0.04- 0.04+
U3 0- 0.62 0- 0.70 0- 0.77
B1 0.91 0+ 0.47 0+ 0.27 0+
B2 0.06 0.54 0.10 0.59 0.14 0.51
B3 0+ 0+ 0.14 0+ 0.49 0+
B4 0.57 0+ 0.87 0+ 0.74 0.01+
B5 0.47 0+ 0.32 0+ 0.13 0+
B6 0.03+ 0+ 0.07 0+ 0.75 0.00+
B7 0.01+ 0.66 0.07 0.84 0.22 0.25
B8 0.02+ 0+ 0.25 0+ 0.08 0+
B9 0.82 0.13 0.40 0.01+ 0.45 0+
B10 0+ 0.98 0+ 0.92 0+ 0.41

(0.7,0.3) (0.8,0.2) (0.9,0.1)
U1 0- 0+ 0- 0+ 0- 0+
U2 0.05- 0+ 0.01- 0.04+ 0.02- 0.05+
U3 0- 0.98 0- 0.58 0- 0.94
B1 0.34 0+ 0.06 0+ 0.31 0.07
B2 0.41 0.57 0.69 0.31 0.66 0.08
B3 0.73 0+ 0.79 0.06 0.44 0.07
B4 0.97 0+ 0.95 0.08 0.16 0+
B5 0.02- 0+ 0.08 0.01+ 0.41 0.12
B6 0.75 0+ 0.67 0+ 0.55 0+
B7 0.57 0.19 0.35 0.55 0.90 0.28
B8 0.27 0+ 0.14 0.02+ 0.85 0.02+
B9 0.51 0+ 0.38 0.02+ 0.49 0.06
B10 0+ 0.70 0+ 0.23 0.35 0.21
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Table 4: p-value obtained by comparing the differ-
ences in the efficiency (E) and validity (V) of black-
box CPGP against LQR & QRF using the Mann-
Whitney U-test on all problems from U1 to B10. Bold
face indicates a confidence of at least 95% with (+)
if the black-box CPGP is better than LQR(QRF),
else with (-).

p value: (E) p value: (V)
ID LQR QRF LQR QRF
U1 0(+) 0(+) 0.0037(+) 0(+)
U2 0.6087 0.1060 0(+) 0.8962
U3 0(+) 0.1262 0(-) 0.0019(-)
B1 0(+) 0(+) 0.0012(+) 0(-)
B2 0(+) 0(+) 0.0265(-) 0(-)
B3 0(+) 0(+) 0.0037(+) 0(-)
B4 0(+) 0(+) 0.8645 0(-)
B5 0(+) 0(+) 0.0105(-) 0(-)
B6 0(+) 0(+) 0(+) 0(-)
B7 0(+) 0(+) 0(+) 0(-)
B8 0(+) 0(+) 0(-) 0(-)
B9 0(+) 0(+) 0(-) 0(-)
B10 0(+) 0(+) 0.0265(-) 0(-)

the efficiency was better on UCI problems (however, the va-
lidity of black-box CPGP was better on those problems).
Overall, these results show that tuning parameter β is not
trivial task for white-box CPGP. An adaptive scheme for
tuning β or a multi-objective approach for white-box CPGP
seems necessary and we leave that for future work.

5.2 Black-box CPGP, LQR&QRF comparison

5.2.1 The validity & efficiency
Table 4 shows p-values obtained from the Mann-Whitney

U-test for comparing the differences between black-box CPGP
and LQR/QRF in the medians of efficiency and validity over
all test problems. Table 5 contains the median values of all
systems on all problems.

The results in Table 4 and Table 5 depict that black-box
CPGP was comparable to LQR on validity being better on
6 problems and worse than on the other six (and square
on U2). However, the efficiency of black-box CPGP was
better than LQR on almost all problems (12 out of 13).
The validity of black-box CPGP was worse than QRF on
almost all tested problems, even though it was comparable
on the UCI problems and was not much worse than QRF in
median values. The efficiency of black-box CPGP, however,
was much better than QRF (often producing much narrower
prediction intervals).

Figures 3 shows the predicted (x axis) versus the true
value (y axis) for the prediction intervals produced by black-
box CPGP, LQR, and QRF on the tests sets of some tested
problems (using the the runs that achieved the median re-
sults). The diagonal line connects the points where the pre-
dicted values are equal to the true values. If a point is
closer to this line, it represents a better point prediction.
Green points indicate predictions that are within the pre-
dicted region, Γε, (valid points), whereas the red points are
predictions that are outside of this region.

From Figure 3, it can be seen that QRF produced the least
number of red points. The number of red points produced

Table 5: median obtained by comparing the differ-
ences in the efficiency (E) and validity (V) of black-
box CPGP against LQR & QRF using the Mann-
Whitney U-test on all problems from U1 to B10.

median: (E) median: (V)
ID CPGP LQR QRF CPGP LQR QRF
U1 8.56 9.26 9.14 0.93 0.92 0.84
U2 17.73 17.79 17.33 0.95 0.92 0.95
U3 236.9 214.7 232.6 0.89 0.95 0.90
B1 0.12 0.35 0.43 0.94 0.93 0.95
B2 1.93 12.27 8.87 0.92 0.93 0.96
B3 6.01 131.9 94.66 0.94 0.93 0.99
B4 2.24 10.46 8.42 0.93 0.92 0.95
B5 0.25 2.83 1.50 0.93 0.94 0.97
B6 2.70 7.10 5.52 0.93 0.89 0.98
B7 0.12 0.46 0.34 0.85 0.79 0.92
B8 0.42 2.30 2.12 0.83 0.85 0.92
B9 7.20 10.78 8.56 0.92 0.94 0.96
B10 1.78 5.00 3.04 0.86 0.87 0.94

Table 6: Fitness evaluation time (mean) of the
best individual by black-box CPGP and the run-
time (mean) by black-box CPGP, QRF & LQR over
51 runs on all problems from U1 to B10.

Runtime
ID Time (fitness) CPGP QRF LQR
U1 0.5591 61.5690 0.1017 0.0127
U2 0.3528 37.5800 0.1246 0.0190
U3 0.2018 20.8526 0.0420 0.0132
B1 0.4141 759.0627 0.9642 0.1953
B2 0.4763 10087.9100 32.8770 5.3176
B3 0.3801 9413.0030 34.5972 6.4849
B4 0.5322 10982.6400 32.2264 5.5204
B5 0.3981 9733.6550 31.9991 5.2519
B6 0.5239 10793.7300 32.3510 5.2569
B7 0.4796 6141.2850 16.9496 2.7553
B8 0.4082 555.2053 0.1314 0.0223
B9 0.6700 3684.9330 7.9389 1.3247
B10 0.6287 774.4631 0.1158 0.0190

by black-box CPGP and LQR are relatively equal. The
prediction intervals of black-box CPGP is much smaller than
LQR and QRF but more rigid (rather independent of X).
We believe that the adaptation of the width of Γε to X
would be important for improving the validity of black-box
CPGP.

5.2.2 The computational cost
Table 6 shows the mean of fitness evaluation time of the

best solution obtained by black-box CPGP and the mean of
runtime of black-box CPGP, QRF and LQR over all runs.
The time is measured in seconds. This table shows that high
computational cost is a real issue of CPGP. As shown in [3],
the most well-know problem in every application of GP is
computational cost that makes the training time of GP can
vary from seconds to days. This cost primarily due to the
computation of the fitness of individuals which has to be
repeatedly evaluated through the evolutionary process. So,
the total of training time of GP is O(n ∗m ∗ k); where m is
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Figure 3: Predictive points & prediction interval on the problems: U1, U2, U3, B1, B8 and B10 by the black-box
CPGP (left), LQR(middle) and QRF (right), respectively. The solid line represent the set of points where
the predicted values equal to the true values. The predictive values on the left are smaller than the true
values while the predicted values are greater than the true values on the right.
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number of generations, n is the size of population, and k is
the average of size of individuals. Moreover, k can vary and
be worse due to the bloating issue caused by introns or junk
code in individuals.

6. CONCLUSIONS
In this research, we focused on solving the symbolic inter-

val regression problem with GP. We argue that this prob-
lem is important when GP is used for risk sensitive learning
domains. However, it has not been received much atten-
tion in the GP community. We proposed two approaches in
making GP as a interval regressor by combining conformal
prediction with GP. Our preliminary experimental results
show that the approaches warrant further investigations in
that our CPGP (black-box) is comparable to Linear Quan-
tile Regression and not much worse than Quantile Random
Forrest in terms of validity, but much better than them in
terms of efficiency.

There are some open issues arisen from this paper. The
first problem is how to adapt the prediction interval, Γε, to
be dependent on X in order to improve the validity of black-
box CPGP. The second problem is to adaptively tune pa-
rameter β in white-box CPGP during the evolutionary pro-
cess to improve the performance of white-box CPGP. Last
but not least, reducing the computational time of CPGP is
necessary and even vital if CPGP is to be used for online
learning problems.

7. ACKNOWLEDGMENTS
This work is funded by The Vietnam National Foundation

for Science and Technology Development (NAFOSTED) un-
der grant number 102.01-2014.09. The first author would
like to thank the Department of Computer Science and En-
gineering, Southern University of Science and Technology
(SUSTech), Shenzhen,China, for providing financial support
and computing resources while she was doing this work at
SUSTech. We thank Liyan Song for her useful comments
and discussions related to this paper.

8. REFERENCES
[1] V. Balasubramanian, S.-S. Ho, and V. Vovk.

Conformal Prediction for Reliable Machine Learning:
Theory, Adaptations and Applications. Newnes, 2014.

[2] D. Cristina, F. Marilena, and V. Domenico. Quantile
Regression: Theory and Applications. Wiley, 2014.

[3] P. G. Espejo, S. Ventura, and F. Herrera. A survey on
the application of genetic programming to
classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 40(2):121–144, 2010.

[4] M. Keijzer. Improving symbolic regression with
interval arithmetic and linear scaling. In European
Conference on Genetic Programming, pages 70–82.
Springer, 2003.

[5] R. Koenker. Quantile regression. Cambridge university
press, 2005.

[6] R. Koenker. Quantile regression in r: A vignette.
Technical report, 2015.

[7] J. R. Koza. Genetic programming: on the
programming of computers by means of natural
selection. MIT press, 1992.

[8] M. Lipsitz, A. Belloni, V. Chernozhukov, and
I. Fernández-Val. Nonparametric series quantile
regression in r: A vignette. Technical report, 2015.

[9] S. Luke. The ecj ownerś manual. Technical report,
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