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ABSTRACT
Mixed Weibull distribution is a probability distribution noted for its
wide applicability in many diverse �elds. �e ability to accurately
estimate mixed distribution parameters is essential for data–driven
modeling, simulation, and analysis of the phenomena represented
by mixed Weibull models. Nature–inspired metaheuristics for con-
tinuous parameter optimization have shown good potential for ap-
proximating parameters of complex statistical models. Di�erential
evolution is a popular evolutionary real–parameter optimization
method with good results in many areas. �is work uses di�erential
evolution to �t mixed Weibull distribution to data and analyzes
the ability of di�erent di�erential evolution variants to estimate
mixture parameters.
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1 INTRODUCTION
Weibull distribution (WD) is a continuous probability distribution
internationally popularized by W. Weibull [9, 11, 16]. It is regarded
as one of the most popular models in modern statistics [16] known
for its use in reliability engineering and analysis [9, 11] and very
large number of applications in many diverse areas [9, 16]. WD
and its variants have been successfully used in a wide number of
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�elds including material science, engineering, physics, chemistry,
meteorology and hydrology, biology, medicine, maintenance and re-
placement [16], economics, complex system reliability analysis [11]
and others.

Weibull distribution is an extreme value probability distribution
with a number of interesting properties. �e traditional WD can be
formulated using a 3 or 2–parameter probability density function
(pdf ). �e parameters of the pdf represent its location (α ), scale (β),
and shape (γ ). �e 2–parameter scale–shape WD variant, employed
in reliability analysis, assumes that the location parameter, α , is
equal to zero and uses the scale and shape parameters only [16].
WD has a number of variants and extensions including truncated,
log, exponential [16], inverse, re�ected [9], and mixed Weibull
distributions [9, 16]. Mixed WDs are frequently utilized in applied
statistical science to model heterogeneous populations composed
of two or more distinct subpopulations [16].

�ere is a number of di�erent methods for WD parameter esti-
mation. �ey are based on graphical analysis (empirical cumulative
distribution plot, Weibull probability plot, hazard rate plot [9])
the method of moments, minimum–distance, maximum likelihood,
least–square estimation, Bayesian approaches [16], and e.g. interval
methods [11]. An accurate estimation of mixed WD parameters is,
however, still considered a complex problem [16] and optimization
approaches are o�en used [12]. �is work introduces a new nature–
inspired metaheuristic optimization–based method for mixed WD
parameter estimation. It uses the di�erential evolution (DE) algo-
rithm to �nd parameters of �nite WD mixtures and evaluates the
ability of three popular DE variants to discover accurate param-
eter estimates. �e results show that DE is able to �nd accurate
parameters of mixed WDs and is therefore suitable for real–world
applications that require exact analysis and/or modelling of phe-
nomena statistically expressed as mixed WDs.

�e rest of this paper is organized in the following way. Section 2
introduces Weibull distribution, �nite mixtures of probability dis-
tributions, and outlines traditional methods for �nite WD mixture
��ing to empirical data. Di�erential evolution and its variants,
considered in this study, are presented in section 3. �e details of
the proposed DE for mixed WD ��ing are provided in section 4 and
experimental evaluation of the proposed approach on a synthetic
data set is described in section 5. Finally, the work is concluded
in section 6.
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2 MIXEDWEIBULL DISTRIBUTION
Simple scale–shape Weibull distribution is de�ned by a probability
density function

f (x | β,γ ) = β

γ

(
x

γ

)β−1
· exp

(
−

(
x

γ

)β )
, (1)

where β > 0 and γ > 0 are distribution scale and shape parameters,
respectively [9, 11, 16]. �e pdf of a �nite mixture of n probability
distributions is given by

f (x | w, β,γ ) =
n∑
i=1

wi fi (x | βi ,γi ), (2)

where w = (w1, . . . ,wn ), β = (β1, . . . , βn ), and γ = (γ1, . . . ,γn )
are vectors of mixture component parameters. It is required that
wi > 0, βi > 0, and γi > 0 for all i ∈ {1, . . . ,n} and

∑n
i=1(wi ) = 1.

�e pdf of a mixed Weibull distribution is then de�ned by

f (x |w, β,γ ) =
n∑
i=1

wi

[
βi
γi

(
x

γi

)βi−1
· exp

(
−

(
x

γi

)βi )]
. (3)

2.1 Parameter estimation
Fi�ing of mixed WDs to data is a complex problem that involves
accurate estimation of mixture parameters [12, 16]. Traditional
methods for mixed distribution parameter estimation include graph-
ical and analytical (numerical) approaches such as the method
of moments, maximum likelihood estimation, and Bayesian ap-
proaches [16]. �ey very o�en require solid a priori knowledge of
the ��ed data or the phenomena it describes and knowledge of the
number of subpopulations. �e procedure for parameter estimation
is then chosen with respect to expected data properties. Various hy-
brid [5], optimization–based [12] and nature–inspired [1, 4, 7, 8, 19]
approaches have been proposed to tackle the drawbacks of the tra-
ditional mixed WD ��ing methods.

Advanced methods for mixed WD ��ing have di�erent forms.
For example, a hybrid method for WD mixture parameter estima-
tion [5] applies Bayes’ theorem to split product failure data into
several groups according to posterior probability that a failure
belongs to certain subpopulation. �en, mixture parameters are
estimated and amended by least–square optimization. Another
algorithm [12] combines rough parameter estimation from data his-
togram with maximum likelihood estimation of component shape
parameters. �e parameters of mixed WD components are in this
approach optimized independently. Nonlinear least–squares re-
gression, implemented by a quasi–Newton procedure, is another
algorithm that was employed to �t mixtures of 2 WDs in [10].

Nature–inspired metaheuristics are used to approximate param-
eters of complex statistical models in a growing number of cases.
�ey are increasingly popular due to their accuracy, ability to �t
statistical models to data with di�erent properties, and because of
the lack of prior knowledge about the modelled phenomena they
usually require [1, 4, 7, 8, 19].

2.2 Nature–inspired estimation of probability
distribution parameters

Many di�erent nature–inspired metaheuristics have been employed
to optimize probability distribution and mixed probability distri-
bution parameters. Simulated annealing [1] was used to optimize
parameters of a 3–parameter WD and genetic algorithms were ap-
plied to estimate parameters of a mixed WD [7]. Krohling et al. [8]
used a simple variant of particle swarm optimization (PSO), called
bare bones particle swarm optimization, to estimate parameters
of a mixture of 2 WDs. A later work [19] adapted the same algo-
rithm to �t Weibull distribution to censored data. Another recent
study [4] applied PSO to approximate parameters of a �nite mixture
of circular normal (von Mises) probability distribution.

�e overview of recent applications of nature–inspired meta-
heuristics to estimation of probability distribution and mixed proba-
bility distribution parameters clearly shows that there is need for ac-
curate, robust, and adaptive distribution ��ing methods. �is work
uses di�erential evolution, a popular and successful real–parameter
optimization metaheuristic, to �t mixed Weibull distribution to
data. It de�nes an encoding of mixed distribution parameters and
evaluates the ability of three variants of DE to optimize distribution
parameters.

3 DIFFERENTIAL EVOLUTION
�e DE is a popular stochastic evolutionary optimization algorithm
that evolves a population of real encoded vectors representing the
solutions to given problem. It was introduced by Storn and Price in
1995 [17, 18] and it quickly became a popular alternative to the more
traditional types of evolutionary algorithms. �e algorithm evolves
a population of candidate solutions by iterative modi�cation of
candidate solutions by the application of the di�erential mutation
and crossover [14]. In each iteration, so called trial vectors are
created from current population by the di�erential mutation and
further modi�ed by various types of crossover operator. At the
end, the trial vectors compete with existing candidate solutions for
survival in the population.

�e DE starts with an initial population of M real–valued vectors.
�e vectors are initialized with real values either randomly or so,
that they are evenly spread over the problem space and provide
more a complete initial coverage of the problem space. �e la�er
initialization leads to be�er results of the optimization [14]. During
the optimization, the DE generates new vectors that are scaled per-
turbations of existing population vectors. �e algorithm perturbs
selected base vectors with the scaled di�erence of two (or more)
other population vectors in order to produce the trial vectors. �e
trial vectors compete with members of the current population with
the same index called the target vectors. If a trial vector represents
a be�er solution than the corresponding target vector, it takes its
place in the population [14].

�e two most signi�cant parameters of the DE are scaling fac-
tor and mutation probability [14]. �e scaling factor, F ∈ [0,∞],
controls the rate at which the population evolves and the crossover
probability, C ∈ [0, 1], determines the ratio of elements that are
transferred to the trial vector from its opponent. �e size of the
population and the choice of operators are important parameters
of the optimization process.
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�e basic operations of the classic DE can be summarized using
the following formulae [14]: the random initialization of the ith
vector with N parameters is de�ned by

x ij = rand(bL
j ,b

U
j ), j ∈ {1, . . . ,N }, (4)

where bLj is the lower bound of j-th parameter, bUj is the upper
bound of j-th parameter, and rand(a,b) is a function generating a
random number from the range [a,b]. A simple form of the standard
di�erential mutation, DE/rand/1, is given by

vi = vr1 + F (vr2 − vr3), (5)

where F is the scaling factor and vr1, vr2, and vr3 are three random
vectors from the population. �e vector vr1 is the base vector, vr2

and vr3 are the di�erence vectors, and vi is the trial vector. It is
required that i , r1 , r2 , r3.

An alternative di�erential mutation which favours exploitation
over exploration, DE/best, is de�ned by

vi = xbest + F (vr1 − vr2) (6)
and combines two randomly chosen di�erence vectors with the
best vector in population, xbest.

�e uniform (binomial) crossover that combines the target vector,
xi , with the trial vector, vi , is given by

vij =

{
vij if rand(0, 1) < C or j = jrand
x ij , otherwise

(7)

for each j ∈ {1, . . . ,N }. �e random index jrand is in the above
selected randomly as jrand = rand(1,N ). �e uniform crossover
replaces the parameters in vi by the parameters from the target
vector xi with probability 1 −C . �e outline of the traditional DE
according to [3, 14] is summarized in Algorithm 1. �e DE is a

Algorithm 1: A summary of traditional Di�erential Evolution
1 Initialize the population P consisting of M vectors using Equation (4);
2 Evaluate an objective function ranking the vectors in the population;
3 while Termination criteria not satis�ed do
4 Let G = number of current generation;
5 for i ∈ {1, . . . , M } do
6 Di�erential mutation: Create trial vector vi according to Equation (5);

7 Validate the range of coordinates of vi . Optionally adjust coordinates
of vi so, that it is valid solution to given problem;

8 Perform uniform crossover. Select randomly one parameter jrand in vi

and modify the trial vector using Equation (7);
9 Evaluate the trial vector.;

10 if trial vector vi represent a be�er solution than target vector xi then
11 add vi to PG+1

12 else
13 add xi to PG+1

14 end
15 end
16 end

successful evolutionary algorithm designed for continuous param-
eter optimization driven by the idea of scaled vector di�erentials.
�at makes it an interesting alternative to the wide spread genetic
algorithms that are designed to work primarily with discrete en-
coding of the candidate solutions. As well as GA, it represents a
highly parallel population based stochastic search metaheuristic.

In contrast to the GA, the di�erential evolution uses the real en-
coding of candidate solutions and di�erent operations to evolve
the population. It results in di�erent search strategy and di�erent
directions found by DE when crawling a �tness landscape of the
problem domain.

�e traditional DE has shown an ability to solve a wide range of
problems. However, its performance in particular domains strongly
relies on the selection of di�erential mutation and crossover opera-
tors as well as parameters F and C [15]. A number of self–adaptive
DE variants was designed to mitigate this dependence. Among
them, the Self-Adaptive Di�erential Evolution (SaDE) algorithm
has shown good results for many types of tasks [2, 15]. Another in-
teresting parameter–free DE variant is called Gaussian Bare–bones
Di�erential Evolution (GBDE) [20].

3.1 Self-Adaptive Di�erential Evolution
SaDE combines the principles of probabilistic trial vector genera-
tion strategy selection, scaling factor randomization, and crossover
probability adaptation.

In each generation, G, SaDE selects for every target vector, xi ,
a trial vector generation strategy, sk , from a pool of prede�ned
strategies, S = {s1, s2, . . . sK }. �e strategy is selected according to
strategy selection probability, pk,G , that re�ects the historical per-
formance of each strategy from S . �e strategy selection probability
is adapted on the basis of the number of successes (i.e. the number
of times the trial vector, vi , is be�er solution than the target vector,
xi ) and failures (i.e. the number of times vi is worse solution than
xi ) of trial vectors generated by sk during a �xed number of past
generations known as learning period (LP ). �e algorithm employs
success and failure memories, SM and FM, that store the number
of successes, nsk,д , and failures, nfk,д , of each strategy in the past
LP generations.

�e strategy selection probabilities are in each generation, G,
G > LP , given by

pk,G =
Sk,G∑
k
Sk,G

, (8)

Sk,G =

G−1∑
д=G−LP

nsk,д

G−1∑
д=G−LP

nsk,д +
G−1∑

д=G−LP
nfk,д

+ ϵ, (9)

where ϵ is a small constant (here, ϵ = 0.01) employed to tackle cases
with zero success rate [15]. Initial strategy selection probabilities
are for the �rst LP generations set to be equal, i.e. pk,G = 1

K ,k ∈
{1, 2, . . . ,K}.

Trial vector generation strategies can include arbitrary combina-
tions of di�erential mutation and crossover. �e strategies used in
this study are summarized in �g. 1. �e strategies DE/rand/1/bin
and DE/rand/2/bin have slow convergence but strong exploration
capability. DE/rand–to–best/2/bin has fast convergence, especially
for unimodal problems, but tends to get trapped in local optima
and su�ers from premature convergence. DE/current–to–rand/1 is
a rotation invariant type of DE that has good e�ciency for rotated
problems [15].
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DE/rand/1/bin:

vij =

{
vr1
j + F (v

r2
j −v

r3
j ), if rand(0, 1) < C or j = jrand

x ij , otherwise
, (10)

DE/rand–to–best/2/bin:

vij =

{
x ij + F (x

best
j − x ij ) + F (v

r1
j −v

r1
j ) + F (v

r3
j −v

r4
j ), if rand(0, 1) < C or j = jrand

x ij , otherwise
,

(11)
DE/rand/2/bin:

vti, j =

{
vr1
j + F (v

r2
j −v

r3
j ) + F (v

r4
j −v

r5
j ), if rand(0, 1) < C or j = jrand

x ij , otherwise
, (12)

DE/current–to–rand/1:
vi = xij + κ(v

r2 − xi )F (vr2 − vr3), (13)

where xbest is the best solution found so far and κ = rand(0, 1) is a random parameter generated for each trial
vector, vi.

Figure 1: SaDE trial vector generation strategies.

Scaling factor F is in SaDE for each trial vector selected randomly
from normal distribution with mean 0.5 and standard deviation
0.3 [15]

Fi,G = N(0.5, 0.3). (14)

Scaling factors drawn from such distribution fall in 99.7% of cases
into the range [−0.4, 1.4] and enable both, exploitation (small F )
and exploration (large F ) [15].

�e value of crossover probability is an important problem-
dependent parameter that has a major impact on algorithm perfor-
mance [15]. In SaDE, crossover probability is for each application of
a particular trial vector generation strategy, sk , generated randomly
according to

Ck,G = N(Cmk,G , 0.1), (15)

whereCmk,G is mean of the (normal) random distribution ofCs for
strategy sk in generation G. �a values of crossover probabilities
used in the past LP successful applications of each trial vector
generation strategy are stored in so calledCmmemory (CmM). Self–
adaptive di�erential evolution is appealing because it alleviates the
need to tune algorithm parameters.

3.2 Gaussian Bare–bones Di�erential
Evolution

GBDE extends the original Bare–bones Di�erential Evolution al-
gorithm [13] which was inspired by a particle swarm optimization
(PSO) variant called Bare–bones PSO [6]. Bare–bones PSO, based
on theoretical analysis of PSO convergence, eliminates particle
velocity and samples new position of a particle, i , from Gaussian
distribution with mean and standard deviation de�ned by the best
position visited by the swarm, y, and best position visited by the
particle, yti so that new particles are centered around weighted

average of y and yti . �e exploration/exploitation ratio is automati-
cally adjusted from an initial focus on exploration to later focus on
exploitation [20].

GBDE applies similar principles within the framework of DE. It
uses Gaussian mutation strategy de�ned by

vi = N (µ,σ ) , (16)

where N is a normal (Gaussian) random distribution with mean µ
and standard deviation σ ,

µ =
xbest + xi

2 , σ = |xbest − xi |, (17)

where xbest is the best solution found so far and xi is the target
vector.

GBDE employs DE’s traditional binomial crossover. To avoid
the need to choose crossover probability, C , manually, it uses the
following self–adaptive strategy for its dynamic selection

CiG+1 =

{
CiG , if fobj(vi ) ≤ fobj(xi )
N(0.5, 0.1), otherwise

, (18)

where CiG is crossover probability associated with ith target vector,
xi , in generation G, and N(0.5, 0.1) is a random value sampled
from normal distribution with mean 0.5 and standard deviation 0.1.
�e strategy a�empts to change the crossover probability Ci every
time it did not generate a be�er solution than the target vector
xi . Due to its stochastic nature, Gaussian mutation prefers explo-
ration over exploitation. Modi�ed GBDE algorithm (MGBDE) [20]
chooses between Gaussian mutation according to (16) and DE/best
mutation, de�ned by (6), at random. Bare–bones variants of di�er-
ential evolution are interesting for mixed WD parameter estimation
also because Bare–bones PSO was recently used for ��ing of 2–
component mixtures of WDs with success [8].
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Figure 2: Examples of test data sets.

4 DE FOR MIXEDWEIBULL DISTRIBUTION
PARAMETER ESTIMATION

Real–valued candidate solution representation (encoding) and suit-
able �tness function have to be de�ned in order to use DE and its
variants for mixed WD parameter estimation.

�is work uses a parameter encoding approach introduced by
Heckenbergerova et al. [4] to �t mixed von Mises distribution to
meteorological (wind direction) data by PSO. Because the DE has
similar real–valued nature as PSO, identical solution representation
can be used. �e mixture of n Weibull distributions is represented
by a candidate vector v = (v1, . . . ,vN ),vi ∈ [0, 1], N = 3n, com-
posed of three parts encoding the vectors of mixed WD parameters,
(w, β,γ ), respectively

v =

w︷       ︸︸       ︷
(v1, . . . ,vn ,vn+1, . . . ,v2n︸           ︷︷           ︸

β

,

γ︷             ︸︸             ︷
v2n+1, . . . ,vN ) . (19)

�e decoding of β involves scaling of vi , i ∈ {n + 1, . . . , 2n}
to [0, βmax], and the decoding of γ requires scaling of vi , i ∈
{2n + 1, . . . ,N } to [0,γmax]. �e upper bounds of scale and shape
parameters, βmax and γmax, have to be chosen with respect to pre-
cision of the numerical method used to evaluate the probability
density function (3).

To satisfy the requirement for �nite probability distribution mix-
tures,

∑n
i=1(wi ) = 1, the following decoding rule has been devised

for component weights

w j =


vi , if j = 1,

vi ·
(
1 −

j−1∑
l=1

wl

)
, otherwise.

(20)

�is guarantees that the sum of component weights is equal to 1
and does not impose any additional constraints on candidate vector
handling. All vectors created during the optimization process are
therefore valid candidate solutions representing a �nite mixture of
n Weibull distributions.

�e �tness of each candidate solution is evaluated using root
mean–squared error (RMSE), de�ned as

RMSE =

√√√
1
T

i=1∑
T
(Oi − npi )2, (21)

where T is the number of frequency classes, Oi is the observed
frequency of i–th class, n is the sum of all observed frequencies,
and pi is the theoretical (modelled) probability of i–th frequency
class. RMSE is a common measure o�en used to evaluate the di�er-
ences between predicted and observed values. It combines intuitive
interpretation with good mathematical properties [21]. Low value
of RMSE suggests good �t of observed and theoretical probabilities
while large values of RMSE are associated with loose correspon-
dence between observed and modeled phenomena.

5 EXPERIMENTS
A series of computational experiments was conducted to study the
ability of the traditional DE, SaDE, and MGBDE to estimate mixed
WD parameters and �t it to data. In order to establish an evaluation
testbed, 30 di�erent random test data sets were generated. Each test
data set consisted of 10, 000 random samples drawn form a �nite
mixture of 3, 6, or 9 Weibull distributions with randomized scale
and shape parameters. �e number of frequency classes, T , was
set to 30. A visual illustrations of selected test data sets is shown
in �g. 2. Although the data is arti�cial, the randomized procedure
used to obtain it makes it similar to real–world data sets describing
e.g. annual wind speed distribution in speci�c locations.

All three investigated DE variants were implemented in C++ and
used to �t a �nite mixture of a maximum of 12 WDs to the test
data sets. �e algorithms were executed with the following �xed
parameters, determined on the basis of best practices, previous
experience, and extensive trial–and–error runs: the population
size, M , was set to 100 and the scaling factor, F , and the crossover
probability, C , of the traditional DE were �xed to 0.9. RMSE was
used as �tness function. �e maximum number of generations was
10, 000 and the maximum number of �tness function evaluations
was 1, 000, 000. �e stopping criterion is in line with the main
purpose of the experiment: an empirical comparison of selected
DE variants. �e traditional DE, used in the experiments, was the
DE/rand/1 version of the algorithm.
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Table 1: Final RMSE of mixed Weibull distributions �tted by di�erent DE variants.

expe- DE SaDE MGBDE
riment Min Mean (σ ) Max Min Mean (σ ) Max Min Mean (σ ) Max

T01 5.402 6.524 (0.591) 7.741 3.511 7.953 (1.751) 11.677 6.639 7.940 (0.894) 10.620
T02 6.890 7.261 (0.421) 8.465 4.873 9.051 (1.559) 12.895 7.079 8.614 (0.892) 11.422
†T03 6.743 7.652 (0.524) 8.375 2.419 7.675 (2.562) 11.584 6.275 7.363 (0.708) 9.087
†T04 5.138 5.388 (0.138) 5.635 2.148 4.595 (1.954) 8.877 3.795 5.606 (0.612) 6.746
T05 11.695 12.206 (0.136) 12.316 10.505 13.880 (2.241) 19.228 12.319 12.477 (0.103) 12.731
†T06 8.818 11.127 (5.843) 33.317 5.438 13.210 (6.034) 27.595 9.022 9.982 (0.657) 11.029
T07 12.146 12.670 (0.404) 13.121 12.966 14.107 (1.558) 18.408 12.282 13.996 (1.294) 18.224
T08 5.880 6.287 (0.305) 7.414 6.126 8.369 (2.077) 13.299 6.088 6.967 (0.939) 9.728
T09 8.586 8.824 (0.880) 13.571 6.540 13.404 (7.549) 48.369 8.944 9.758 (1.059) 13.102
T10 4.458 6.438 (0.746) 8.871 7.122 10.313 (2.216) 14.812 4.376 7.241 (1.303) 9.433
T11 5.577 7.427 (1.181) 9.222 2.556 13.598 (6.584) 37.725 5.995 8.666 (2.490) 14.664
T12 3.766 3.835 (0.110) 4.234 3.877 10.847 (9.098) 35.862 3.872 6.013 (1.022) 8.448
T13 0.747 0.799 (0.076) 1.065 0.638 4.074 (3.170) 12.025 0.935 1.680 (0.736) 4.327
T14 7.682 9.915 (0.617) 10.280 4.446 12.611 (5.580) 23.582 9.391 10.567 (0.797) 13.305
T15 6.907 7.617 (0.205) 7.818 7.568 11.961 (3.491) 22.004 7.542 8.986 (1.421) 12.588
T16 4.532 5.332 (0.480) 5.858 4.888 8.785 (5.003) 22.419 4.901 6.654 (0.817) 9.069
T17 4.083 4.743 (0.235) 5.154 3.269 6.223 (2.929) 12.178 3.662 5.206 (0.697) 8.123
T18 5.973 6.681 (0.332) 7.587 6.221 9.337 (2.557) 18.420 4.992 9.039 (1.675) 12.172
T19 10.727 11.836 (0.471) 12.402 1.936 14.495 (5.202) 26.115 11.496 12.562 (0.460) 13.786
T20 6.651 7.914 (0.587) 10.276 7.340 8.888 (1.496) 11.933 7.511 8.218 (0.381) 8.855
T21 10.003 10.404 (0.485) 11.887 9.589 14.179 (5.110) 32.788 10.193 12.054 (1.135) 15.585
T22 2.645 3.536 (0.516) 4.478 1.561 5.178 (2.616) 12.223 3.997 4.636 (0.344) 5.542
T23 1.874 3.090 (0.443) 4.211 3.737 9.336 (7.332) 31.592 2.848 5.500 (2.662) 15.242
T24 3.526 3.894 (0.189) 4.179 3.211 6.613 (3.549) 19.177 3.955 5.088 (1.064) 8.107
T25 4.302 4.811 (0.351) 5.899 5.113 9.441 (5.170) 24.163 5.169 7.114 (1.224) 8.808
T26 2.968 4.795 (0.921) 5.988 1.094 7.260 (4.347) 18.822 2.655 6.464 (1.603) 10.727
T27 3.782 4.066 (0.306) 4.571 3.450 8.757 (7.716) 28.153 3.892 5.252 (0.572) 6.560
†T28 4.338 6.724 (5.389) 36.093 3.503 9.233 (3.748) 16.150 5.849 6.791 (0.438) 7.854
T29 1.639 2.393 (0.358) 3.277 1.763 5.757 (5.423) 24.578 1.805 2.914 (1.321) 8.034
T30 6.244 6.730 (0.490) 8.009 5.359 8.638 (4.041) 22.817 6.321 7.789 (1.293) 10.829

�e RMSE of WD mixtures, ��ed to test data sets by DE, SaDE,
and MGBDE, was recorded and analyzed. Because the investigated
algorithms are stochastic, all experiments were executed 30 times
and the reported results are averages of the 30 independent runs.

A summary of experimental results is provided in table 1. It
clearly shows that the traditional DE is the most successful of the
investigated algorithms in terms of average �nal root mean error
a�er 10, 000 generations. However, SaDE obtained for most test
data sets be�er �nal solution in the best run. MGBDE obtained the
best �nal solution for two out of 30 test data sets and was outper-
formed by DE and SaDE in all other cases. A statistical analysis of
experimental results revealed that the di�erence between best and
second best algorithm was statistically signi�cant (at signi�cance
level α = 0.05) in 26 out of 30 test cases. �e test cases, where the
di�erence between �nal results was not signi�cant, are in table 1
marked with †. It can be seen that this situation applies only to
test cases where the average DE result was not the best (i.e. for test
data sets T03, T04, and T06). �at means that the DE was either

best or the di�erences between results obtained by investigated
algorithms were not statistically signi�cant at α = 0.5.

�e evolution of average RMSE of WD mixtures with parameters
optimized by DE, SaDE, and MGBDE in time is illustrated in �g. 3
and �g. 4. Figure 3 shows average RMSE of the investigated algo-
rithms for three test cases where the di�erence between �nal RMSE
was statistically signi�cant while �g. 4 illustrates the evolution
of average RMSE for three test cases where the di�erence in �nal
RMSE was statistically insigni�cant. �e plots also show for each
investigated algorithm a 95% con�dence interval for the average
RMSE in every generation. �ey illustrate that the DE has in most
cases obtained solutions with the best average �nal �tness but at
the same time show that it is outperformed by SaDE and MGBDE
during the �rst approx. 500 generations. Similar behaviour was
observed in all test cases.

Finally, the best WD mixtures, evolved for sample test data sets
by the DE, are shown in �g. 5. �e plots demonstrate that the
evolved mixtures correspond to the frequency classes in the test
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Figure 3: Examples of average RMSE ofmixedWDs with parameters optimized by DE, SaDE, andMGBDE in time for test cases
with statistically signi�cant di�erence in �nal �tness at signi�cance level α = 0.05. �e displayed range corresponds to a 95%
con�dence interval for average �tness values. Both axes in all plots have logarithmic scale.
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Figure 4: Examples of average RMSE ofmixedWDs with parameters optimized by DE, SaDE, andMGBDE in time for test cases
with statistically insigni�cant di�erence in �nal �tness at signi�cance level α = 0.05. �e displayed range corresponds to a
95% con�dence interval for average �tness values. Both axes in all plots have logarithmic scale.
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Figure 5: Examples of the best mixed WDs evolved by DE.

data sets very accurately. �ey also show that they are able to
capture the trends (i.e. subpopulations) in the modelled data.

6 CONCLUSIONS
A novel nature–inspired method for accurate ��ing of mixed Weibull
distributions to empirical data was designed and evaluated in this
work. �e method does not require any a priori knowledge about
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the data and can �nd parameters for �nite mixtures of an arbitrary
number of Weibull distributions. �e proposed approach represents
mixture parameters as a vector of �oating point values and de�nes
a decoding procedure that ensures that all candidate vectors, gen-
erated throughout the evolution, correspond to valid �nite WD
mixtures.

�e ability of three popular variants of di�erential evolution
to �nd accurate WD mixture parameters was evaluated experi-
mentally. A series of computational experiments, performed with
30 synthetic test data sets, showed that di�erential evolution is a
suitable metaheuristic strategy for accurate WD mixture ��ing to
empirical data. Further experiments demonstrated that the tradi-
tional DE/rand/1 algorithm is able to �nd a�er 10, 000 generations
more accurate mixture parameters than self–adaptive di�erential
evolution and modi�ed Gaussian bare–bones di�erential evolution.
However, SaDE and MGBDE are able to deliver be�er mixture pa-
rameters in the �rst approx. 500 generations of the algorithms. A
statistical analysis of experimental results showed that the di�er-
ence between RMSE of ��ed mixtures, obtained by DE/rand/1 and
other considered DE variants, was statistically signi�cant in 26 out
of 30 test cases.

Future work in this area will take several directions. First, the pro-
posed encoding will be used for other real–parameter optimization
methods (e.g. particle swarm optimization, mean–variance map-
ping optimization) and their ability to �nd mixed WD parameters
will be assessed. Second, the ability of nature–inspired methods
to model data produced by real–world sources such as environ-
mental monitoring (wind speed measurement) and the usefulness
of obtained models in context of high–level applications such as
distributed stochastic energy generation and integration will be
evaluated.

ACKNOWLEDGMENTS
�is work was supported by the Czech Science Foundation un-
der the grant no. GJ16-25694Y and in part by the grants of SGS
No. SP2017/100 and SP2017/85, VŠB - Technical University of Os-
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P. Krömer, and V. Snasel (Eds.). Advances in Intelligent Systems and Computing,
Vol. 334. Springer International Publishing, 15–26. DOI:h�p://dx.doi.org/10.
1007/978-3-319-13572-4 2

[5] D. B. Kececioglu and Wendai Wang. 1998. Parameter estimation for mixed-
Weibull distribution. In Reliability and Maintainability Symposium, 1998. Proceed-
ings., Annual. 247–252. DOI:h�p://dx.doi.org/10.1109/RAMS.1998.653782

[6] J. Kennedy. 2003. Bare bones particle swarms. In Swarm Intelligence Symposium,
2003. SIS ’03. Proceedings of the 2003 IEEE. 80–87. DOI:h�p://dx.doi.org/10.1109/
SIS.2003.1202251

[7] B. Klein and B. Bertsche. 2010. Estimating parameters of mixed Weibull distribu-
tions using genetic algorithms. In Reliability, Risk and Safety: Back to the Future
: Proceedings and Monographs in Engineering, Water and Earth Sciences, ESREL
2010, September 15, 2010, Rhodes, Greece, B.J.M. Ale, I.A. Papazoglou, and E. Zio
(Eds.). Taylor & Francis, 861–868.

[8] Renato A. Krohling, Mauro Campos, and Patrick Borges. 2010. So� Computing in
Industrial Applications: Algorithms, Integration, and Success Stories. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter Bare Bones Particle Swarm
Applied to Parameter Estimation of Mixed Weibull Distribution, 53–60. DOI:
h�p://dx.doi.org/10.1007/978-3-642-11282-9 6

[9] C.D. Lai. 2013. Generalized Weibull Distributions. Springer Berlin Heidelberg.
[10] D. Ling, H. Z. Huang, and Yu Liu. 2009. A method for parameter estimation

of Mixed Weibull distribution. In 2009 Annual Reliability and Maintainability
Symposium. 129–133. DOI:h�p://dx.doi.org/10.1109/RAMS.2009.4914663

[11] J.I. McCool. 2012. Using the Weibull Distribution: Reliability, Modeling and Infer-
ence. Wiley.

[12] Marko Nagode and Matija Fajdiga. 2000. An improved algorithm for parameter es-
timation suitable for mixed Weibull distributions. International Journal of Fatigue
22, 1 (2000), 75 – 80. DOI:h�p://dx.doi.org/10.1016/S0142-1123(99)00112-7

[13] Mahamed G.H. Omran, Andries P. Engelbrecht, and Ayed Salman. 2009. Bare
bones di�erential evolution. European Journal of Operational Research 196, 1
(2009), 128 – 139. DOI:h�p://dx.doi.org/10.1016/j.ejor.2008.02.035

[14] Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. 2005. Di�erential
Evolution A Practical Approach to Global Optimization. Springer-Verlag, Berlin,
Germany.

[15] A.K. Qin, V.L. Huang, and P.N. Suganthan. 2009. Di�erential Evolution Algorithm
With Strategy Adaptation for Global Numerical Optimization. Evolutionary
Computation, IEEE Transactions on 13, 2 (April 2009), 398–417.

[16] H. Rinne. 2008. �e Weibull Distribution: A Handbook. CRC Press.
[17] R. Storn. 1996. Di�erential evolution design of an IIR-�lter. In Proceedings

of IEEE International Conference on Evolutionary Computation. 268–273. DOI:
h�p://dx.doi.org/10.1109/ICEC.1996.542373

[18] R. Storn and K. Price. 1995. Di�erential Evolution - A Simple and E�cient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical Report.

[19] Fu-Kwun Wang. 2014. Using BBPSO Algorithm to Estimate the Weibull Pa-
rameters with Censored Data. Communications in Statistics - Simulation and
Computation 43, 10 (2014), 2614–2627. DOI:h�p://dx.doi.org/10.1080/03610918.
2012.762386

[20] H. Wang, S. Rahnamayan, H. Sun, and M. G. H. Omran. 2013. Gaussian Bare-
Bones Di�erential Evolution. IEEE Transactions on Cybernetics 43, 2 (April 2013),
634–647. DOI:h�p://dx.doi.org/10.1109/TSMCB.2012.2213808

[21] I.H. Wi�en, E. Frank, and M.A. Hall. 2011. Data Mining: Practical Machine
Learning Tools and Techniques: Practical Machine Learning Tools and Techniques.
Elsevier Science.

1168

http://dx.doi.org/10.1016/j.amc.2006.05.063
http://dx.doi.org/10.1109/TII.2012.2198658
http://dx.doi.org/10.1109/TII.2012.2198658
http://dx.doi.org/10.1007/978-3-319-13572-4_2
http://dx.doi.org/10.1007/978-3-319-13572-4_2
http://dx.doi.org/10.1109/RAMS.1998.653782
http://dx.doi.org/10.1109/SIS.2003.1202251
http://dx.doi.org/10.1109/SIS.2003.1202251
http://dx.doi.org/10.1007/978-3-642-11282-9_6
http://dx.doi.org/10.1109/RAMS.2009.4914663
http://dx.doi.org/10.1016/S0142-1123(99)00112-7
http://dx.doi.org/10.1016/j.ejor.2008.02.035
http://dx.doi.org/10.1109/ICEC.1996.542373
http://dx.doi.org/10.1080/03610918.2012.762386
http://dx.doi.org/10.1080/03610918.2012.762386
http://dx.doi.org/10.1109/TSMCB.2012.2213808

	Abstract
	1 Introduction
	2 Mixed Weibull distribution
	2.1 Parameter estimation
	2.2 Nature–inspired estimation of probability distribution parameters

	3 Differential evolution
	3.1 Self-Adaptive Differential Evolution
	3.2 Gaussian Bare–bones Differential Evolution

	4 DE for mixed Weibull distribution parameter estimation
	5 Experiments
	6 Conclusions
	Acknowledgments
	References

