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Babeş-Bolyai University

mihai-suciu@cs.ubbcluj.ro

Rodica Ioana Lung
Centre for the Study of Complexity
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ABSTRACT

Community structure detection algorithms are used to identify groups

of nodes that are more connected to each other than to the rest of

the network. Multipartite networks are a special type of network

in which nodes are divided into partitions such that there are no

links between nodes in the same partition. However, such nodes

may belong to the same community, making the identi�cation of

the community structure of a multipartite network computation-

ally challenging. In this paper, we propose a new �tness function

that takes into account the information induced by existing links in

the network by considering shadowed connections between nodes

that have a common neighbor. �e existence of a correct �tness

function, i.e. one whose optimum values correspond to the com-

munity structure of the network, enables the design and use of

optimization-based heuristics for solving this problem. We use nu-

merical experiments performed on arti�cial benchmarks to illus-

trate the e�ectiveness of this function used within an extremal op-

timization based algorithm and compared to existing approaches.

As a direct application, a multipartite network constructed from a

direct marketing database is analyzed.
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1 INTRODUCTION

�e network community structure detection problem has gained

a lot of a�ention in recent years due to its large applicability. �e

problem consists in �nding groups of nodes in a network that are

more densely connected to each other than to other nodes in the

network [3] and it has been extensively studied for unipartite and

bipartite networks. However, there are very few methods and re-

sults extending to multipartite networks, in spite of the fact that

numerous applications might bene�t from such methods as many

living systems or phenomena can be modeled as multipartite net-

works [1, 10]. A general approach to the community structure de-

tection problem consists in the optimization of a �tness function

that is supposed to re�ect the modularity of the network, i.e. its

optimum value corresponds to a community structure. Currently

there does not exist a function that can be used for any type of net-

work and correctly capture various types of structures, but there

are some successful ones such as the modularity [16], the modular-

ity density [8], the community �tness [7], etc.

We propose an extension of the community �tness de�ned in [7]

for identifying communities in multipartite networks by consider-

ing that nodes that have a common neighbor are also connected to

each other and thus creating shadowed links in the network help-

ing in the discovery of the community structure. We use numer-

ical experiments performed on synthetic benchmarks to test the

e�ciency of this function. As an application we analyze a market-

ing database by converting it into a multipartite network in which

nodes are variable categories or quantiles for numerical variables

and observations build links between di�erent categories. In this

way each variable creates a partition set in the network and we

can study possible connections between variables; the community

structure of such a network reveals connections among variable

categories.

2 RELATED WORK

Community structure detectionmethods have recently become the

focus of research due to the relevant information revealed by such

structures. However, there is li�le research performed on commu-

nity structure detection methods for multipartite networks. �ere

is a body of work related to bipartite networks, but very few exten-

sions.

For unipartite networks, one of the major approaches to com-

munity structure detection converts the search problem into an
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optimization one by using a �tness function that is supposed to

illustrate the modular structure of the network. One of the most

popular, and debated, �tness function is the modularity [15, 16].

�e modularityQN basically compares a community structure for

a network to the corresponding structure when considering a ran-

dom network. It can be computed as:

QN =

∑

C ∈C

(mC

m
−
(DC

2m

)2)

, (1)

wherem is the number of edges, mC is the number of edges con-

necting vertices in communityC , and DC is the sum of the degrees

of all vertices in communityC . A highermodularity value indicates

a be�er solution. In [3] it is stated that multipartite networks can

be approached by the same methods as unipartite networks reduc-

ing the multipartite graph to unipartite ones, usually by consider-

ing a di�erent network for each partition. While this approach is

adequate, apart from the fact that some information may be lost

in the process, in some cases we are interested in the community

structure in the sense that we want to �nd nodes from di�erent -

or the same - partitions that are more connected to each other than

to the rest of the network.

In this context it was noticed that Newmann’s modularity de-

scribed above does not re�ect any more the di�erence to a random

network because a random multipartite network does not present

any links between nodes in the same partitions. To take into ac-

count this fact, Barber [2] proposed the following modularity for-

mula for bipartite networks:

QB =

∑

C ∈C

(mC

m
−
RC × BC

m2

)

, (2)

wherem is the number of edges, mC is the number of edges con-

necting vertices in community C , R and B represent the two dis-

joint sets of vertices, RC is the sum of the degrees of vertices from

R in community C , BC is the sum of the degrees of vertices from

B in community C . In [13] it is shown that maximizing Barber’s

modularity is NP-hard.

Regarding multipartite networks, approaches vary depending

on the type of network and solution concept. �ere are very few

methods that take into account the multipartite structure: in [18] a

ranking method is proposed for star networks; in [12] the problem

of �nding communities among joint networks is approached; in

[9] a composite modularity is de�ned and maximized to reveal the

community structure;the weakness of this modularity [10] is not

being able to handle communities with many-to-many correspon-

dences for multipartite multi-relational networks, the authors pro-

pose an information compression method inspired from [17] for

this problem.

3 MULTIPARTITE COMMUNITY SCORE

�e speci�city of the multipartite network requires taking into ac-

count that, while nodes belonging to the same partition may not

be directly connected to each other, they may be indirectly con-

nected by common neighbors in other partitions. Such induced

connections may also be responsible for the underlying commu-

nity structure and should be taken into account when evaluating

potential solutions. In this context we propose the Multipartite

Figure 1: A simple tripartite network. �e degree of node 5

is 5, the modi�ed degree with α = 0.05 is 5.5. If we consider

communityC = {1, 2, 3, 5}, f0.05(C) = 0.64.

Community Fitness M by extending the community �tness in [7]

to include such links. Since these links cannot be considered ’real’

network links (if that were the case they would have been added

at the construction of the network) we call them shadowed links

and add them to the node degree by using amultipartite sensibility

factor α .

�us, if we consider G = (V , E) with V a set of vertices and E

a set of links connecting two elements of V , G is a multipartite

network if there exists a partitionV = {Vl }l=1,r over V such that

within each partition there are no links between any pair of nodes.

r denotes the number of partitions. If r = 2 we have a bipartite

network, if r = 3 we have a tripartite network, etc. Any link in E

therefore connects nodes from di�erent partitions.

To construct the multipartite community �tness we �rst de�ne

the modi�ed node degree di,α as

di,α = di + α ·
di (di − 1)

2
(3)

where di is the degree of node i in G. �us we actually take into

account the fact that all nodes connected with i can be considered

also connected to each other; the strength of these connections is

controlled by α .

Figure 1 illustrates a small tripartite network with 10 nodes. �e

degree of node 5 in this network is 5, and itsmodi�ed degreed5,0.05
is 5.5 computed by taking into account the 10 shadowed links con-

necting nodes 1, 2, 3, 8, and 9.

If we consider a community C ⊂ V then the inner degree of a

node i ∈ V , kin(i |C) is computed as

kα (i |C) = k(i,C) + α ·
k(i,C)(k(i,C) − 1)

2
(4)

where k(i,C) is the number of links node i has with other nodes

in C . In the example illustrated in Figure 1, if we consider C =

{1, 2, 3, 5}, the inner degree of node 5 is k0.05(5|C) = 3 + 0.05 · 3 =

3.15.

�e �tness of community C is computed as:

fα (C) =

∑

i ∈C kα (i |C)
∑

i ∈C di,α
, (5)

as the ratio of the modi�ed total inner degree of the nodes in com-

munity C and the total degree of nodes in C . A higher �tness

value can be considered to indicate a be�er community. Consid-

ering the same community C = {1, 2, 3, 5} in Figure 1, its �tness

f0.05(C) =
1+1+1+3.15
2.05+1+1+5.5 = 0.64.
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�e �tness of a community structure C, i.e. a partition set over

the set of nodes, is computed as the average of the �tnesses of all

the communities C ∈ C:

Mα (C) =
1

|C|

∑

C ∈C

fα (C), (6)

where |C| is the number of communities.

For weighted networks we use the same approach but consider-

ing in all formulas the weighted degree, or weighted inner degree

of the nodes, and the sum of the �tnesses of each community in

(6).

Let us consider the tripartite network in Figure 1 and two com-

munities: C1 = {1, 2, 3, 5, 8, 9} and C2 = {4, 6, 7, 10}. In this case

QN =

( 6
10 −

( 13
20

)2)
+

( 3
10 −

( 7
20

)2)
= 0.355 and M0.05(C) =

1
2 (f0.05(C1)+ f0.05(C2)), where f0.05(C1) = 0.923, f0.05(C2) = 0.847,

so M0.05(C) = 0.885.

3.1 Method

Maximizing the �tness M should uncover a multipartite commu-

nity structure in a similar manner a �tness function such as the

modularity uncovers the community structure of unipartite net-

works. To test this hypothesis we use an e�cient method based on

extremal optimization for community structure detection, called

NoisyEO [11] to maximize the �tnessM .

�e algorithm is described in Algs. 1 and 2. NoisyEO evolves

pairs of individuals s and sbest by re-assigning random values to

the weakest components in s and replacing sbest whenever a be�er

solution has been found. s and sbest encode possible covers as

vectors of size N equal to the number of nodes in the network. For

a node i , s(i) represents its community. �e �tness of a node is

computed as the di�erence between the �tness of its community

and the �tness of its community when the node is removed, i.e. as

the contribution of the node to the �tness of its community. �e

only modi�cation to the original NoisyEO algorithm is made at line

3 in Alg. 2 where we use the modi�ed community �tnessM in (6).

4 NUMERICAL EXPERIMENTS

To illustrate the e�ciency of the measure we perform numerical

experiments on synthetic benchmarks and on a set of multipartite

networks constructed from a real-world marketing database.

4.1 Experimental set-up

Parameter Se�ings. For NoisyEO we used the following parame-

ters: population size 30, pshif t = 1,G = 45, total number of shi�s

30, expected number of communities between 2 and 8.

To evaluate the e�ciency of the multipartite community score

M , we run NoisyEO to maximize also the modularity QN (1). For

bipartite networks, we test also the maximization of the Barber

modularity QB (2). As NoisyEO is not tuned for any type of mod-

ularity, di�erences in results arise from the di�erent �tness func-

tions used. For bipartite networks we also compare results with

the Fast projection (FP) method in [5] using the so�ware provided

by the authors.

�e multipartite community scoreM uses a sensibility factor α .

We tested for α ∈ {0, 0.025, 0.05}. When α = 0 the multipartite

aspect of the network is completely ignored.

Algorithm 1 NoisyEO algorithm

Parameters:

• Population size - popsize ;

• Probability of shi� - pshif t ;

• Number of generations between switching networks -G;

• Total number of shi�s - NrShi f ts ;

• Expected minimum and maximum number of communi-

ties.
1: Randomly initialize popsize pairs of con�gurations (s, sbest ).

2: noise=false;

3: repeat

4: if noise then

5: Induce noise with probability p
(∗)

shif t
;

6: Randomly reinitialize each sbest in population;

7: else

8: perform search on the original network;

9: end if

10: noise=not noise ;

11: Linearly decrease k until the middle of the search; a�er that

set k = 1;

12: for G generations do

13: Apply κEO (s, sbest ) for all pairs (s, sbest ) - Alg. 2;

14: end for

15: untilG ∗ NrShi f ts > Maximum number of generations;

16: Return sbest with highest �tness.
(∗) Modify network by randomly deleting/adding links with probability

pshif t which decreases linearly from an initial value to 0 during the

search.

Algorithm 2 κEO(s, sbest ) iteration

1: For the current con�guration s evaluate ui (s), the �tness func-

tion corresponding to node i ∈ {1, . . . ,n}.

2: �nd the κ worst components and replace them with a random

value;

3: if M(s) > M(sbest ) then

4: set sbest := s .

5: end if

Benchmarks. In order to test the e�ciency of the approach and

compare its performance with existing methods we need a set of

multipartite networks with known community structures. Cur-

rently there are no standard benchmarks in the literature, but there

are simple ways to generate multipartite graphs with community

structures. We have chosen the following method to generate a

multipartite unweighted graph: �rst we divide randomly the set

of N nodes in r partitions, and in c communities by using a Monte

Carlo approach that assigns approximatively equal number of nodes

in each partition and in each community. A�er that, for each pair

of nodes we create a link with probability pin if they belong to

the same community and with probability pout if they are in dif-

ferent communities; if two nodes belong to the same partition no

link is created. In this manner we construct multipartite networks

with community structures of various degrees of di�culties. Simi-

lar approaches can be found in the unipartite community structure

detection literature [7].
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Considering uniform probability distributions, we can compute

the mixing degree (the average ratio between number of outer

links and total degree of the nodes [6]) as:

µ =
pout (cr − c − r + 1)

pin(r − 1) + pout (cr − r − c + 1)
=

pout (c − 1)

pin + pout (c − 1)
(7)

which means that for our synthetic networks µ does not depend

on the number of partitions but on the number of communities.

We considered all combinations between pin = 0.7, 0.8, 0.9, and

pout = 0.1, 0.2, 0.3 and 7 sets of networks with r = 2, 3, 4, 5, 6, 7,

and 8 partitions respectively; all sets have 3 communities. For each

set we report in Table 1 the corresponding µ values for an easier

interpretation. For each se�ing we generated 10 networks.

Table 1: µ values for the synthetic benchmarks

µ pout = 0.1 pout = 0.2 pout = 0.3

pin = 0.9 0.18 0.30 0.40

pin = 0.8 0.20 0.33 0.42

pin = 0.7 0.22 0.36 0.46

To evaluate the results we computed the normalized mutual in-

formation (NMI [7]) values obtained in each run for each network

by comparing the output of the algorithmwith the real community

structure. A NMI value of 1 indicates that the two are identical.

When comparing results, the higher the NMI value, the be�er. Sta-

tistical signi�cance of di�erences betweenmethods is evaluated by

using a Wilcoxon sum-rank test with a signi�cance level of 0.05.

�e bank marketing data is retrieved form the UCI database1

[14] and is used for classi�cation purposes. It has 17 variables and

45211 observations. We use this dataset to illustrate the construc-

tion and analysis of a real-world multipartite dataset. To construct

the network we proceed as follows: for categorical variables we

consider each category as a network node; for numerical variables

we consider as nodes the quantiles of the distribution of that vari-

able. We obtain a weighted network which indicates connections

between categories of di�erent variables.

4.2 Results

In this section the results obtained when using the multipartite

community �tnessM for the synthetic and bank data are presented.

Bipartite networks. Figure 2 presents boxplots of NMI values ob-

tained for bipartite networks; results presented here are obtained

with α = 0.05. �e considered synthetic benchmarks can be di-

vided on three levels of di�culty on pout values, table 1. For the

most simple ones, with pout = 0.1 there are no statistical di�er-

ences between results, all variants identify the community struc-

ture (except M , for pin = 0.7 in some runs). For pout = 0.2,M and

QB yield best results, except for pin = 0.7 where M outperforms

all other methods. �e same happens for all sets having pout = 0.3,

where we can see no statistical di�erence between using Barber’s

modularity and QN .

Multipartite networks. Table 2 presents results obtained for 2, 3,

4, 5-partite networks for di�erent α values. Numerical results ob-

tained using α = 0 and Newmann’s modularity QN are used as

1h�ps://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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Figure 2: Results obtained for bipartite networks by maxi-

mizing the multipartite community �tnessM , the Newman

modularity QN and the Barber modularity QB , compared

also with Fast projection (FP).
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Figure 3: NMI best modularity for 6-partite, 7-partite, and

8-partite synthetic networks with 256 nodes.

baseline, as they do not take into account network partitions. We

expect results obtainedwithM and a positive value ofα to be be�er

than both. A ∗ is used to indicate statistical signi�cance of di�er-

ences in results based on the Wilcoxon sum-rank test. All meth-

ods that are not statistical di�erent than the best one are marked.

From the tested values, α = 0.05 yields the best results on these

networks.

Figure 3 presents boxplots of NMI values obtained for the 256

nodes networks and 6,7, and 8 partitions of nodes. We �nd that

the number of partitions does not in�uence the results, and that

the most challenging networks are those having pout = 0.3.

Remarks related to NMI values. In all experiments, NoisyEO re-

ported the individual having the best �tness value considering the

function to be maximized, i.e. M , QN or QB . For technical pur-

poses we also recorded the best NMI in the �nal population, which

does not always coincide with the NMI of the best �tness values.

It is the case that in many runs NoisyEO did in fact compute a

correct cover, but the individual having best NMI value did not

have the best �tness function value. To illustrate this we present
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Table 2: Numerical results obtained for di�erent α values on

the sets of 2,3,4,5 - partite networks

pin pout α = 0 α = 0.025 α = 0.05 QN

bipartite network

0.9 0.1 0.67±0.20 0.91±0.19* 0.99±0.01* 1.00±0.00*

0.9 0.2 0.69±0.12 0.97±0.05* 1.00±0.00* 0.86±0.15

0.9 0.3 0.64±0.08 0.95±0.07* 0.96±0.07* 0.65±0.09

0.8 0.1 0.48±0.09 0.74±0.25 0.96±0.07* 0.99±0.01*

0.8 0.2 0.56±0.11 0.71±0.17 0.95±0.06* 0.77±0.17

0.8 0.3 0.45±0.09 0.63±0.21 0.90±0.11* 0.45±0.03

0.7 0.1 0.38±0.04 0.50±0.15 0.89±0.19 1.00±0.00*

0.7 0.2 0.44±0.12 0.53±0.16 0.85±0.16* 0.63±0.15

0.7 0.3 0.34±0.05 0.48±0.15 0.84±0.19* 0.33±0.02

tripartite network

0.9 0.1 0.67±0.14 1.00±0.00* 1.00±0.00* 1.00±0.00*

0.9 0.2 0.81±0.17 0.99±0.02* 0.99±0.02* 0.95±0.09*

0.9 0.3 0.64±0.09 0.99±0.01* 0.99±0.01* 0.66±0.06

0.8 0.1 0.52±0.10 0.99±0.01* 0.99±0.01* 1.00±0.00*

0.8 0.2 0.58±0.12 0.98±0.05* 1.00±0.00* 0.85±0.11

0.8 0.3 0.57±0.13 0.91±0.10* 0.98±0.02* 0.44±0.03

0.7 0.1 0.48±0.12 0.88±0.12 0.99±0.01* 0.97±0.06*

0.7 0.2 0.40±0.07 0.75±0.27 0.99±0.01* 0.67±0.13

0.7 0.3 0.45±0.10 0.67±0.26* 0.75±0.22* 0.35±0.01

4-partite network

0.9 0.1 0.73±0.18 1.00±0.00* 1.00±0.00* 1.00±0.00*

0.9 0.2 0.97±0.06* 1.00±0.00* 1.00±0.00* 0.95±0.07*

0.9 0.3 0.72±0.19 0.99±0.01* 0.95±0.14* 0.64±0.08

0.8 0.1 0.67±0.14 1.00±0.00* 1.00±0.00* 1.00±0.00*

0.8 0.2 0.52±0.10 1.00±0.00* 1.00±0.00* 0.90±0.10

0.8 0.3 0.57±0.16 0.99±0.01* 0.99±0.01* 0.45±0.05

0.7 0.1 0.46±0.13 0.95±0.08* 1.00±0.00* 1.00±0.00*

0.7 0.2 0.44±0.09 0.96±0.06* 0.95±0.11* 0.62±0.10

0.7 0.3 0.44±0.14 0.88±0.12* 0.83±0.18* 0.35±0.02

5-partite network

0.9 0.1 0.75±0.16 1.00±0.00* 1.00±0.00* 1.00±0.00*

0.9 0.2 0.86±0.21 0.98±0.03* 1.00±0.00* 0.95±0.08*

0.9 0.3 0.95±0.10* 1.00±0.00* 1.00±0.00* 0.60±0.07

0.8 0.1 0.60±0.13 1.00±0.00* 1.00±0.00* 1.00±0.00*

0.8 0.2 0.51±0.09 1.00±0.00* 1.00±0.00* 0.89±0.14

0.8 0.3 0.53±0.10 0.99±0.01* 0.95±0.12* 0.45±0.04

0.7 0.1 0.46±0.13 0.99±0.01* 1.00±0.00* 1.00±0.00*

0.7 0.2 0.46±0.11 0.95±0.14* 1.00±0.00* 0.66±0.08

0.7 0.3 0.43±0.05 0.88±0.16* 0.86±0.20* 0.37±0.01

two correlation matrices based on the results obtained for bipar-

tite networks: in Figure 4 we show the correlation between best

NMI values obtained using each �tness function, and in Figure 5

the NMI values of the individuals having the best �tness value. �e

histograms in the diagonal show that the distributions of NMI val-

ues di�er signi�cantly, with more NMI values of 1 in the Figure 4.

Correlation values in Figure 4 also indicate that to obtain the best

NMI of 1 any of the �tness functions could be used.

Figure 4: Correlations between best NMI values in the �nal

population for bipartite networks. Histograms show a high

count of NMI values equal to 1.

Figure 5: Correlations between NMI values of individuals

having best �tnesses in the�nal population for bipartite net-

works. �ere are less NMI values equal to 1 than in Figure

4.

�e correlation matrix of NMI values of individuals having the

best �tness values in the �nal population shows that the modular-

ity functions are strongly correlated, with 0.92 and similar distri-

butions, whileM exhibits a di�erent behavior, but with more NMI

values of 1. �ese graphs show that, while experiments performed

on synthetic data do show be�er results obtained with our multi-

partite community �tness, there is still room for improvement, as

there are situations in which the maximum value of M does not

identify the individual having the best NMI value in the popula-

tion.
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Figure 6: Results obtained for the three bank data networks.

WeightedM values for the best individual in the initial pop-

ulation (random) and �nal population.

Figure 7: �e community structure detected in the Bank

dataset, 6Var.

Bank marketing data. To illustrate the analysis of the bank data

we constructed three weighted networks: one containing all vari-

ables in the dataset (AllVar, 785 nodes, 31549 edges), one that con-

tains only data related to the customer (age-job-marital-education-

default-balance-housing-loan-duration-y 10 Var, 87 nodes, 2845

edges) and one with binary variables removed (age-job-marital-

education-balance-duration 6Var, 79 nodes, 2217 edges). �e num-

ber of variables determines the number of partitions. We performed

10 independent runs ofNoisyEO for each network. Modularity val-

ues obtained in the 10 runs are represented as boxplots in Figure 6,

including initial values: we can see that for the 6Var and 10var the

search yields a signi�cant increase in modularity, while for the Al-

lVar network there is no di�erence, suggesting that the algorithm

was not able to improve the random structure generated in the �rst

iteration. Solutions with the highest modularities are represented

in Figures 7-8.

To interpret results, for example, for the 6Var network, the al-

gorithm divided people aged below 53 year old from the others.

At the job category the algorithm placed in the same community

housmaids, retired, and those with job-unknown. By marital status

divorced are separated from single and married. Education pri-

mary is separated form all other levels. �is results show how the

community structure can reveal connections about categories and

help analyze big sets of data.

Figure 8: �e community structure detected in the Bank

dataset, 10Var.

5 CONCLUSIONS

�e problem of community structure detection in multipartite net-

works can be approached by considering shadowed connections

between nodes having a common neighbor, even if they belong to

the same partition. We propose a �tness function that takes into

account these connections and show that it can be used to identify

communities on synthetic benchmarks and on a real world appli-

cation. We can compare results with existing approaches for bi-

partite networks; numerical results illustrate the e�ciency of this

approach and identify a new manner of analyzing large datasets.
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