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ABSTRACT
�e (1 + (λ, λ)) genetic algorithm, �rst proposed at GECCO 2013,
showed a surprisingly good performance on some optimization
problems. �e theoretical analysis so far was restricted to the
OneMax test function, where this GA pro�ted from the perfect
�tness-distance correlation. In this work, we conduct a rigorous
runtime analysis of this GA on random 3-SAT instances in the
planted solution model having at least logarithmic average degree,
which are known to have a weaker �tness distance correlation.

We prove that this GA with �xed not too large population size
again obtains runtimes be�er than Θ(n logn), which is a lower
bound for most evolutionary algorithms on pseudo-Boolean prob-
lems with unique optimum. However, the self-adjusting version of
the GA risks reaching population sizes at which the intermediate se-
lection of the GA, due to the weaker �tness-distance correlation, is
not able to distinguish a pro�table o�spring from others. We show
that this problem can be overcome by equipping the self-adjusting
GA with an upper limit for the population size. Apart from sparse
instances, this limit can be chosen in a way that the asymptotic
performance does not worsen compared to the idealistic OneMax
case. Overall, this work shows that the (1+ (λ, λ)) GA can provably
have a good performance on combinatorial search and optimiza-
tion problems also in the presence of a weaker �tness-distance
correlation.
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•�eory of computation→�eory of randomized searchheuris-
tics;
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1 INTRODUCTION
�e (1+(λ, λ)) genetic algorithm (GA) was introduced by Doerr, Do-
err, and Ebel in 2013 [5]. It builds on the simple idea to �rst generate
from a single parent individual several o�spring via standard-bit
mutation with higher-than-usual mutation rate, to select the best
of these, and to perform a biased crossover with the parent to re-
duce the destructive e�ects of the high mutation rate. �is use of
crossover with the parent as repair mechanism is novel in evolu-
tionary discrete optimization.

�e so far moderate number of results on this GA show that it
has some remarkable properties. A mathematical runtime analysis
on the OneMax test function class [2–5] shows that the right pa-
rameter se�ing leads to an optimization time of slightly be�er than
O(n

√
logn). �is is remarkable as all previous runtime analyses of

evolutionary algorithms on the OneMax test function class showed
that these algorithms needed at least Ω(n logn) �tness evaluations.
�e result is remarkable also in that it is the �rst time that crossover
was rigorously shown to give an asymptotic runtime improvement
for a simple test function. A third noteworthy property of this GA
is that a simple self-adjusting choice of the o�spring population size
λ inspired by the 1/5-th rule from continuous optimization could
further improve the runtime to Θ(n). Again, this is the �rst time
that a 1/5-th rule type dynamic parameter choice could be proven
useful in discrete evolutionary optimization. �ese mathematical
analyses are complemented by an experimental investigation on the
OneMax test function, on linear functions with random weights,
and on royal road functions. Further, Goldman and Punch [7] in
the analysis of their parameter-less population pyramid algorithm
also used the (1 + (λ, λ)) GA as comparison, and it performed well
on random MAX-SAT instances.

It is clear that the intermediate selection of the best mutation
o�spring becomes most e�ective if there is a strong �tness-distance
correlation. �e OneMax function, by de�nition, has a perfect
�tness-distance correlation. So the question has to be asked to what
degree the positive results for OneMax remain true in optimization
problems with a weaker �tness distance correlation. To study this
question, we analyze the performance of the (1 + (λ, λ)) GA on
random satis�able 3-SAT instances in the planted solution model.
For these, the �tness-distance correlation can be scaled via the
instance density. In works [6, 11], the analysis of the performance
of the (1 + 1) EA on these instances has shown that when the
clause-variable ratio is m/n = Ω(n), then the following strong
�tness-distance correlation holds apart from an exponentially small
failure probability: For any two search points x ,y which are least
half as good as a random search point and such that they di�er
in one bit, the �tness and the distance are perfectly correlated in
that the one closer to the optimum has a �tness larger by Θ(m/n).
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From this, one could easily derive an O(n logn) optimization time
of the (1 + 1) EA. However, when the clause-variable ratio is only
logarithmic, this strong �tness-distance correlation is far from be-
ing satis�ed. �erefore, only the much weaker condition could
be shown that each pair (x ,y) as above shows a Θ(m/n) �tness
advantage of the closer search point with probability 1 − n3. �is
was enough to show that with high probability (over the joint prob-
ability space of instance and algorithm) the (1 + 1) EA �nds the
optimum in O(n logn) iterations.

Our results: We conduct a rigorous runtime analysis of the
(1 + (λ, λ)) GA (with mutation rate p = λ/n and crossover bias
c = 1/λ linked to the population size λ as recommended in [2]),
on the same type of random 3-SAT instance (see Section 2 for the
details) as regarded in [6, 11]. We observe that the weaker �tness-
distance correlation of low-density instance indeed poses a problem
for the (1 + (λ, λ)) GA when the population size (and thus the mu-
tation rate) is high. In this case, the mutation o�spring are distant
enough so that the weak �tness-distance correlation prevents the
(1 + (λ, λ)) GA to detect an individual closer to the optimum than
the typical o�spring. For the (1 + (λ, λ)) GA with static value of λ,
our experiments and informal considerations suggest that in this
case the (1 + (λ, λ)) GA, for large enough n, reverts to the behav-
ior similar to the (1 + 1) EA, however, the constant in O(n logn)
is proportional to 1/λ, just like it happens for OneMax. �ings
are worse when the self-adaptive version of the (1 + (λ, λ)) GA is
used. In this case, the low probability to �nd an improving solu-
tion lets the value of λ further increase as governed by the 1/5-th
rule parameter adaptation. Consequently, the probability to select
a pro�table individual out of the mutation o�spring population
further decreases and this negative e�ect becomes stronger. �e
result is that λ quickly reaches the allowed maximum of n and the
performance approaches the one of the (1 + 1) EA with the cost of
one iteration n times higher than usual.

On the positive side, we make precise that these negative e�ect
can be overcome in most cases by an appropriate choice of λ. We
show that when λ is asymptotically smaller that the fourth root
of the density, then the probability to �nd an improving solution
is asymptotically the same as for the optimization of OneMax.
Consequently, when the density is ω(log2 n), then we can still use
λ =

√
logn and obtain an expected optimization time (number of

�tness evaluations) ofO(n
√

logn). Note that in this work, we do not
try to achieve the later improvement of this runtime guarantee [4]
by a factor Θ(

√
log log logn/log logn) though we are optimistic

that such a guarantee can be shown with mildly more e�ort. For a
logarithmic instance density, the smallest regarded here and in [6,
11], for any ε > 0 with a choice of λ = log0.25−ε n we still obtain
a runtime of O(n log0.75+ε n) and beat the O(n logn) performance
the (1 + 1) EA has on these instances.

For the self-adjusting version, where a typical run of the (1 +
(λ, λ)) GA on OneMax uses λ-values of up to

√
n, we show that

adding an upper limit up to which the value of λ can at most grow,
overcomes this di�culties sketched above. �e runtime increase
incurred by such a limit is again manageable. If the upper limit is λ
and it depends on the instance density as λ = o((m/n)4), then the
runtime of the self-adjusting (1+(λ, λ))GA isO(n ·max{1, logn/λ}).

Hence already for densities asymptotically larger than log4 n, we
obtain the linear runtime that is valid for the ideal OneMax �tness
landscape for densities at least logarithmic.

Techniques employed: Our main result that λ = o((m/n)1/4)
su�ces for the well-functioning of the (1 + (λ, λ)) GA on our ran-
dom 3-SAT instances of densitym/n is based on a di�erent �tness-
distance correlation result than those used in [6, 11]. Whereas the
la�er require that with good probability all neighbors of a given
solution (not excessively far from the optimum) have a �tness ad-
vantage or disadvantage of order m/n (depending on whether they
are closer to the optimum or further away), we require this con-
dition only for a certain fraction of the neighbors. �is relaxation
will not be a problem since it only reduces the probability that the
(1 + (λ, λ)) GA �nds a certain improvement by a constant factor
(being an elitist algorithm, we do not need to care about �tness
losses). On the positive side, this relaxation (i) allows us to extend
the �tness-distance correlation requirement to all vertices in the
λ-neighborhood instead of only all direct neighbors and (ii) gives
us that this correlation property with probability 1 − exp(−Ω(n))
holds for all vertices (not excessively far from the optimum). Con-
sequently, the performance results we show hold for all but an
exponentially small fraction of the input instances. �is �tness-
distance correlation result also implies that the result of [6] for
logarithmic densities holds in the same strong version as the one
for linear densities, namely that on all but an exponentially small
fraction of the input instances the expected runtime is O(n logn).

To prove our �tness-distance correlation result, we use McDi-
armid’s bounded di�erences version [9] of the Azuma martigale
concentration inequality in a novel way. To reduce the maximum
in�uence of the independent basic random variables on the discrete
quantity of interest, we replace this quantity by a larger contin-
uous function in a way that the in�uence of each basic random
variable is signi�cantly reduced. We are not aware of this type of
argument being used before, either in evolutionary computation or
randomized algorithms in general.

Most of the proofs in this paper are omi�ed for space reasons.
�e full version of this work is available at h�p://arxiv.org/abs/1704.
04366. �e source code for experiments is available at GitHub1.

2 PRELIMINARIES
In this section, we de�ne the notation, algorithms, and problems
we regard in this work. Our notation is standard. We write [a..b]
to denote the set of all integers in the real interval [a;b]. We write
[r ] to denote the integer closest to the real number r , rounding up
in case of ties.

2.1 �e k-CNF SAT Problem
Consider a set V of n Boolean variables V = {x1,x2, . . . ,xn }. A
clause C over V is the logical disjunction of exactly k literals, C =
l1∨l2 . . .∨lk , and each literal li is either a variable x j or its negation
¬x j . A k-CNF formula F is a logical conjunction of exactlym clauses
F = C1 ∧ C2 ∧ . . . ∧ Cm . A k-CNF formula F is satis�able if and
only if there is an assignment of truth values to the variables such
that every clause contains at least one true literal, i.e., the whole
expression F evaluates to true. We shall only regard the case k = 3,
1h�ps://github.com/mbuzdalov/papers/tree/master/2017-onell-3cnf
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but we have no doubts that the main claims are true for any constant
k ≥ 3.

We consider random 3-CNF formulas consisting of m clauses of
lengthk = 3 over then variables inV . We take the usual assumption
that each clause consists of distinct variables. �is assumption is
very natural since any clause of length 3 that contains repeating
variables can be immediately reduced to an equivalent clause of
length 2 or, alternatively, to a tautology. However, we explicitly
allow repeated clauses in F .

Let Ωn,m be the �nite set of all 3-CNF formulas over n variables
and m clauses. We work in the so-called planted solution model.
Hence there is a target assignment x∗ and F is a formula chosen
uniformly at random among all formulas in Ωn,m which are satis-
�ed by x∗. We refer to [6, 11] for a justi�cation of this model and a
discussion how it relates to other random satis�ability problems.

We shall, without loss of generality, assume that the planted
solution is x∗ = (1, . . . , 1). �is is justi�ed by the fact that we
only regard unbiased algorithms, that is, algorithms that treat bit
positions and the bit values 0 and 1 symmetrically. Hence these
algorithms cannot pro�t from “knowing” the optimal solution. A
random formula in this model can be constructed bym times (with
replacement) choosing a random clause satis�ed by x∗, that is, a
random clause among all clauses containing at least one positive
literal. Note that such a random formula may have other satisfying
assignment thanx∗. Nevertheless, we denote the structural distance,
which is the Hamming distance here, of a solution x to the planted
solution x∗ by d(x) = |{i : xi = 0}|. When talking about �tness-
distance correlation and related concepts, we shall always refer to
this distance.

2.2 3-CNF and Evolutionary Algorithms
An assignment of true/false values to a set of n Boolean variables
can be represented by a bit string x ∈ {0, 1}n such that xi = 1 if
and only if the i-th variable is having the value true. For a length-m
formula F on n variables, we de�ne the �tness function f = fF :
{0, 1}n → [0..m] via f (x) = |{C ∈ F | C is satis�ed by x}|, the
number of clauses satis�ed by the assignment represented by x . If
F is satis�able, the task of �nding a satisfying assignment reduces
to the task of maximizing f .

In [6], it is proven that whenm/n > c lnn for su�ciently large
constant c , the runtime of the (1+1) EA isO(n logn)with probability
polynomially close to one. One of the key concepts of the proof is
the �tness-distance correlation. In the case of logarithmic density,
this concept can be formulated as follows:

Lemma 2.1 (Lemma 4 from [6]). Let 0 < ε < 1
2 . Assume that

m/n > c lnn for su�ciently large constant c . �en there exist two

constants c1 and c2 such that, for any two solutions x1 and x2 such
that

• they are di�erent in exactly one bit;

• this bit is set to 1 in x2;
• the structural distance d(x1) from x1 to the planted solution

is at most (1/2 + ε)n;
we have c1m/n ≤ f (x2) − f (x1) ≤ c2m/n with probability at least

1 − n−3
.

Algorithm 1 : (1 + (λ, λ)) GA with �xed integer population size λ
1: x ← UniformRandom({0, 1}n ) . Initialization
2: for t ← 1, 2, 3, . . . do . Optimization
3: p ← λ/n . Mutation probability
4: c ← 1/λ . Crossover probability
5: ` ∼ B(n,p) . Mutation strength
6: for i ∈ [1..λ] do . Phase 1: Mutation
7: x (i) ← Mutate(x , `)
8: end for
9: x ′ ← UniformRandom({x (j) | f (x (j)) = max{ f (x (i))}})

10: for i ∈ [1..λ] do . Phase 2: Crossover
11: y(i) ← Crossover(x ,x ′, c)
12: end for
13: y ← UniformRandom({y(j) | f (y(j)) = max{ f (y(i))}})
14: if f (y) ≥ f (x) then . Selection
15: x ← y
16: end if
17: end for

2.3 �e (1 + (λ, λ)) Genetic Algorithm
�e (1 + (λ, λ)) Genetic Algorithm, or the (1 + (λ, λ)) GA for short,
was proposed by Doerr, Doerr and Ebel in [5]. Its main working
principles are (i) to use mutation with a higher-than-usual mutation
rate to speed up exploration and (ii) crossover with the parent to
diminish the destructive e�ects of this mutation. Two versions of
the algorithm were proposed, one with static parameters and one
with a self-adjusting parameter choice.

�e �xed-parameter version is outlined in Algorithm 1. It uses
the following two variation operators.

• `-bit mutation: �e unary mutation operator Mutate(x , `)
creates from x ∈ {0, 1}n a new bit string y by �ipping
exactly ` bits chosen randomly without replacement.

• biased uniform crossover: �e binary crossover operator
Crossover(x ,x ′, c)with crossover bias c ∈ [0, 1] constructs
a new bit string y from two given bit strings x and x ′ by
choosing for each i ∈ [1..n] the second argument’s value
(yi = x ′i ) with probability c and se�ing yi = xi otherwise.

�e (1 + (λ, λ)) GA has three parameters, the mutation rate p,
the crossover bias c , and the o�spring population size λ. A�er
randomly initializing the one-element parent population {x}, in
each iteration the following steps are performed:

• In the mutation phase, λ o�spring are sampled from the
parent x by applying λ times independently the mutation
operator Mutate(x , `), where the step size ` is chosen at
random from the binomial distribution B(n,p). Conse-
quently, each o�spring has the distribution of standard bit
mutation with mutation rate p, but all o�spring have the
same Hamming distance from the parent.

• In an intermediate selection step, the mutation o�spring
with maximal �tness, called mutation winner and denoted
by x ′, is determined (breaking ties randomly).

• In the crossover phase, λ o�spring are created from
x and x ′ using via the biased uniform crossover
Crossover(x ,x ′, c).
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• Elitist selection. �e best of the crossover o�spring (break-
ing ties randomly and ignoring individuals equal to x)
replaces x if its �tness is at least as large as the �tness of x .

�roughout this paper we use the mutation rate p = λ/n and the
crossover bias c = 1/λ as recommended and justi�ed in [5, Sections
2 and 3] and [2, Section 6].

For this (1+(λ, λ))GA, a �rst runtime analysis [5] was conducted
on the OneMax test function

OneMax : {0, 1}n → Z;x 7→
n∑
i=1

xi .

It was shown that for arbitrary λ, possibly being a function of n,
the expected optimization time (number of �tness evaluations until
the optimum is evaluated for the �rst time) is O(max{nλ, n logn

λ }).
�is expression is minimized for λ = Θ(

√
logn), giving an upper

bound of O(n
√

logn). �e analysis, on which we will build on in
this work, uses the �tness level method [12]. Roughly speaking, the
arguments are that in an iteration starting with an individual x with
�tness distances d = d(x) = n − OneMax(x) (i) with probability
Ω(min{1,dλ2/n}) the mutation winner is less than ` �tness levels
worse than the parent, and that (ii) in this case with constant proba-
bility the crossover winner is be�er than the parent. Consequently,
the expected number of iterations needed to gain an improvement
from x is O(max{1,n/dλ2}). Summing over all d and noting that
one iteration uses 2λ �tness evaluations gives the claim.

�is result is interesting in that this is the �rst time that crossover
was proven to bring an asymptotic speed-up for a simple �tness
landscape like OneMax. Previously, a constant improvement was
shown to be possible for OneMax using crossover [10]. Note that
all mutation-based algorithms that treat bit positions and bit values
symmetrically need at least Ω(n logn) �tness evaluations, as this is
the unary unbiased black-box complexity of OneMax [8].

�e (1 + (λ, λ)) GA, which in principle nothing more than a
(1 + 1) EA with a complicated mutation operator, in experiments
showed a performance superior to the one of the classic (1 + 1) EA
on OneMax (showing also that the constants hidden in the asymp-
totic notation are small), on linear functions and on royal road
functions [5] as well as on maximum satis�ability instances [7].

Subsequently, the runtime analysis on One-
Max was improved [4] and the tight bound of
Θ(max{n logn/λ,nλ log log λ/log λ}) was shown for all values
of λ ≤ n. �is is minimized to Θ(n

√
logn log log logn/log logn)

when se�ing λ = Θ(
√

logn log logn/log log logn).
Already in [5], it was observed that a dynamic choice of the

parameter λ can reduce the runtime to linear. For this, a �tness
dependent choice of λ = d n

n−OneMax(x ) e su�ces. �is seems to be
the �rst time that a super-constant speed-up was provably obtained
by a dynamic parameter choice (see [1] for a result showing that also
the (1+λ) EA can pro�t from a dynamic choice o�spring population
size when optimizing OneMax). Since a �tness-dependent choice
as above is unlikely to be guessed by an algorithm user, also a self-
adjusting variant se�ing λ success-based according to a 1/5-th rule
was proposed in [5]. �at this indeed closely tracks the optimal
value of λ and gives a runtime of O(n) was later shown in [3].
�e self-adjusting version of the (1 + (λ, λ)) GA is described in
Algorithm 2.

Algorithm 2 : (1 + (λ, λ)) GA with self-adjusting λ ≤ λ
1: F ← constant ∈ (1; 2) . Update strength
2: U ← 5 .�e 5 from the “1/5-th rule”
3: x ← UniformRandom({0, 1}n )
4: for t ← 1, 2, 3, . . . do
5: p ← λ/n, c ← 1/λ, λ′ ← [λ], ` ∼ B(n,p)
6: for i ∈ [1..λ′] do . Phase 1: Mutation
7: x (i) ← Mutate(x , `)
8: end for
9: x ′ ← UniformRandom({x (j) | f (x (j)) = max{ f (x (i))}})

10: for i ∈ [1..λ′] do . Phase 2: Crossover
11: y(i) ← Crossover(x ,x ′, c)
12: end for
13: y ← UniformRandom({y(j) | f (y(j)) = max{ f (y(i))}})
14: if f (y) > f (x) then . Selection and Adaptation
15: x ← y, λ← max{λ/F , 1}
16: else if f (y) = f (x) then
17: x ← y, λ← min{λF 1/(U−1), λ}
18: else
19: λ← min{λF 1/(U−1), λ}
20: end if
21: end for

�e main idea of the self-adjusting (1 + (λ, λ)) GA is as follows.
If an iteration leads to an increase of the �tness, indicating that
progress is easy, then the value of λ is reduced by a constant factor
F > 1. If an iteration did not produce a �tness improvement, then
λ is increased by a factor of F 1/4. Consequently, a�er a series of
iterations with an average success rate of 1/5, the algorithm ends up
with the initial value of λ. Needless to say, λ can never drop below
1 and never rise above n (when using the recommended mutation
rate λ/n). Since we will later regard a self-adaptive version with
di�erent upper limit, we formulated Algorithm 2 already with the
additional parameter λ as upper limit. Hence the self-adaptive
(1 + (λ, λ)) GA as proposed in [5] uses λ = n. We also note that
whenever λ should be interpreted as an integer (e.g. when the
population size of the current iteration needs to be determined),
the value λ′ = [λ] rounded to the closest integer is taken instead.

2.4 Concentration Inequalities
In this section we describe the concentration inequalities which we
use in this paper.

Suppose X1, . . . ,Xn are independent random variables taking
values in [−1, 1], however, such that for some κ > 0 we have
Pr[Xi = 0] ≥ 1−κ for all i ∈ [1..n]. For this situation, the following
corollary from the Bernstein’s inequality, which seems to be rarely
used in the theory of evolutionary computation, holds.

Pr[X ≤ µ − δ ] ≤ max{exp(−δ2/4κn), exp(− 3
8δ )} (1)

Suppose X1, . . . ,Xn are arbitrary independent random variables,
and assume the function f de�ned over the product of the domains
of the Xi satis�es

sup
x1,x2, ...,xn, x̂i

| f (x1, . . . ,xn ) − f (x1, . . . , x̂i , . . . ,xn )| ≤ ci
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for all 1 ≤ i ≤ n. �en, for all δ > 0, the following McDiarmid’s

inequality [9] holds.

Pr[f (X1, . . . ,Xn ) − E[f (X1, . . . ,Xn )] ≥ +δ ] ≤ e
− 2δ 2∑n

i=1 c
2
i . (2)

3 ALMOST LIKE ONEMAX: CONDITIONS FOR
THE (1 + (λ, λ)) GA TO BEHAVEWELL ON
RANDOM 3-CNF FORMULAS

In this section, we formulate and prove conditions which are enough
for the (1 + (λ, λ)) GA to have local �tness-distance correlation.

In the Doerr, Neumann and Su�on paper [6], two results were
proven. When the clause densitym/n is Ω(n), then a strong �tness
distance correlation is exhibited. Apart from an exponentially small
failure probability, the random instance is such that any possible
one-bit �ip leads to a �tness gain or loss (depending on whether
the distance decreases or not) of Θ(m/n). In particular, the �tness
function is such that there are no misleading one-bit �ips. On
such a function, the classic “multiplicative dri� with the �tness”
proof for OneMax can be imitated and easily yields an O(n logn)
optimization time (in expectation and with high probability) [6,
�eorem 2].

For smaller clause densities m/n = Ω(logn), with probability
1−o(1), taken over both the random 3-CNF formula and the random
decisions of the optimization process, also an O(n logn) optimiza-
tion time is observed [6, �eorem 3]. �e di�erence to the previous
se�ing is that now there may be misleading one-bit �ips, however,
they are rare enough that a typical run does not encounter them.

In both these theorems, the (1 + 1) EA with mutation rate 1/n
is regarded. Consequently, with constant probability exactly one
bit is �ipped. �is together with the �tness-distance correlations
exhibited is exploited to compute the dri�. In contrast to this, the
(1 + (λ, λ)) GA uses larger mutation rates, meaning that the typical
distance between parent and o�spring is larger. In addition, it does
not need to estimate whether parent or o�spring is closer to the
optimum, but it needs to select among several o�spring the one
with slightly smaller distance.

For example, in the case λ = 10 consider a certain point in time
when the parent individual has already a decent �tness. �en most
o�spring in the mutation phase will have a genotypic distance that
is worse than that of the parent by a margin of 10. An o�spring
which has �ipped a single bit which is missing in the parent will
have a distance of 8. To be successful, this 20% advantage has to be
visible for the (1+(λ, λ))GA via a su�ciently strong �tness-distance
correlation.

�e common sense suggests that the bigger the λ is, the more
problems the algorithm should have in detecting a “good” o�spring.
On the other hand, the bigger the clause densitym/n is, the simpler
it should be for the algorithm to handle bigger values of λ, as the
problem becomes more similar to OneMax.

First, we investigate how the average �tness of a search point at a
distance d from the optimum looks like, and how a di�erence of two
such values behaves asymptotically depending on the di�erence
between distances.

Lemma 3.1. �e probability for a random 3-CNF clause C , consist-
ing of distinct variables and satis�ed by the planted assignment x∗,

to be also satis�ed by an assignment x with the Hamming distance

d = d(x) from x∗, is P(n,d) = 6·(n3)+(n−d3 )
7·(n3) .

Lemma 3.2. Ifn−d = Θ(n) and ` = o(n), then P(n,d)−P(n,d+`) =
Θ(`/n).

Corollary 3.3. Consider a random 3-CNF formula on n variables

andm clauses with the planted assignment x∗. �e expected �tness

favg(d) of any search point x with the Hamming distance d = d(x)
from x∗ is favg(d) =m · 6·(n3)+(n−d3 )

7·(n3) .

For n − d = Θ(n) and ` = o(n), we have
favg(d) − favg(d − `) = Θ(m`/n).

As we see, the average �tness values demonstrate a good �tness-
distance correlation. However, the actual �tness values of concrete
search points may deviate quite far apart from the average val-
ues when the concrete 3-CNF formula is �xed. To show a good
performance of the (1+ (λ, λ)) GA, we now show a stronger �tness-
distance correlation for o�spring from the same parent. For a
number λ to be made precise later, we de�ne the following.

De�nition 3.4. Consider a search point x with a distance d > 0
from the planted assignment x∗. Let ` ∈ [1..λ].

�e set X−
`

:= X−
`
(x) of `-bad o�sping is the set of all search

points produced from �ipping in x exactly ` bits which coincide in
x and x∗.

�e set X+
`

:= X+
`
(x) of `-good o�spring is the set of all search

points produced from �ipping in x exactly ` bits of which at least
one is di�erent in x and x∗.

�e point x is well-behaved if for all ` ∈ [1..λ]
(i) there are at most |X−

`
|/λ elements x− ∈ X−

`
such that

f (x) − f (x−) ≤ favg(d) − favg(d + ` − 1), and
(ii) there are at most |X+

`
|/2 elements x+ ∈ X+

`
such that

f (x) − f (x+) ≥ favg(d) − favg(d + ` − 1).
�e motivation for this de�nition is that whenever the current

search point x is well-behaved, the selection inside the mutation
phase of the (1 + (λ, λ)) GA is able to distinguish with good proba-
bility an o�spring with one of the missing bits guessed right from
the o�spring with no missing bit �ipped.

Lemma 3.5. Assume x is the current best solution of the (1 +
(λ, λ)) GA, f (x) < m, x is well-behaved and the current value of

λ satis�es λ ≤ λ. �en, whenever at least one good o�spring appears

at the mutation phase, the (1 + (λ, λ)) GA will choose one of them

with at least constant probability as mutation winner.

Now we show that for all su�ciently small values of λ, all in-
teresting search points x are well-behaved with an overwhelming
probability. In a sense, this is the core of the main results of this
paper. �e proof uses a novel way to make McDiarmids inequality
more powerful by arti�cially reducing the in�uence a change of
the value of a random variable.

Theorem 3.6. If λ is an integer satisfying λ =

o(min{n, (m/n)1/4}), then with probability e−ω(n) (taken in

the probability space of random 3-CNF formulas) all x with

n − d(x) = Θ(n) are well-behaved.
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Proof. �ere are 2n possible search points x in total (including
the search points which are too far from the optimum), and for
every search point 2λ = O(n) statements about sets X−

`
(x) and

X+
`
(x) need to be proven. So by a union bound, it is enough to

prove that for each ` ∈ [1..λ] and each x with probability e−ω(n)
the sets X−

`
(x) and X+

`
(x) are as in the de�nition of well-behaved.

For the remainder of this proof, we �x an x and a value of `. Let
d := d(x). We prove only the statement on X−(x). �e statement
on X+(x) can be proven in the same way and then even yields a
sharper bound as required in De�nition 3.4.

For convenience, we use the short-hand notation X− = X−
`
(x).

For an x− ∈ X−, the �tness loss f (x) − f (x−) is a random variable
which is determines by the random formula F . We denote by f − =
favg(d+`) the average value of f (x−) and by f = = favg(d+`−1) the
threshold value from De�nition 3.4. We use an indicator random
variable V (x−) for the event that x− violates the �tness constraint
in De�nition 3.4, that is,

V (x−) :=
{

1, f (x) − f (x−) ≤ favg(d) − f =,

0, otherwise.

�e statement we want to prove is equivalent to

Pr
[ ∑
x−∈X −

V (x−) > |X
− |
λ

]
< e−ω(n). (3)

�is expression calls for one of the Cherno� bounds to be applied.
However, the resulting bounds are not strong enough for our aim to
be achieved. For this reason, we introduce a new random variable,
Ṽ (x−), which is less sensitive to the change of a single clause in the
random instance. Let f ≡ = (f − + f =)/2. �en

Ṽ (x−) :=




0, f (x) − f (x−) ≥ favg(d) − f ≡;
1, f (x) − f (x−) ≤ favg(d) − f =;
f (x )−f (x−)−(favg(d )−f =)

f =−f ≡ , otherwise.

As Ṽ (x−) ≥ V (x−) with probability one, it is enough to show,
instead of (3), that

Pr
[ ∑
x−∈X −

Ṽ (x−) > |X
− |
λ

]
< e−ω(n). (4)

For brevity, we write Ṽ Σ :=
∑
x−∈X − Ṽ (x−). We interpret the

random variable Ṽ Σ as a function of the independent uniformly
distributed random variables C1, . . . ,Cm which de�ne the random
formula F . Recall that, by Corollary 3.3, f = − f − = Θ(m/n), and
so is f = − f ≡. �us replacing a single Ci in F by C ′i introduces
a change of at most 2/(f = − f ≡) = Θ(n/m) in the value Ṽ (x−),
however, only for those x− for which x and x− di�er in one of
the at most 6 variables contained in Ci ∪C ′i (for all other x−, the
value of Ṽ (x−) does not change). �e number of the former kind
of x− is at most

(n−d
`

) − (n−d−6
`

)
=

∑5
i=0

( (n−d−i
`

) − (n−d−(i+1)
`

) )
=∑5

i=0
(n−d−(i+1)

`−1
) ≤ 6

(n−d−1
`−1

)
= 6

(n−d
`

) `
n−d = |X− | · Θ(`/n). �e

maximum change of Ṽ Σ in�icted by changing one clause hence is
|X− | ·O(`/m).

We use it to apply McDiarmid’s inequality, see (2), and obtain

Pr
[
Ṽ Σ > |X− |/λ

]
= Pr

[
Ṽ Σ > E

[
Ṽ Σ

]
+

(
|X− |/λ − E

[
Ṽ Σ

] )]

≤ exp
©«
−

2
( |X − |

λ
− E [

Ṽ Σ
] )2

m
(
|X− |O

(
`
m

))2
ª®®¬
= exp

©«
−Ω

©«
m

(
1 − λ E[Ṽ Σ]

|X − |
)2

`2λ2

ª®®®¬
ª®®®¬
.

(5)
To complete this bound, we need to show that the term (1 −

λE[Ṽ Σ]/|X− |) is at least some positive constant. To do this with
the least e�ort, we introduce the random variableV (x−) de�ned by

V (x−) =
{

1, f (x) − f (x−) ≤ favg(d) − f ≡,
0, otherwise

for all x− ∈ X−, and observe that it dominates Ṽ (x−). Consequently,
we have E[Ṽ (x−)] ≤ E[V (x−)] = Pr[f (x) − f (x−) ≤ favg(d) − f ≡].
By symmetry, these probabilities are identical for all x− ∈ X−. As
E[f (x−)] = f −, f ≡ − f − = Θ(m/n), and E[f (x) − f −] = Θ(`m/n),
the bound from (1) gives
Pr[f (x) − f (x−) ≤ favg(d) − f ≡]

= Pr[f (x) − f (x−) ≤ E[f (x)] − E[f (x−)] + f − − f ≡]
= Pr[f (x) − f (x−) ≤ E[f (x) − f (x−)] − Θ(m/n)]
≤ max{exp(−Ω(m2/n2)/(12`m/n)), exp(−(3/8)Ω(m/n))}
= max{exp(−Ω(m/`n)), exp(−Ω(m/n))} = exp(−Ω(m/`n)).

Note that f (x) − f (x−) is the sum of m independent random
variables describing the in�uence of each of them random clauses
on this expression. With probability at least 1 − 3`/n, a random
clause contains none of the λ variables x and x− di�er in. In this
case, the clause contributes equally to f (x) and f (x−), hence zero
to the di�erence.

To �nish this part, we shall note that we can estimate

λ
E[Ṽ Σ]
|X− | =

λ

|X− |
∑

x−∈X −
E[Ṽ (x−)] ≤ λ

|X− |
∑

x−∈X −
E[V (x−)]

= λE[V (x−)] = λ exp(−Ω(m/`n)) ≤ λ exp(−Ω(m/λn)).
Using the assumption λ = o((m/n)1/4), we estimate

λ · exp(−Ω(m/λn)) = o
((m

n

)1/4)
· exp

(
−ω

((m
n

)3/4))
= o(1),

which means that 1 − λE[Ṽ Σ]/|X− | = 1 − o(1). Consequently,
from (5) we obtain

Pr
[
Ṽ Σ > |X− |/λ

]
≤ exp

(
−Ω

(
m

`2λ2

))
≤ e−ω(n),

where the second estimate follows from ` ≤ λ and λ = o((m/n)4).
�is �nishes the proof. �

Now we are ready to state the main result of this section.
Theorem 3.7. Consider solving random 3-CNF formulas with

planted solutions on n variables andm clauses by the (1 + (λ, λ)) GA,
wherem/n > c logn for large enough constant c . If there exists some

integer λ = o(min{n, (m/n)1/4}) such that, during the entire run of

the (1 + (λ, λ)) GA, λ ≤ λ, and the algorithm starts from a random

assignment, then with probability 1 − o(1), taken both over the ran-

dom 3-CNF formulas and the algorithm decisions, the algorithm will

demonstrate, in every point, the same progress, divided by at most

constant, as the same algorithm optimising OneMax on n variables.
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4 RUNNING TIME OF THE ADAPTIVE
(1 + (λ, λ)) GAWITH CONSTRAINED λ

In the previous section, we were able to show that the (1+(λ, λ))GA
can cope with a weaker �tness-distance correlation when the o�-
spring population size λ is not too large. Since the self-adjusting
version of this GA can increase λ to relatively large values, see [3],
we now propose a variant that avoids this. For an integer λ, the
λ-constrained self-adjusting (1 + (λ, λ)) GA is identical to the self-
adjusting GA proposed in [5] except that a�er the adjustment a
λ-value larger than λ is reduced to λ. Consequently, this GA never
uses an o�spring population size larger than λ. Our main result is
that even with a logarithmic upper bound λ, the asymptotic perfor-
mance on OneMax is not worsened. �is allows to use the insights
of the previous section and prove that the constrained self-adjusting
GA performs well also on our random 3-SAT instances.

Theorem 4.1. Let λ = λ(n) be an integer. �e expected running

time of the λ-constrained self-adjusting (1+ (λ, λ)) GA on OneMax is

O(n ·max{1, (logn)/λ}). If λ = o(min{n, (m/n)1/4}), then this result
extends to the random 3-SAT instances regarded in this work. In partic-

ular, by taking λ = dmin{√n, (m/n)1/4−ε }e for any su�ciently small

constant ε , this runtime becomesO(n ·max{1, (logn)/(m/n)1/4−ε )})
and thus linear form/n ≥ (logn)4+20ε

.

We brie�y sketch why this result is true. In [5], it was shown
that for the optimization of OneMax an asymptotically optimal
value of λ, given the current Hamming distance d(x) = n − f (x)
from the optimum, is λ∗ =

√
n/d(x). �e self-adjusting GA, as seen

in experiments [5], tends to keep λ close to this optimum value,
and this e�ect has been proven in [3].

When d(x) is larger than n/(2λ)2, then this optimal value λ∗ is
below λ. Hence, very roughly speaking, the λ-constrained and the
unconstrained variants of the self-adjusting GA behave identical
(in fact, the constrained version rather pro�ts from the constraint
on λ, which prevents uselessly large λ-values). Consequently, the
expected time to reduce the d-value from its initial value to a value
of at most n/(2λ)2 is at most O(n) as for the unconstrained version.

When d(x) ≤ n/(2λ)2, then the current value of λ will stay close
to λ. Consequently, again very roughly speaking, a run of the con-
strained self-adjusting GA is similar to one with �xed value λ = λ
for the o�spring population size. For the la�er, the expected time
(always counting �tness evaluations) to improve a current d-value
of d(x) is O(max{λ,n/d(x)λ}). Hence this second part of the opti-
mization process takes an expected time of at most O((n logn)/λ).

5 EXPERIMENTS
Although theoretical results give us insights on how powerful our
adaptation schemes are, they may be not enough to tell practi-
tioners whether they can be used to solve practical problems. To
complement our theoretical research, we conducted a series of
experiments, which show practical e�ciency of these schemes.

5.1 Results for OneMax
�e �rst experiment was dedicated to evaluation of performance
for �xed-size (1 + (λ, λ)) GA, as well as unlimited and constrained
adaptation schemes, on the OneMax problem. Similar experiments

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

10

15

20

25

30

35

40

45

Problem size

Ev
al
ua
tio

ns
/p

ro
bl
em

siz
e

λ = 2
λ = 3
λ = 4
λ = 5
λ = 6
λ = 7
λ = 8
λ = 9
λ = 10
λ = 11
λ = 12
λ = 13
λ = 14
λ = 15
λ = 16
λ = 17
λ = 18
λ = 19
λ = 20

λ ≤ 2 lnn
λ ≤ n

(1+1) EA

Figure 1: Plots of median runtimes on OneMax

had been also performed in [5]. In this paper, we evaluated much
larger problem sizes, which helped revealing subtle di�erences in
behaviour of various algorithms. We also evaluated more �xed
population sizes systematically, and we also included the version of
the (1 + (λ, λ)) GA with constrained adaptation (λ ≤ 2 log(n + 1)).

We considered problem sizes to be powers of two, from 24 to 224.
�e �xed population sizes were chosen to be λ ∈ [2..20]. For the
adaptive (1 + (λ, λ)) GA schemes, the unlimited (denoted as λ ≤ n)
and the logarithmically constrained (denoted as λ ≤ 2 lnn) ones
were included in the comparison. We also ran the (1 + 1) EA. For
every algorithm and problem size, 100 runs were executed, and the
median number of function evaluations is reported.

�e results are presented in Fig. 1. �e abscissa axis, logarith-
mically scaled, represents the problem size, while the ordinate
axis, linearly scaled, represents the number of function evaluations,
divided by the problem size. �us, Θ(n logn) algorithms give a
straight inclined line, and Θ(n) algorithms give a horizontal line.

It can be seen that the �xed-size versions of the (1 + (λ, λ)) GA
demonstrate a slightly superlinear behaviour at small sizes, and then
switches at certain threshold to a strictly Θ(n logn) behaviour. �is
behaviour follows from the Θ(min(n logn/λ,nλ log log λ/log λ))
bound proven in [4]. �e lower envelope of the �xed-size plots
exactly corresponds to the optimal �xed population size as a
function of the problem size. It can be seen that it behaves
like a convex upwards function. �is ideally corresponds to the
Θ(n

√
logn log log logn/log logn) running time estimation proven

for the optimal �xed population size in [4].
Both adaptive versions demonstrate easy-to-see linear runtime,

with a quotient of approximately 11 for the unlimited adaptation,
and of approximately 12.5 for the logarithmically constrained adap-
tation. �us, constraining the population size by a logarithmic
bound not only preserves the asymptotics of the runtime, but also
changes the absolute performance only very li�le.

5.2 Results for Random 3-CNF Formulas
�e second experiment was dedicated to solving random 3-CNF
formulas with planted solutions. �e same set of algorithms was
considered. We took the problem sizes again in the form of 2t ,
where t ∈ [7..20]. �e rise of the lower bound is due to the fact
that, at sizes 26 and below, di�cult formulas became too o�en to
appear, and studying the behaviour of the (1 + (λ, λ)) GA on such
formulas is not a scope of this research. �e number of clausesm
was chosen to bem(n) = b4n lognc.
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Figure 2: Plots of median runtimes on random 3-CNF for-
mulas with planted solutions

20 21 22 23 24 25 26 27 28
21

25

29

213

√
n/d

λ

Figure 3: Example runs with unconstrained λ, n = 216

�e results are presented in Fig. 2. �e trends seen here are quite
similar to the ones for OneMax (see Fig. 1). One can see that the
constrained adaptive (1 + (λ, λ)) GA, even with the logarithmic
adaptation constraint (which has not yet been proven to be helpful)
still performs be�er than all �xed-size variations. However, its
runtime is probably not linear for this problem. �e (1 + (λ, λ)) GA
with unlimited adaptation, on the other hand, performs worse than
the (1 + 1) EA. �e reasons is that the population sizes λ = Θ(√n),
as well as mutation probabilities, are too high for �eorem 3.7 to
hold, thus the adaptation logic of the (1 + (λ, λ)) GA breaks down.

We performed an additional series of runs, where for each itera-
tion of each run we recorded the distance to the optimum d(x) of
the currently best individual x , as well as the value of λ. �e size
was chosen to be n = 216, and the number of clausesm was, again,
m(n) = b4n lognc. We made �ve runs, for which plots for depen-
dencies of λ on d = d(x) are presented on Fig. 3. For convenience,
the values of

√
n/d were taken instead of d(x) to use with the ab-

scissa axis, and both axes are logarithmic. In these coordinates, the
optimal λ(d) =

√
n/d values form a straight line (drawn in black).

Fig. 3 demonstrates that for distances which satisfy
√
n/d ≥ logn,

the plots stay around the optimal values for λ. For smaller distances,
adaptation starts to diverge, and values of λ tend to be greater than
necessary. In the main experiments, the medians for the maximum
λ values were as follows: 2109.99 for n = 213, 4747.47 for n = 214,
10681.82 for n = 215 and 27945.01 for n = 216. �ese values suggest
that maximum λ tends to be Θ(n).

6 CONCLUSION
�e runtime analysis of the (1 + (λ, λ))-GA conducted in this work
shows that the GA can cope with a weaker �tness-distance cor-
relation than the perfect one of the OneMax test function, the
only example mathematically analyzed before. However, a weaker
�tness-distance correlation requires that the population size λ is
not taken too large, as otherwise the strong mutation rate of λ/n
creates o�spring that are too far from each other for the GA to �nd
the closest one to the optimum in the intermediate selection step.

Our recommendation on how to use the (1+ (λ, λ))-GA therefore
is to �rst try a moderate size constant λ, say λ = 5 or λ = 10. If
this leads to an improved performance, than larger values of λ can
be tried. For the self-adjusting version of the GA, we generally
recommend using an upper limit for the value which λ can take.
For �rst experiments, this value should be taken around the best
static value for λ and then slowly increased.

We remark that the main part of the body of the GA, namely the
generation of y from x , can be used as a mutation operator also in
other algorithms. We have no experience with this approach so far,
but are optimistic that it can give good results as well.
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