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ABSTRACT

The goal of the PROTERRA project of the Brazilian National
Institute of Colonization and Agrarian reform (INCRA) is
to establish settlements of multiple families on land which
formerly had a single owner. The main problem which arises
in the project is to subdivide the land into lots to be desig-
nated to the families. This problem is difficult since several
constraints stemming from legal or ethical considerations
have to be considered. Among the constraints are respecting
natural reserves, balancing access to rivers with the size of
the lots, and a fair distribution with respect to soil quality.

This problem has been mainly solved manually until now.
In this paper we propose a genetic algorithm to solve it. We
present several algorithmic components including a construc-
tive heuristic and recombination and mutation operators
that take into account the specifics of the problem, propose
a technique to generate artificial instances for testing, and
report on experiments with five real-world and 25 artificial
instances.
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1 INTRODUCTION

The territorial organization in agrarian reform projects and
environmental planning problem (PROTERRA, acronym of
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the name in portuguese: problema de organização territorial
em projetos de reforma agrária e planejamento ambiental)
aims at the fair allocation of land to families, taking into
account the land aptitude and technical constraints. Natural
reserves are not allocated during the delimitation of the lots,
in order to preserve areas with environmental importance and
to avoid undue interventions that can affect the feasibility of
settlement.

Studies concerning efficient procedures to land parceling
emerge from the district allocation problem, which aims at
partitioning territories into districts, respecting constraints
such as connectivity, equality, and compactness. The design
of political constituencies [3, 27, 28] and planning of sales or
delivery regions [6, 14, 31] are two examples of contexts where
we can find similar problems. A related problem concerns
farmland consolidation, whose objective is to cluster a scat-
tered number of lots and assign them to farmers in order to
reduce cultivation costs. [2, 4] propose mathematical models,
clustering algorithms and a computational system applied in
Bavaria (Germany). [5] develop a local search algorithm for
three provinces of Vietnam, as a first optimization technique
ever approached in such areas.

Other studies address the multi-land use allocation prob-
lem (MLUA), where given a set of different spatial units, the
goal is to assign the land parcels to pre-defined activities
(e.g. agricultural, commercial, industrial, residential, park)
considering their suitability for each purpose. Constraints
like compactness, connectivity, allowed shapes or local legisla-
tion, are the most common. [1, 9] are the two most prominent
studies considering mathematical models for MLUA. Even
though they are effective for small problems, these formu-
lations face difficulties to find solutions for instances with
dimensions larger than 50×50 spatial units. Due to this fact,
the main procedures to solve MLUA are metaheuristics such
as simulated annealing [29], ant colony optimization [19], par-
ticle swarm optimization [21], genetic algorithms [7, 20, 30]
and hybrid algorithms [22].

[18] propose an adaptation of a genetic algorithm taking
as objective functions maximum economic benefit, maximum
ecological benefit, maximum suitability, and maximum com-
pactness. The authors also impose residential space demand
and regulatory knowledge as constraints. Computational
experiments conducted in the regional district of Central
Okanagan (Canada) showed that the solutions obtained with
this approach were able to satisfy both economic and envi-
ronmental factors.

PROTERRA is related to the Agrarian Reform process,
one of the main elements for the sustainable development of
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countries [8, 10, 26]. Results coming from successful imple-
mentation of agricultural settlements have a direct impact on
good land use, food production, job creation and eradication
of hunger. In Brazil, although the National Institute of Colo-
nization and Agrarian Reform (INCRA) establishes technical
rules to design agrarian settlements, the process of defining
the lots is still mainly manual, which leads to regular terri-
tories with few angles and homogeneous areas, even though
relief and hydrographic characteristics are heterogeneous.

In this study, inspired by the results found in literature of
land allocation problems, we propose a constructive heuristic
and a genetic algorithm (GA) for PROTERRA to minimize
the standard deviation of land aptitude of parceled lots. We
consider spatial objectives such as connectivity, compactness
and shape, besides some desirable characteristics related to
lot-sizing. We adopt a grid data input instead of vector format
due to its increased flexibility [18], and propose new data
structures and fast procedures to deal with large numbers of
spatial units.

1.1 Previous work

[12, 13] are the first works to consider land allocation in the
context of agrarian reform projects. These authors propose
a genetic algorithm for a version of PROTERRA which does
not deal with lot-sizing constraints. The algorithm was tested
in a settlement in the state of Minas Gerais (Brazil) and pro-
duced better results than parceling performed by INCRA.
On the other hand, [23] show that the offspring generated by
crossover operator implemented for the GA produced solu-
tions that did not satisfy the connectivity constraint, which
must be reconstructed by a costly repair procedure. Then,
they propose a tabu search for PROTERRA, regarding mini-
mum and maximum sizes of lots. According to that study,
the tabu search leads more frequently to feasible solutions.
In all previous works, a grid-based structure was adopted to
represent a solution of PROTERRA. However, the authors
find that this data structure leads to inefficiencies in comput-
ing the objective function and when generating the neighbors
in local search procedures.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the formal definition of the problem to be
solved in the PROTERRA project. Section 3 presents the
detailed description of the proposed constructive heuristic
and the genetic algorithm, besides the new data structures
and the fast procedure to update objective function value.
Experimental results with real and artificial instances are
presented in Section 4. Section 5 concludes this paper.

2 FORMAL PROBLEM DEFINITION

Let k be the number of lots to allocate, U = [n]× [m] be the
spatial units available, R ⊆ U the units representing river,
and P ⊆ U the units in a natural reserve. For every spatial
unit u ∈ L, where L = U \ (R ∪ P ), which represents the
usable land, we are given a productivity index qc. Given a
spatial unit u = (x, y) ∈ L, we define its neighbours N(u) as
the spatial units at positions (x+ 1, y), (x, y + 1), (x− 1, y),

(x, y − 1), whenever they exist. We extend the neighborhood
to lots in the obvious way by N(C) = (∪u∈CN(u))\C. A unit
u or a lot C is next to a river if any unit in is neighborhood
is in R. A unit u is said to be on the border between lot i to
j if u ∈ Ci and at any of its neighbors is in Cj . We define
Bij as the spatial units on the border between lot i to j. The
total border of lot i then is Bi =

⋃
j∈[k]Bij .

A solution is a surjective mapping S : L→ [k] that assigns
a lot to each spatial unit in L. Such a mapping defines a
k-partition L =

⋃
i∈[k] Ci of the usable land, where Ci =

{u ∈ L | S(u) = i}. Additionally, a solution has to satisfy
four constraints.

The connectivity constraint requires the lots to be con-
nected. In particular no lot can be divided by a river or a
natural reserve. The accessibility constraint forbids enclaves,
i.e. no lot is allowed to be completely enclosed within another
lot. For a fair land distribution it also desirable that lots
have access to a river have a smaller area than lots which
do not. This is justified since they are already favored by
direct access to the water resource. This leads to the balance
constraint

∀Ci : N(Ci) ∩R 6= ∅, ∀Cj : N(Cj) ∩R = ∅, |Ci| ≤ |Cj |.

Finally, it is desirable that the lots have about the same
area. This is handled by the equality constraint. Equality
is measured by the ratio λ of the area of the largest lot to
the area of the smallest lot. A feasible solution must satisfy
λ ≤ λ̄ = 3.

Given a solution, the total quality value of lot i is vi =∑
u∈Ci

qu. The objective function is to minimize the standard

deviation σ of the values vi where

σ2 = 1/k
∑
i∈[k]

(vi − v̄)2

and v̄ is the average vi. To compare two candidate solutions,
we can omit the square root and the divison by k, so in our
algorithms we use the sum of squares

SS =
∑
i∈[k]

(vi − v̄)2

as a surrogate objective function. The algorithms presented
below satisfy connectivity and accessibility by construction,
but not necessarily the balance and equality constraints. For
this reason we measure the violation of the balance constraint
by the total area excess A of the lots with access to a river
which exceed the area of the smallest lot without access,
normalized by the total area of the instance, and of the
equality constraint by λ+ = max(λ− λ̄, 0). We then consider
the objective function ϕ = (A, λ+, SS) in lexicographic order,
i.e. we minimize first the violation of the balance constraint,
then the violation of the equality constraint, followed by the
standard deviation of the lot quality.

A typical instance and its solution can be seen in Figure 1.
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Figure 1: Real-world instance “Veredas”. Left:
lighter shades of brown represent higher quality soil,
blue rivers, and white natural reserves. Right: An
example solution for this instance. Each lot is shown
in a different color.

3 A GENETIC ALGORITHM FOR
LAND ALLOCATION

A genetic algorithm evolves an initial population of solu-
tions by applying recombination and mutation operators to
individuals chosen from the population according to their fit-
ness, and a criterion which selects the individuals which will
compose the next generation of the population. For a thor-
ough, detailed introduction to genetic algorithms we refer the
reader to the excellent literature available (e.g. [15–17]). The
following subsections explain each of the main components
of a genetic algorithm in detail.

3.1 Solution representation

The instances are defined on a regular, rectangular grid of
cells. Any assignment of the spatial units to the k lots that
satisfies the criteria explained in Section 2 is a valid solution.
We therefore represent a solution as an integer vector of
length n×m. This representation is inefficient for operations
such as construction and local search, since they only need
to modify cells on the border of lots. To speed up such
operations we use a specific data structure that allows us to
store, access, update and iterate over the border cells in a
fast way. This is always possible, but particularly simple in
our case, since we require the regions to be connected.

To this end, for each lot i, we keep a doubly-linked, cyclic
list bi = (bi1, . . . , bi|Bi|, bi1) of the spatial units on its border.
Additionally, we keep a mapping M that maps a unit u ∈ L
to the corresponding node in bS(c), or is undefined if u /∈
Bi. This data structure permits to perform the following
operations in constant time:

• test(i, u): to test if unit u is in Bi, we check if S(u) = i
and M(u) is defined.

• insert(i, u): to add u to Bi, we add it to the list bi and
update M(u) with the added node.

• remove(i, u): to remove a unit u from Bi, we look up u’s
node in i via M(u) and remove it from bi. Note that a

removal can be done in constant time if we have a pointer
to the desired node.

• next(i, u): given u ∈ Bi, we can get the next element in Bi

by accessing the “next” pointer on the node M(u). Note
that applying next successively on a given unit u will cycle
through all units in Bi and return to u.

3.2 Updating objective function values

We consider a modification on the value of a single lot vj to
v′j = vj + δ, where δ can be positive or negative, depending
whether lot j lost or gained a cell. To speed up the calculation
of the objective function under small changes, we can expand
the sum of squares as

SS =
∑
i∈[k]

(vi − v̄)2 =
∑
i∈[k]

v2i − kv̄2 = W − V 2/k,

where W =
∑

i∈[k] v
2
i and V =

∑
i∈[k] vi. Since we can up-

date variables W and V in constant time under modification
of some value vj to v′j , we also find the new sum of squares

SS′ = W ′ − V ′2/k in constant time. Clearly, when the num-
ber of spatial units that change is of order k or more, it is
faster to first update all vi, and then compute the new sum
of squares SS′.

3.3 Initial population

We use a constructive heuristic to seed the initial population
with good solutions. For each individual, the heuristic selects
in a first phase k spatial units as seeds for the k lots and
then in a second phase grows the full lots out of them, until
all reachable free units have been assigned to some lot.

In the first phase, the k seed units are generated in two
steps. In the first step we select k random spatial units.
Since a river or a natural reserve may divide the usable land
units L into several connected components, and since the
connectivity constraint requires every lot to be contained in
a single component, we select in each component a number
of random spatial units which is proportional to its area.
Note that if a component has less than |L|/k cells it will not
receive a seed. The motivation of this choice is to minimize
the differences in average area of the components, which
helps satisfying the equality and balance constraints.

In the second step we partition the area into regions using
an algorithm that is inspired by Voronoi diagrams. Given
a set of k seed points, a Voronoi diagram partitions the
space into k convex regions that contain the points that are
closest to their corresponding seed. Since we are interested in
minimizing the standard deviation of soil quality, we modify
the distance criterion to a soil quality criterion. To this end
we construct a directed graph whose vertices are the land
units L, and whose arcs correspond to the 4-neighborhood N
defined above. The length of arc (c, c′), for c ∈ L, c′ ∈ N(c)
is the target soil quality qc′ .

We then compute the Voronoi regions corresponding to
the k random seeds on this graph. This can be achieved by
a shortest distance graph search. The search maintains a

795



GECCO ’17, July 15-19, 2017, Berlin, Germany Alex Gliesch, Marcus Ritt and Mayron C. O. Moreira

set of active spatial units, which initially are the k random
seeds. It then repeatedly selects the active spatial unit of
smallest distance to one of the initial seeds and assigns it to
the corresponding lot. The neighbors of the selected active
spatial unit then are made active or have their distance
updated if they were active already. Using a priority queue to
maintain the active spatial units the algorithm takes at most
O(|L| log |L|) steps. The areas generated by this approach
will be connected, and, for a reasonably smooth soil quality
distribution, also be convex and without enclaves. Finally, for
each lot i, we recompute its seed as the centroid of all units
assigned to it weighted by their soil quality. If a centroid
falls on a river or a natural reserve, we move it to the closest
reachable spatial unit.

After generating the k seeds, a greedy constructive al-
gorithm constructs the final lots in the second phase. We
expand lots starting from the initial seeds by repeatedly se-
lecting the best feasible candidate among all free spatial units
with respect to objective function ϕ that border a lot, until
no candidates left. A candidate is considered feasible when
the connectivity and accessibility constraints are satisfied.
When comparing two candidates lexicographically by ϕ, we
use lazy evaluation to avoid computing parts of ϕ that do
not change the value of the comparison.

In each step the constructive algorithm needs to update
the contribution of the spatial units to the objective function
ϕ. This is the main bottleneck of the algorithm, since there
can be a large number of spatial units. On the other hand the
objective function values change very little from one step to
the next. For this reason we define a batch size b, and assign
in each the best b candidates to the lots. As shown below
larger batch sizes make the algorithm significantly faster with
a small loss in solution quality.

3.4 Recombination and mutation
operators

A recombination operator usually is designed to preserve
desirable solutions traits of the parent solutions in the child.
Our recombination operator implements this principle by
trying to maintain the common structure of the assignment
of cells to lots in both parent solutions. It is based on the
observation the lots are anonymous, i.e. any lot in one of the
two parent solutions could correspond to any lot in the other
parent solution. Therefore, to maintain the common struc-
ture as much as possible, we construct a complete weighted
bipartite graph where each vertex represents a lot and the
two parts of the graph represent the two solutions. The
weight of an edge between two lots is the number of cells in
their intersection. We compute a maximum weight perfect
matching to match the lots of the two solutions. We then al-
locate in the recombined solution the cells in the intersection
in each matched pair of lots to the same lot. A special, rare
case arises if there is some pair of lots with no intersection:
in this case we have to complete the solution by introducing
another seed for each such lot. Finally, the complete solution
is reconstructed using the constructive algorithm seeded with

Figure 2: The recombination operator applied to in-
stance “Fortaleza”. The top two images top show
the parents. Bottom-left: the child solution after
matching lots by area of intersection. Bottom-right:
the child solution after reassigning the free space us-
ing the constructive algorithm.

Figure 3: The mutation operator applied to instance
“Fortaleza”. Left: the original solution. Middle: af-
ter removing units near the borders between lots.
Right: greedily reconstructed solution.

the current cells and the remaining free space, as explained
above. This process is shown in Figure 2.

The mutation operator applies a small perturbation to the
borders of the current lots of a solutions. To this end, we
remove all spatial units within a given distance from any
border between two lots. We have fixed this distance to a 2
units. Then, as for the recombination operator, we seed the
constructive algorithm with these “core lots”, and reconstruct
the borders greedily. In order to introduce variability in
repeated mutations of the same solution, we introduce a
parameter α in our greedy construction: instead of selecting
the b best candidate units at every step, we select b units
with uniform probability among the αb best candidates. This
can done with a selection algorithm in time O(n), for n
candidates. Figure 3 illustrates the mutation process.
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3.5 Selection strategies

The selection scheme is a 3-tournament for both parents of
the recombination. The current population selection strat-
egy is generational. For a population of size P , the next
generation is composed of the best e P individuals of the cur-
rent generation, oP individuals generated by recombination
and mutation, and r P random individuals. The elite rate e,
offspring rate g, and random rate r must satisfy e+g+ r = 1.

4 COMPUTATIONAL EXPERIMENTS

4.1 Test instances

We have tested our algorithm on five real-world instances,
some of which have been used in the literature before [11]. For
a more thorough testing of the algorithm we have generated
another 25 artificial instances resulting from the combination
of two experimental factors with five levels each: the instance
size n× n, for n ∈ {200, 300, 400, 500, 600} and the number
of lots k ∈ {20, 40, 60, 80, 100}. The levels have been chosen
to match the typical range of the real-world instances.

Besides its size and topology, an instance is characterized
by its soil quality. The soil quality usually is not continuous,
but each spatial unit is classified according to a fixed number
of aptitude classes. The number of aptitude classes is fixed
in a given instance, and is normally between 5 and 10. The
aptitude values for each class are within the interval [30, 100].
These aptitude classes appear in contiguous regions of the
input matrix, and have smooth transitions between them.
Additionally, in the artificial instances, the spatial units
within a fixed distance of a river always belong to the highest
aptitude class. We have fixed this distance to 5 spatial units.
According to [11], the aptitude values of the five real world
instances were obtained by an analysis of physical, agronomic
and social factors of such settlements.

Table 1 summarizes the main characteristics of the test
instances: their width (“w”) and height (“h”), the number
of aptitude classes (“Apt.”), the percentage spatial units
representing land, river, natural reverses, and the number
of connected components (“#CC”). The instances will be
made available online. The first five entries in the table
correspond to the artificial instances and present averages
of the five different numbers of lots, the last five entries are
the real-world instances “Belo Vale” (Minas Gerais, Brazil),
“Fortaleza” (Tocantins, Brazil), “Iucatã” (Acre, Brazil), “Ol-

hos D’Água” (Minas Gerais, Brazil) and “Veredas” (Minas
Gerais, Brazil).

To generate the artificial instances we use Perlin noise, a
well-known 2D noise function that maps a coordinate to a
real number in [−1, 1], which is commonly used to randomly
generate height maps [25]. Perlin noise has four main param-
eters: frequency f , octaves o, granularity r and gain g. In
preliminary tests they have been fixed to f = 10−3, o = 16,
r = 2 and g = 0.5. To generate the soil, we produce an
w × h noise matrix and quantize it according to the desired
number of aptitude classes. Perlin noise ensures more or less
contiguous aptitude regions with smooth transitions.

Table 1: Characteristics of the test instances.

w h Apt. Land (%) River (%) Res. (%) #CC

200 200 5 94.4 5.6 0.0 7

300 300 6 90.9 9.1 0.0 4
400 400 5 95.8 4.2 0.0 2

500 500 7 98.0 2.0 0.0 7

600 600 10 95.2 4.8 0.0 4
300 300 5 41.6 1.0 57.4 1

449 250 2 20.7 1.2 78.1 1

449 250 5 26.1 2.5 71.4 12
300 300 4 38.2 15.8 46.0 9

300 300 6 42.0 1.5 56.5 10

In order to generate the rivers, we use another Perlin
matrix with o = 10, quantize it into two levels, seed the river
with the spatial units on the border between the two levels,
and expand the seed to a fixed river width (in the experiments
we have used a random dilation in [2, 5] corresponding to half
of the river width). If the total number of river cells deviates
from the desired percentage, we adjust the frequency f of the
Perlin noise, which defines how frequently changes in noise
value will occur, by a binary search and repeat the process
until the deviation is minimal. In each instance, we fix the
total number of river cells randomly to be between 2% to
5% of the total number of spatial units. Finally, we replace
all connected components of land with an area smaller than
|L|/2k by water, to prevent island-like structures that are too
small for a lot to be placed, and would not normally appear
in real-life scenarios.

4.2 Methodology

We have implemented our algorithms in C++, compiled them
with GCC 5.3.1 and maximum optimization, and tested them
on a PC with an 8-core AMD FX-8150 processor and 32 GB
of main memory. For each test only one core has been used.
The parameters of the genetic algorithm have been calibrated
using the irace package in GNU R, with a budget of 1000
runs and a time limit of 5 minutes per run. The iterative
racing algorithm searches the parameter space for a good
configuration, by sampling configurations according to a
model that converges to the best performing configurations,
and repeatedly eliminates poorly performing solutions after a
Friedman test finds significant performance differences among
the population of tested configurations [24]. The parameters,
their initial ranges, and the optimal parameter setting found
are shown in Table 2.

Below we report on four experiments. The first determines
the best batch size for the constructive algorithm, the second
studies the scalability of the GA, the third evaluates its effec-
tiveness compared to simpler methods, and the last compares
its results to known solutions of real-world instances.

4.3 Experiment 1: Optimal batch size

In our first experiment we calibrate the optimal batch size
of the constructive algorithm. We have used batch sizes
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Table 2: Parameters of the genetic algorithm: initial
ranges and optimal setting found by iterative racing.

Description Initial range Best value

Population size P [10, 50] 15
Mutation α [2, 5] 3.72
Elite rate e [0, 1] 0.59
Offspring rate o [0, 1] 0.38
Random rate r [0, 1] 0.03

Table 3: Results of the calibration of the optimal
batch size.

Batch
Fixed time 50 replications

size A (m) λ σ Repl. A (m) λ σ t (s)

32 40.3 4.3 44.6 2,494 28.7 4.0 35.7 668

64 28.4 3.8 27.6 6,118 35.5 3.8 29.3 301
128 28.4 3.7 32.0 13,760 34.4 4.3 36.7 120

256 23.3 4.1 31.8 27,102 44.2 5.5 42.0 52

512 28.3 4.3 44.5 45,790 53.8 4.0 34.7 26
1,024 42.2 4.2 41.5 67,831 73.6 4.8 36.8 15

2,048 51.1 4.5 65.4 88,424 94.3 6.8 58.8 10

4,096 67.9 6.4 82.4 111,203 118.7 6.3 81.6 8

2b, for b ∈ [5, 12] and the 25 artificial instances. We have
done two experiments. In the first experiment we performed
a fixed number of 50 replications to analyze the trade-off
of computation time versus solution quality. The second
experiment runs the maximum number of replications for a
fixed time limit of 10 min. Table 3 shows the results. For both
tests we report the balance violation A (×10−3), the equality
ratio λ and the soil quality deviation σ. For the experiment
with a fixed time we report the number of replications, for
the experiment with a fixed number of replications the total
time in seconds. Values reported for σ are relative deviations
from the best known value.

Looking at a fixed number of replications, we see that
the solution quality in terms of balance A degrades with
increasing batch sizes, but remains with 1.19% of the total
area still low. Since the balance is not optimal the equality
constraint is not satisfied, and the soil quality deviation varies
between 30% to 80%. The running time is almost inversely
proportional to the batch size. For a fixed time this trade-off
leads to an optimal batch size of 256 with best balance A
of 23.3× 10−3 and similar values for λ and σ. Thus, for the
remaining experiments we have fixed the batch size at this
value.

4.4 Experiment 2: Scalability

In this experiment we evaluate the performance of the GA
for different instances sizes and different number of lots. We
have run the GA on the 25 artificial instances for 30 min.
Each run has been replicated 5 times. Table 4 shows the
results. As above we report the average balance violation

Table 4: Scalability experiment.

Size Lots Evals. A (µ) λ σ (K) n

20 138,732 0.00 1.70 5.66 5

40 79,999 0.00 1.75 1.83 5
200x200 60 56,350 0.00 1.81 1.78 5

80 43,927 0.00 1.84 1.38 5

100 37,721 436.24 5.39 5.10 0

20 60,013 0.00 3.40 81.19 1
40 31,882 0.00 1.90 10.40 5

300x300 60 22,982 0.00 1.88 6.93 5

80 17,937 0.00 1.91 5.33 5
100 15,214 0.00 2.11 4.70 5

20 22,761 0.00 1.29 26.83 5

40 13,254 0.00 1.43 12.93 5
400x400 60 8,923 0.00 1.46 7.83 5

80 7,135 0.00 1.51 5.75 5

100 6,237 0.00 1.57 7.07 5

20 9,970 0.00 2.39 66.52 5
40 5,704 0.00 2.62 32.37 5

500x500 60 4,058 4.12 6.17 28.19 4
80 3,143 0.00 2.73 18.57 5

100 2,714 0.00 2.81 14.54 5

20 7,502 0.00 1.89 297.75 5

40 5,384 0.00 2.20 128.50 5
600x600 60 4,125 11.10 2.45 82.63 4

80 3,396 35.63 3.45 58.65 3

100 2,233 0.00 2.54 47.35 5

(×10−6), the equality ratio λ and the quality deviation σ
(absolute values). Column “n” reports the number of feasible
solutions found.

We see that the GA finds feasible solutions in 112 of the
125 tests, being unable to achieve feasibility only for the
instance of size 200× 200 with 100 lots. This is due to the
large number of lots within a small area, which makes it
harder to satisfy the balance constraint. For the instance of
size 300× 300 the equality constraint was satisfied only once.
In the remaining instances the majority of the solutions is
feasible. As expected, with a few exceptions the soil quality
deviation decreases with an increasing number of lots.

Looking at scalability of the GA, we find that the number
of fitness function evaluations decreases as expected with the
size of the instance and the number of lots. Empirically, the
number of evaluations is about 2.1× 1012 n−2.7 k−0.8 (log-log
regression, R2 = 0.9812) for instances of size n × n with k
lots, so the cost grows slightly more than the total number
of cells, and close to linear with the number lots. This is
reasonable for current instance sizes, but may be a bottleneck
for very large or very fine-grained instances.

4.5 Experiment 3: Effectiveness of the GA

In this experiment, we verify the effectiveness of the GA by
comparing it to two simpler strategies: one that repeatedly
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generates random seeds and expands them by breadth-first-
search (BFS), and the repeated application of the pure greedy
constructive approach of Section 3.3. In this experiment we
used the real-world instances. As before, the time limit was
30 min and we report averages over 5 replications. Table 5
shows the results. We again report the balance violation A
(×103), the equality ratio λ, and the quality deviation σ (as
the relative deviation in percent from the best known value).

The repeated BFS found better solutions than the con-
structive approach with regards to the balance constraint in
4 of the 5 instances. However, its solutions tend violate the
equality constraint much more, and since there is no consid-
eration of the soil quality, it leads to even higher soil quality
deviations. Being algorithmically simple, the repeated BFS
achieves more fitness evaluations per time. The repeated con-
structive heuristic leads to overall more balanced and better,
but infeasible solutions. It also achieves the least number of
fitness function evaluations, since it performs full solution
constructions. The GA found feasible solutions for all five
real-world instances, and with considerably lower average soil
quality deviations. Its number of fitness function evaluations
is higher than the repeated constructive heuristic, since it
performs only partial constructions after the recombination
and mutation operators.

In summary, these results show that the GA is more effec-
tive than simpler strategies. In particular, its performance
cannot be explained only by the quality of the initial solu-
tions, or the repeated addition of a percentage of random
individuals to the population, and suggests that the proposed
recombination and mutation operators are effective.

4.6 Experiment 4: Comparison to manual
allocation

In our final experiment we compare the results of the GA
algorithm in four of the five real-world instances to existing
allocations that were constructed manually by the responsible
government entity INCRA (Instance “Fortaleza” has been
excluded since we did not have access to the official allocation).
The results of the GA have been obtained with the same
time limit of 30 min and again we report averages over
5 replications. Table 6 shows the results. The allocation
done by INCRA does not consider rivers as obstacles to the
connectivity constraint, and allows lots to have land on both
sides of a river. For the purpose of this comparison, solutions
that violate the connectivity constraint were not penalized.

We can see that the GA produces solutions that are better
with respect to all three components of the objective function.
The manual allocations proposed by INCRA violate in all
instances either the balance and the equality constraint, and
often both of them, whereas the GA was always able to find
feasible solutions. The soil quality deviation found by the
GA is about a factor of 1.7 to 7 lower. Figure 4 shows an
example of a manual allocation and an allocation obtained
by the GA for instance “Veredas”.

Figure 4: Solutions of the real-world instance
“Veredas”. Left: the solution produced manually by
INCRA. Right: the solution produced by our GA.

5 CONCLUSIONS

This study addresses the territorial organization in agrarian
reform projects and environmental planning problem (PRO-
TERRA), an open problem, especially in developing countries.
The objective is to find a fair distribution of land for fami-
lies based on land aptitude, excluding natural reserves from
parceling. We consider lot-sizing constraints based on bal-
ancing the area of lots with and without access to rivers and
area equality constraints, as well as connectivity and accessi-
bility of the lots. To solve the PROTERRA, we propose a
constructive heuristic guided by modified Voronoi diagram
and a genetic algorithm with problem-specific recombination
and mutation operators.

We have evaluated the proposed methods on five real-world
instances from Brazil and 25 artificial instances. The results
show that the GA scales reasonably well with the size of the
instances and the number of lots to be allocated. In compari-
son with simpler strategies we found that the components of
the GA were effective, considering solution quality (standard
deviation of lot aptitude) and constraints violation. The GA
is fast enough to produce good solutions in a reasonably short
time and its crossover and mutation operators showed to be a
flexible to approach violation of connectivity restriction after
their execution. Finally, comparing the land allocation of
the GA to manual land allocation produced by INCRA, we
find that the GA has the potential to lead to better solutions
than those currently applied in practice.
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Olhos D’Água 830.5 0.0 28.81 1.93 19,972.8 11,716.1
Veredas 0.0 0.0 5.78 1.70 3,964.4 1,161.5

[5] Quoc Trung Bui, Quang Dung Pham, and Yves Deville. 2013.
Solving the agricultural land allocation problem by constraint-
based local search. In International Conference on Principles
and Practice of Constraint Programming. Springer, 749–757.

[6] A. Butsch, J. Kalcsics, and G. Laporte. 2014. Districting for
Arc Routing. INFORMS Journal on Computing 26, 4 (2014),
809–824.

[7] Kai Cao, Bo Huang, Shaowen Wang, and Hui Lin. 2012. Sustain-
able land use optimization using Boundary-based Fast Genetic
Algorithm. Computers, Environment and Urban Systems 36, 3
(2012), 257–269.

[8] Elizabeth Alice Clements. 2013. Agrarian reform, food
sovereignity and the MST: socio-environmental impacts of Agro-
fuels production in the Pontal do Paranapanema Region of the
state of São Paulo, Brazil (Reforma agrária, soberania alimentar
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