
Accelerating Coevolution with Adaptive Matrix Factorization
Paweł Liskowski

Poznan University of Technology

Poznan, Poland

pliskowski@cs.put.poznan.pl

Wojciech Jaśkowski

IDSIA Dalle Molle Institute for Arti�cial Intelligence

Research

Manno TI, Switzerland

wojciech@idsia.ch

ABSTRACT
Among many interaction schemes in coevolutionary settings for

interactive domains, the round-robin tournament provides the most

precise evaluation of candidate solutions at the expense of computa-

tional e�ort. In order to improve the coevolutionary learning speed,

we propose an interaction scheme that computes only a fraction of

interactions outcomes between the pairs of coevolving individuals.

The missing outcomes in the interaction matrix are predicted using

matrix factorization. The algorithm adaptively decides how much

of the interaction matrix to compute based on the learning speed

statistics. We evaluate our method in the context of coevolutionary

covariance matrix adaptation strategy (CoCMAES) for the problem

of learning position evaluation in the game of Othello. We show

that our adaptive interaction scheme allows to match the state-of-

the-art results obtained by the standard round-robin CoCMAES

while, at the same time, considerably improves the learning speed.

CCS CONCEPTS
•Theory of computation→Evolutionary algorithms; •Computing
methodologies→ Non-negative matrix factorization;

KEYWORDS
CMA-ES; Nonnegative Matrix Factorization; Machine Learning

ACM Reference format:
Paweł Liskowski and Wojciech Jaśkowski. 2017. Accelerating Coevolution

with Adaptive Matrix Factorization. In Proceedings of GECCO ’17, Berlin,
Germany, July 15-19, 2017, 8 pages.

DOI: http://dx.doi.org/10.1145/3071178.3071320

1 INTRODUCTION
In some search and optimization problems, the objective function is

infeasible to compute since it would require evaluating a candidate

solution on a huge (or even in�nite) set of tests. Such test-based

problems [10] often involve interactive domains, in which there

exists a natural, and often adversarial interaction between entities.

A single interaction between a candidate solution and a test pro-

duces a scalar outcome that re�ects the capability of the former to

pass the latter (expressed in the simplest case as a binary value).

Canonical examples of such domains include searching for sorting

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’17, Berlin, Germany
© 2017 ACM. 978-1-4503-4920-8/17/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3071178.3071320

programs that are supposed to sort integer sequences, evolving

genetic programming trees that are evaluated on a number of tests,

or learning game playing agents that play with each other.

Due to the interactive nature of test-based problems, coevolu-

tionary algorithms constitute a natural way of solving them. Co-

evolutionary algorithms di�er from the evolutionary ones in the

way the �tness in the evolving population is computed. In con-

trast to the evolutionary algorithms, the coevolutionary ones do

not have access to the objective evaluation function and, in order

to compute the �tness, they need to employ a surrogate function

instead. The surrogate function is most often in the form of an

interaction scheme, which involves the evolving individuals.

Many interactions schemes for coevolution have been proposed

in the past. These methods include k-random opponents, single-

elimination tournament [31], or �tnessless selection [19]. However,

it is the round-robin tournament that provides the most precise

evaluation of candidate solutions. The major drawback of the round-

robin tournament is its computational cost resulting from the num-

ber of interactions that have to be performed in order to evaluate

an individual.

In this paper, we propose a novel interaction scheme that com-

putes only some of the interactions between the coevolving individ-

uals and predicts the rest using non-negative matrix factorization.

Crucially, the proposed approach adaptively decides how many

interactions to compute based on the learning speed statistics. In

the experimental part of the paper, we evaluate our method in the

context of coevolutionary covariance matrix adaptation strategy

(CoCMAES) for the problem of learning the position evaluation

function in the game of Othello. We show that our adaptive inter-

action scheme allows to match the state-of-the-art results obtained

by the standard round-robin CoCMAES and considerably improves

the learning speed.

2 BACKGROUND
2.1 Test-based Problems
A test-based problem (a.k.a. an interactive domain) involves a set of

candidate solutions S , a set of tests T , and an interaction function

д : S ×T → R that de�nes how well a given solution solves a given

test. The solution to the problem is de�ned by a solution concept

[8]. In the most popular case, it is the maximization of expected

utility, i.e.:

s∗ = argmax

s ∈S
Et ∈T [д(s, t)].

In this paper, we limit our attention to symmetric domains such

as two player games, in which S = T . Note, however, that our

method can be easily generalized to the S , T case.

457

GECCO ’17, July 15-19, 2017, Berlin, Germany Paweł Liskowski and Wojciech Jaśkowski

Algorithm 1 A general outline of a single-population coevolution-

ary algorithm

Require: population size λ

1: P ← Initialize(λ)

2: repeat
3: F ← ComputeFitness (P) . Interaction scheme

4: P ← UpdatePopulation(F) . Evolutionary operators

5: until Termination Condition

2.2 Coevolutionary Algorithms
The general scheme of the single-population coevolutionary al-

gorithm for symmetric domains is shown in Algorithm 1. The

algorithm maintains a population P of candidate solutions. In each

step, it begins by computing the �tness of each candidate solution

using a given interaction scheme. Then, the population is updated

by any evolutionary algorithm according to the computed �tness

values.

In the round-robin tournament interaction scheme [1, 33], each

candidate solution interacts with every other member of the pop-

ulation, and the outcomes of these interactions are stored in an

interaction matrix G. The �tness of an individual s ∈ P is then

determined as

f (s) =
1

|P |

∑
t ∈P\{s }

д(s, t),

which estimates the expected utility of an individual. Notice that,

this estimation is biased and non-stationary since it depends on

the current population P . Evaluating the �tness for the whole

population requires computing |P |2 − |P | interaction outcomes.

2.3 Matrix Factorization
Our approach to speed-up coevolution involves using non-negative

matrix factorization on the round-robin interactions outcomes ma-

trix. Here we introduce this concept in more detail.

Given a non-negative m × n matrix G and the desired rank k
(typically k �min(m,n)), non-negative matrix factorization (NMF)

[2] searches for non-negative matricesW and H that together form

a lower rank approximation of G, i.e.:

G ≈WH s .t . W ,H ≥ 0, (1)

where W ∈ Rm×k is called weights matrix and H ∈ Rk×n is a

feature matrix.

In general case,G is in an interaction matrix betweenm candidate

solutions in S and n tests in T , and each candidate solution s ∈ S is

associated with a row inW (a vector ws ∈ R
k

), and each test t ∈ T
corresponds to a column in H (a vector ht ∈ R

k
). In the speci�c

case considered in this paper, G is squarem ×m matrix, and both

W and H describe the same entities.

In order to solve the NMF problem, equation (1) is commonly

reformulated as the following optimization problem:

min
W ,H

f (W ,H) ≡
1

2

| |G −WH | |2F s .t . W ,H ≥ 0, (2)

where | | · | |F is the Frobenius norm. In the simplest scenario, NMF

model is trained by �tting to the observed interaction outcomes in

G.

As it follows from (1), an estimate of an interaction outcome of

a candidate solution s with a test t can be found by calculating the

dot product of two vectors corresponding to s and t :

д̂pt = w
T
p ht =

k∑
j=1

wpjhjt . (3)

In practice, the optimization problem given by Eq. 2 is often

enhanced with a regularization term that forces the factors to be

sparse. Sparsity can be easily enforced by adding a penalty term,

such as a L1 and/or L2-norm penalty:

min
W ,H

f (W ,H) ≡
1

2

| |G −WH | |2F + λ(| |W | |
2

F + | |H | |
2

F), (4)

Sparse representations are advantageous as they tend to encode

the data using just a few active components that allow for easier

interpretation of the factors. Sparseness in bothW and H is crucial

to learn parts-based and intuitive features of data [23].

Perhaps the simplest way to minimize expression (4) is stochastic

gradient descent that employs the following update rules:

w ′s j = ws j + α
∂

∂ws j
e2st = ps j + γ (2esthjt − λws j) (5)

h′jt = hjt + α
∂

∂qjt
e2st = qjt + γ (2estws j − λhjt), (6)

where j = 1, . . . ,k , γ is the learning rate, and e2st = (дst − д̂st)
2 =

(дst −w
T
s ht)

2
is the error between the known and predicted out-

come of interaction for given s and t . The new values of W and

H are found in each iteration by multiplying the current one by

a factor that depends on the quality of approximation in (1). The

update rules are applied for a �xed number of iterations, or until

the error given by the left-hand side of (4) is su�ciently small.

What truly makes MF a powerful tool in machine learning is the

ability to factorize G even when some of its elements are missing,

i.e., when G is sparse. This property of MF has been extensively

used in recommender systems to �ll in the gaps in a large matrices

(of, e.g., users’ recommendations [21]) based only on small fraction

of known elements. In such a scenario, the objective of NMF is

to minimize the regularized squared error on known interaction

outcomes. To learn the factorsW and H , the update rules given by

(5) and (6) are applied only to the elements of G that are not miss-

ing. The missing outcomes in G are then modeled as dot products

between the corresponding vectors inW and H (Eq. 3).

Much of the appeal of NMF comes from its ability to extract

underlying features of G as basis vectors inW . The non-negativity

constraint helps the model to learn parts-like representations by

additively combining features that attempt to ‘reproduce’ the orig-

inal input. NMF became a popular tool in pattern recognition or

classi�cation, where it shows its strengths in learning meaningful

features from real-life datasets such as collections of face images

or text documents [23, 32]. In the following, we employ it as the

core component of our algorithm.

458

Accelerating Coevolution with Adaptive Matrix Factorization GECCO ’17, July 15-19, 2017, Berlin, Germany

3 METHODS
In this section, we describe the main contribution of this paper,

namely the adaptive matrix factorization-based interaction scheme

for coevolution. We begin by introducing its simpler variant, and

later extend it to automatically adjust its parameters during learning.

3.1 Constant-α Matrix Factorization-based
Interaction Scheme

Based on the observations made in previous sections, we propose

MFIS, a Matrix Factorization-based Interaction Scheme that em-

ploys matrix factorization to speed-up coevolution by computing

only a fraction of interactions α ∈ (0, 1] between individuals in

the population instead of the full round-robin matrix. The method

exploits the ability of NMF to model any element of G as the inner

product in the joint latent space of factors (Eq. 3) in order to predict

interaction outcomes that were not computed and �ll the missing

values in G. The proposed coevolutionary MF-based interaction

scheme calculates the sparse interaction matrix G between the can-

didate solutions from the current population P in the following way

(see Algorithm 2):

(1) For each candidate solution s ∈ P , draw a nonempty ran-

dom subset of opponents Ts ⊂ P\{si } of size bα |P |c to

interact with.

(a) Perform the interactions between s and t ∈ Ts , updat-

ing the appropriate cells in the interaction the inter-

action matrix G = (дi j).
(b) Fill in the remaining entries in G with zeros, treating

them as unknowns.

(2) Factorize G in non-negative components W and H (see

Section 2.3).

(3) Use the matricesW and H to reconstruct the interaction

outcomes in G by calculating Ĝ = (д̂i j) =WH .

(4) Compute the �tness of each candidate solution s ∈ P as

f (si) =
∑n
j=1 дi j , by substituting the missing дi j s with

their estimates д̂i j s.

The predictions made by the method are based on the behavioral

similarity between individuals in the population P . The similarity

of two individuals is computed based on the similarity of their inter-

action outcome vectors. The evaluation in the MF-based interaction

scheme is, therefore, contextual: prediction д̂i j made for a missing

outcome depends not only on corresponding individuals si and sj
but also on other individuals in P . All available outcomes of interac-

tions together determine the factorization model and in�uence how

the predictions for missing outcomes are made. To account for the

changes in P stemming from the evolution of candidate solutions,

we perform independent NMF in each generation.

3.2 Adaptive Matrix Factorization-based
Interaction Scheme

The most important parameter of MFIS is α that controls the frac-

tion of interactions to be computed. It trades-o� the computation

performance and the �tness evaluation precision. Here we propose

Algorithm 2 Matrix Factorization-based Interaction Scheme

(MFIS) with constant α ∈ (0, 1] which trades-o� �tness evalua-

tion precision and computational performance.

Require: factorization rank k .

1: function ComputeFitness(P ,α)

2: for s ∈ P do
3: Ts ← Sample(T ,α)
4: for t ∈ Ts do
5: Gi j ← interact(s, t)

6: W ,H ← NMF(G,k)
7: Ĝ ←WH . predicts missing Gi j s

8: G ← input-missing(Ĝ,G)
9: for si ∈ P do

10: F (si) ←
1

|P |
∑n
j=1 дi j

11: return F
12: end function

Algorithm 3 Adaptation Matrix Factorization-based Interaction

Scheme (AMFIS).

Require: window size w , minimum observations φ, step size γ ,

history of learning speed H , exploration rate ϵ , exploration

step γ
1: level ← 1 . A global variable

2: function ComputeFitnessAdaptive(P)

3: curr ← level
4: if Rand(0, 1) < ϵ then
5: curr ← testlevel + 1
6: α ← curr × γ
7: F ← ComputeFitness(P ,α)
8: UpdateLevel(curr)
9: return F

10: end function
11:

12: function UpdateLevel(l)

13: learn_speed =
∆p
∆e

14: H [curr]← Concat(H [curr], learn_speed)
15: Vlevel ← w most recent values from H [level]
16: Vlevel+1 ← w most recent values from H [level + 1]
17: if len(Vlevel) < φ or len(Vlevel+1) < φ then
18: return
19: if mean(Vlevel) < mean(Vlevel+1) then . switch

condition

20: if αi < 1 then
21: level ← level + 1
22: H [level]← ∅
23: end function

an Adaptive MFIS (AMFIS) to automatically adapt α based on the

current learning performance statistics.

As the progress made by CMA-ES stalls, α is automatically in-

creased to improve the evaluation accuracy and provide the search

459

GECCO ’17, July 15-19, 2017, Berlin, Germany Paweł Liskowski and Wojciech Jaśkowski

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

8

Figure 1: An exemplary Othello board position. White is
the player to play and it has 6 possible actions (dashed gray
circles). Playing c2 will make c3, c4, and c5 white.

process with richer and more detailed �tness. The α is discretized

into 1/γ levels. We start with level=1 (corresponding to α = γ = 0.1).

The adaptation mechanism is inspired by the algorithms solving

multi-armed bandit problems: with probability 1 − ϵ = 0.9, we use

the current level and with probability ϵ = 0.1, we perform explo-
ration for the next level. For each level, we track the change of the

learning speed de�ned as:

learn_speed =
∆p

∆e
,

where ∆p is the the most recent increase in the objective perfor-

mance of the best individual from the current generation and ∆e
denotes the computational e�ort (the number of interactions) that

caused this increase. By observing the learning speeds for two con-

secutive levels, the algorithm eventually makes a decision to switch

from level to level + 1. Such a switch is permanent and increases

the �tness precision at the expense of the number of interactions to

compute. Note also that, in order to make the decision on the most

current data, we take into account only w most recent learning

speeds. See also Algorithm 3 for more details.

The decision to make a switch is by default based on the compar-

ison of learning speed averages (line 19 in Algorithm 3). We also

consider a variant, in which we use the Student’s t-test to judge

whether it is time to increase the level. We refer to this variant of

the proposed approach as AMFIS-TT.

4 POSITION EVALUATION FOR OTHELLO
In this section, we describe the problem of learning position eval-

uation functions for Othello, which will be later used in the ex-

perimental section. We encode our position evaluation functions

using systematic n-tuple networks, which are also introduced in the

section. In this settings, we strictly follow [16], which has recently

established the state of the art in this domain.

4.1 Othello
The game of Othello (a.k.a Reversi) is a two-player, deterministic,

sequential, zero-sum game played on an 8 × 8 board with double-

sided pieces with white and black face, each face assigned to one

player. The players take turns by placing pieces on the board, with

their colors face up, one at a time. A legal move consists of placing

a piece on an empty square, which forces �ipping some of the

opponent’s pieces. The location to place a new piece must: 1) be

adjacent to at least one of the board’s pieces, and 2) be one end of a

vertical, horizontal, or diagonal line segment that starts in another

player’s piece and it contains only the opponent’s pieces (which

are surrounded on both sides); the segment does not contain empty

spaces. All surrounded opponent’s pieces are then �ipped to the

other color; if multiple line segments exist, �ipping a�ects all of

them. Figure 1 shows an example of an Othello position with six

possible moves of the white player. The game ends when no player

has a legal move (usually when there are no empty board positions

left). The player that has more pieces at the end of the game is the

winner. If both players have the same number of pieces, the game

ends with a draw.

Othello is an asymmetrical game. Thus, in this study, for conve-

nience, we consider double games, in which each of the two players

plays two games in a row: one game as black and the second one

as white.

4.2 Position Evaluation with n-Tuple Networks
Due to a huge number of possible states in Othello, the position

evaluation function has to be approximated. A powerful and com-

putationally e�cient function approximators are n-tuple networks,
which were originally proposed by Bledsoe and Browning [3] for

optical character recognition.

An n-tuple network consists of m tuples of di�erent board loca-

tions. For a given board state b, the network outputs the sum of

values returned by the individual tuples. The ith tuple, where i =
1, . . . ,m, contains a sequence of ni board locations (loci j)j=1, ...,ni ,
and an associated look-up table LUTi . The table contains weights

for each possible pattern for the sequence of locations in the tu-

ple. The result of an n-tuple network can be thus interpreted as a

position evaluation function p:

p (b) =
m∑
i=1

pi (b) =

m∑
i=1

LUTi
[
idx

(
bloci1 , . . . , blocini

)]
idx (v) =

|v |∑
j=1

vjc
j−1,

where bloci j is a board value at location loci j , v is a sequence of

board values (0 ≤ vk < c , for k = 1, . . . , |v|), and c denotes the

number of possible board values (c = 3 for Othello). As a result,

one look-up table contains 3
ni

weights.

To improve the e�ectiveness of n-tuple networks, we also ex-

ploit the inherent symmetries of a game board [28] in the method

called symmetric sampling. In symmetric sampling, a single tuple

is employed 8 times, returning one value for each possible board

rotation and re�ection (see Fig. 3).

460

Accelerating Coevolution with Adaptive Matrix Factorization GECCO ’17, July 15-19, 2017, Berlin, Germany

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

8

Figure 2: All 24 straight 3-tuples (648 weights). Their sym-
metric expansions have been shown in light gray.

4.2.1 Board Inversion of Selecting the moves. A game-playing

agent selects its moves based on the position evaluation function. It

selects the move that leads to a position of the highest value. Since

we expect the agent to play both white and black, when playing

white, before making its decision the agent �rst inverts the board

pieces (playing as if it were the black player). This method is called

board inversion and has been found more e�cient [11] than its

alternatives such as output negation.

4.2.2 Systematic n-Tuple Networks.

How to choose the tuples? Lucas [28] proposed to randomly

generate a small number of long snake-shaped sequences. However,

recently it has been found, that a large number of short system-

atically selected tuples lead to better results [12]. The systematic
n-tuple network consists of all possible vertical, horizontal, and

diagonal n-tuples of the same length (see Fig. 2). Its smallest repre-

sentative is a network of 1-tuples. Thanks to symmetric sampling,

only 10 of them are required to cover an 8 × 8 Othello board, and

such a 10 × 1-tuple network contains 10 × 31 = 30 weights.

The comparison of di�erent n-tuple architectures has been per-

formed by Jaśkowski and Szubert [16]. The authors report that the

combination of straight 4-tuples and (square) 2 × 2 tuples worked

the best.

5 RELATEDWORK
A number of di�erent interaction schemes have been proposed for

coevolution. A round-robin tournament (a.k.a complete mixing

[29]) involves computing interaction outcomes for all pairs in the

population, which requires n2 − n interactions. The k-random

opponents method [34] lets an individual play with k opponents

drawn at random from the current population (nk interactions).

Angeline and Pollack proposed the single-elimination tournament

[1], which requires onlyn−1 games to play but it precisely computes

the �tness only for the tournament winner. Finally, �tnessless

coevolution [13] uses the outcomes of the games to directly drive

tournament selection. This method involves (k − 1)n interactions,

where k is the tournament size.

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

8

2 1 0

2 1 0

210

210

2

1

0

2

1

0

2

1

0

2

1

0

012 weight

000 1.14
...

...
011 0.19
...

...
101 �1.03
110 3.07
111 0.10
...

...
201 �2.59
210 0.1
211 0.99
...

...
222 0.14

Figure 3: A straight 3-tuple employed eight times for the
given board position (symmetric sampling). The eight sym-
metric expansions of the 3-tuple return 0.19 − 1.03 + 2 × 0.1 −

2.59 + 3 × 0.99 = −0.26.

The �tness computed based on reconstructing the interaction

outcomes matrix by matrix factorization can be treated as a sur-
rogate �tness. In evolutionary computation, a surrogate �tness

function provides a computationally cheaper approximation of the

original objective function. Surrogates are particularly helpful in

domains where evaluation is computationally expensive, e.g., when

it involves simulation. They usually rely on simpli�ed models of the

process being simulated, hence their alternative name: surrogate
models [20]. In continuous optimization, such models are typically

implemented using low-order polynomials, Gaussian processes,

or arti�cial neural networks. Surrogates can be applied to virtu-

ally every area of evolutionary computation, including population

initialization, mutation operators and �tness evaluation.

Several other studies attempted to reduce the number of eval-

uations in used in evolutionary algorithms (EAs) for test-based

problems. An arguably simplest approach is to draw a subset of

tests T ′ ⊂ T and allow the candidate solution interact only with

them. This approach was studied in the context of EAs, in which it

is known as Random Sampling Evolutionary Learning [5]. Apart

from speeding up the evolution, the motivation is that candidate

solutions that perform well on various di�erent subsets might have

captured essential knowledge to generalize to all tests in T .

The idea of reconstructing interaction outcomes via factorization

of sparse interaction matrix has been proposed for the �rst time

in the context of genetic programming (GP) [27]. The proposed

method, dubbed Surrogate Fitness via Factorization of Interaction

Matrix (SFIMX), reduces the number of required interactions be-

tween programs and tests in GP. To this end, it factorizes of the

matrix of outcomes vectors resulting from applying programs in

a population to the tests that de�ne the program synthesis task.

In SFIMX, the spared evaluation cycles are spent on additional

programs in extended population.

Matrix factorization has also been used as a means to ‘multi-

objectivize’ GP. Discovery of Objectives via Factorization (DOF)

proposed in [25], employs NMF to heuristically derive a low number

461

GECCO ’17, July 15-19, 2017, Berlin, Germany Paweł Liskowski and Wojciech Jaśkowski

of search objectives from an interaction matrix, and uses these ob-

jectives to drive the search. The central observation that motivates

DOF is that NMF can be used to explain the interaction outcomes

in G by characterizing both programs and tests in terms of factors

inferred from the patterns observed in their interactions. These

factors are used to recast the GP problem as a multi- rather than a

single-optimization problem. In every generation, DOF feeds the

factors fromW directly into NSGAII [7] selection procedure in or-

der to select the parent programs and generate candidate solutions

for the next generation.

Similarly to DOF, Discovery of Search Objectives by Cluster-

ing (DOC) also derives new search objectives that characterize

the candidate solutions in P and form the basis for selecting the

most promising individuals for the next generation [22]. DOC

applies clustering to n columns of G that are treated as points in

m-dimensional space. DOC builds upon the approach designed for

coevolutionary algorithms in [24, 26].

The position evaluation in Othello has been frequently employed

for evaluating both evolutionary [6, 14, 15, 30, 35, 39, 41] and tem-

poral di�erence learning methods [36], and for comparing their

empirical results [17, 35, 38]. The best evaluation function for Oth-

ello to date has been obtained using the Coevolutionary CMA-ES

algorithm [16]. We refer to this work for a review and computa-

tional comparison of all past approaches to this problem.

In the context of Othello, n-tuple networks were employed for

the �rst time under the name of tabular value functions by Buro

[4] in his famous Logistello program. More recently, they were

popularized by Lucas [28] and successfully applied to other games

such as Connect 4 [40], the puzzle game of 2048 [37] and Tetris [18].

6 EXPERIMENTS
In the following experiments, we evaluate our matrix factorization-

based interaction scheme on the problem of position evaluation in

the game of Othello (see Section 4). We evolve individuals which

are real-valued vectors interpreted as the weights of a systematic

n-tuple network consisting of all straight 4-tuples and all square

2 × 2-tuples. As the optimization method, we employ Coevolution-

ary CMA-ES (CoCMAES) [16], which uses the covariance matrix

adaptation evolutionary strategy [9], a state-of-the-art continuous

black-box optimization method. The step-size σ of CMA-ES is ini-

tialized to 1. The initial starting point for CMA-ES is generated by

sampling the weights uniformly from the range [−0.1, 0.1]. We use

the population size λ = 400. All the algorithms were run 5 times.

To objectively measure the progress of coevolutionary learning

algorithms, we strictly followed the protocol from [16], to which

we refer for details. We employed an external performance measure

consisting in playing (double) Othello games against 11 previously

published position evaluation functions on 1000 opening positions.

Every 10 generations, we report the average of 22000 games.

The AMFIS setups, which automatically adapt α during a run

(cf. Section 3), employ the same objective performance measure

for computing the learning speed but estimate it only from 100

positions to minimize the computational overhead. In this way,

the extra computational e�ort needed by the adaptive interaction

scheme amounts to about 1.3% of the total e�ort.

0 1 2 3 4 5 6 7 8

Effort ×107

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
er

fo
rm

an
ce

CoCMAES

CoCMAES+MFIS-0.1

CoCMAES+MFIS-0.2

CoCMAES+MFIS-0.3

CoCMAES+MFIS-0.4

CoCMAES+MFIS-0.5

CoCMAES+MFIS-0.7

Figure 4: Average performance of the best-of-generation in-
dividuals obtained using CoCMAES andMFIS with constant
α . The runs were stopped after 2000 generations.

The methods studied in this paper were implemented
1

in Java.

We used the Hansen’s CMA-ES implementation
2
. By using fac-

torization rank k = log(λ) ≈ 10, the computational cost of the

factorization was approximately 2 − 10% of the total cost of the

�tness evaluation.

6.1 CoCMAES+MFIS (constant α)
In the �rst experiment, we were interested in verifying whether

the proposed MFIS is a viable method for accelerating the vanilla

round-robin-based CoCMAES. For this aim, we control the fraction

of interactions to be calculated by α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7}
in Algorithm 2. Since the number of interactions is reduced by a

factor of 1−α , in each generation we spare (1−α) |P |2 interactions.

Figure 4 plots the objective performance of the best-of-generation

individual as a function of computational e�ort (the number of in-

teractions). The results clearly demonstrate that MFIS provides

signi�cant speed-up while maintaining the overall performance.

The curve that belongs to the baseline method CoCMAES is dom-

inated by the other methods for most of the time, indicating that

the same performance can be achieved much faster. For instance,

CoCMAES+MFIS with α = 0.1 achieves the performance level of

0.75 2.2 times faster than the baseline Co-CMAES. Despite the fact

we stopped the run after 2000 generations, it can already be ob-

served that it would not achieve the same performance level as the

baseline method, since the higher the performance level, the more

precise �tness is required.

6.2 CoCMAES+AMFIS (adaptive α)
The observations made in Section 6.1 led us to design the adap-

tive variant of the proposed interaction scheme that automatically

adjusts α during evolution (cf. Section 3 and Algorithm 3). The

method dubbed AMFIS-20 uses step size γ = 0.1, leading to 10 α

1
https://github.com/pliskowski/cma-mf

2
https://code.google.com/p/cma-es

462

https://code.google.com/p/cma-es

Accelerating Coevolution with Adaptive Matrix Factorization GECCO ’17, July 15-19, 2017, Berlin, Germany

0 1 2 3 4 5 6 7 8

Effort ×107

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
er

fo
rm

an
ce

CoCMAES+AMFIS-20

CoCMAES

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
lp

ha

Figure 5: Average performance of the best-of-generation
individuals obtained using CoCMAES and CoCMAES aug-
mented by AMFIS-20.

levels of {0.1, 0.2, . . . , 1.0}.We also set the window size w = 20 so

that the mean learning speed is computed from the 20 most recent

observations and φ = 50 to make sure that the algorithm gathers

enough samples prior to making any decisions regarding the level

of α .

In Fig. 5, we compare the objective performance of the best-

of-generation individuals obtained using AMFIS-20 and the base-

line CoCMAES. We also plot α to visualize how it changes dur-

ing the learning. The proposed adaptive MF-based interaction

scheme learns faster throughout the evolutionary run and ulti-

mately achieves a similar level of performance as the baseline CoC-

MAES. This is not surprising since AMFIS converges eventually to

the round-robin CoCMAES. As demonstrated by the plot, AMFIS-20

starts computing the complete interaction matrix G at the end of

evolution, shortly after reaching the milestone of 7.5 × 107 inter-

actions. From that point onward, it progresses just as a regular

CoCMAES.

6.3 Other AMFIS variants
In the �nal experiment, we investigate the robustness of AMFIS

to the condition on which the α level is increased (c.f. Algorithm

3) and the window size w . Apart from AMFIS-20 shown earlier,

we consider three additional setups: AMFIS-10 that uses w = 10,

AMFIS-10TT that uses w = 10 and the Student’s t-test, and AMFIS-

20TT employingw = 20 and the t-test with p = 0.25. By decreasing

the window size, we expected the algorithm to become more suscep-

tible to outliers and noise when evaluating the performance gains

from di�erent levels of α . Also, we expected that the statistically-

sound Student’s t-test should be more robust than a simple ‘greater

than’ condition.

The results shown in Fig. 6 surprised us since both the learning

speed and the �nal performance of the compared methods turned

out to be similar. Despite this, we observe that the variants employ-

ingw = 20 are less eager to increase α , especially in the later stages

of evolution. This suggests that the higher values of w should be

0 1 2 3 4 5 6 7 8

Effort ×107

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
er

fo
rm

an
ce

CoCMAES+AMFIS-10TT

CoCMAES+AMFIS-10

CoCMAES+AMFIS-20

CoCMAES+AMFIS-20TT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
lp

ha

Figure 6: Average performance of the best-of-generation in-
dividuals obtained using AMFIS, window size w ∈ {10, 20}
and the switch conditions utilizing either ’greater than‘ or
the Student’s t-test.

in principle more economic in terms of the computational e�ort,

allowing for potentially bigger savings during the run. A similar

observation can be made for the impact of the t-test as it requires

more evidence to allow the algorithm to increase α .

Overall, these results allow us to conclude that the proposed

method is robust to the choice of the parameters.

7 CONCLUSIONS
In this paper, we proposed an adaptive coevolutionary interaction

scheme that computes only a fraction of interactions needed for the

�tness evaluation, thereby allowing to considerably improve the

learning speed of coevolutionary algorithms. Our method, adaptive

matrix factorization-based interaction scheme (AMFIS) uses com-

putationally e�cient non-negative matrix factorization to predict

missing interaction outcomes. What is important, AMFIS can au-

tomatically adapt its main parameter α , which controls the �tness

precision vs. learning speed trade-o�. In the limit, it converges to

the (precise) round-robin interaction scheme.

We demonstrated how the proposed interaction scheme can

be applied to signi�cantly speed-up CoCMAES, the state-of-the-

art coevolutionary method, for the problem of learning position

evaluation in the game of Othello. Although we limited our consid-

erations to the symmetric single-population case, nothing precludes

other designs such as extending our interaction scheme to the two-

population coevolution.

The method is founded on a solid mathematical ground, it is

robust to its parameters, and it is computationally e�cient, which

makes it particularly appealing for handling large and computa-

tionally expensive problems. In machine learning, it is common to

apply NMF to matrices with tens of thousands of rows an columns

[21]. This capability may come in handy for problems requiring

large populations, or large numbers of tests.

This preliminary study can be extended in multiple ways. In

addition to already mentioned two-population coevolution, we

463

GECCO ’17, July 15-19, 2017, Berlin, Germany Paweł Liskowski and Wojciech Jaśkowski

would be interested to see whether it is possible to further extend

the method by computing only the interaction outcomes that are

di�cult to estimate and predicting the others.

One weakness of the proposed method consists in using the

objective performance measure in order to adapt the α parameter.

This may not be always available. Thus, in the future work, we

would like to drop this requirement by using a coevolutionary

archive consisting of best-of-generation individuals.

ACKNOWLEDGMENTS
P. Liskowski acknowledges the support from grant 2014/15/N/ST6/04572

funded by the National Science Centre, Poland. W. Jaśkowski was

supported by Ministry of Science and Higher Education grant “Mo-

bility Plus” no 1296/MOB/IV/2015/0. The computations were per-

formed in Poznan Supercomputing and Networking Center.

REFERENCES
[1] P. J. Angeline and J. B. Pollack. Competitive Environments Evolve Better So-

lutions for Complex Tasks. In Proceedings of the 5th International Conference
on Genetic Algorithms, pages 264–270, San Francisco, CA, USA, 1993. Morgan

Kaufmann Publishers Inc.

[2] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons.

Algorithms and applications for approximate nonnegative matrix factorization.

Computational statistics & data analysis, 52(1):155–173, 2007.

[3] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In

Proc. Eastern Joint Comput. Conf., pages 225–232, 1959.

[4] M. Buro. Experiments with Multi-ProbCut and a new high-quality evaluation

function for Othello. In H. J. van den Herik et al., editor, Games in AI Research,

pages 77–96. Univ. Maastricht, 2000.

[5] S. Y. Chong, P. Tino, D. C. Ku, and Y. Xin. Improving Generalization Performance

in Co-Evolutionary Learning. IEEE Transactions on Evolutionary Computation,

16(1):70–85, 2012.

[6] S. Y. Chong, P. Tino, D. C. Ku, and X. Yao. Improving Generalization Performance

in Co-Evolutionary Learning. IEEE Transactions on Evolutionary Computation,

16(1):70–85, 2012.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,

6(2):182–197, 2002.

[8] S. G. Ficici. Solution concepts in coevolutionary algorithms. PhD thesis, Brandeis

University, Waltham, MA, USA, 2004. Adviser-Pollack, Jordan B.

[9] N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano,

P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pages 75–102.

Springer, 2006.

[10] W. Jaśkowski. Algorithms for Test-Based Problems. PhD thesis, Institute of

Computing Science, Poznan University of Technology, Poznań, Poland, 2011.

Adviser: Krzysztof Krawiec.

[11] W. Jaśkowski. Systematic n-tuple networks for othello position evaluation. ICGA
Journal, 37(2):85–96, June 2014.

[12] W. Jaśkowski. Systematic n-tuple networks for position evaluation: Exceeding

90% in the othello league. Technical Report RA-06/2014, arXiv:1406.1509, Institute

of Computing Science, Poznan University of Technology, Poznań, Poland, 2014.

[13] W. Jaśkowski, K. Krawiec, and B. Wieloch. Evolving strategy for a probabilistic

game of imperfect information using genetic programming. Genetic Programming
and Evolvable Machines, 9(4):281–294, 2008.

[14] W. Jaśkowski, P. Liskowski, M. Szubert, and K. Krawiec. Performance pro�le:

a multi-criteria performance evaluation method for test-based problems. Inter-
national Journal of Applied Mathematics and Computer Science, 26(1):215–229,

2016.

[15] W. Jaśkowski, P. Liskowski, M. G. Szubert, and K. Krawiec. Improving Coevolu-

tion by Random Sampling. In Proceeding of the Fifteenth Annual Conference on
Genetic and Evolutionary Computation Conference, GECCO ’13, pages 1141–1148,

New York, NY, USA, 2013. ACM.

[16] W. Jaśkowski and M. Szubert. Coevolutionary CMA-ES for knowledge-free learn-

ing of game position evaluation. IEEE Transactions on Computational Intelligence
and AI in Games, 8(4):389–401, 2016.

[17] W. Jaśkowski, M. Szubert, and P. Liskowski. Multi-criteria comparison of co-

evolution and temporal di�erence learning on othello. In A. I. Esparcia-Alcazar

and A. M. Mora, editors, EvoApplications 2014, volume 8602 of Lecture Notes in
Computer Science, pages 301–312. Springer, 2014.

[18] W. Jaśkowski, M. Szubert, P. Liskowski, and K. Krawiec. High-dimensional

function approximation for knowledge-free reinforcement learning: a case study

in SZ-Tetris. In GECCO’15: Proceedings of the 17th annual conference on Genetic
and Evolutionary Computation, pages 567–574, Mardid, Spain, July 2015. ACM,

ACM Press.

[19] W. Jaśkowski, B. Wieloch, and K. Krawiec. Fitnessless coevolution. In M. Keijzer,

editor, GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 355–362, Atlanta, GA, USA, jul 2008. Association

for Computing Machinery, Association for Computing Machinery.

[20] Y. Jin, M. Olhofer, and B. Sendho�. A framework for evolutionary optimiza-

tion with approximate �tness functions. IEEE Transactions on Evolutionary
Computation, 6:481–494, 2002.

[21] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8), 2009.

[22] K. Krawiec and P. Liskowski. Automatic derivation of search objectives for test-

based genetic programming. In European Conference on Genetic Programming,

pages 53–65. Springer, 2015.

[23] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

[24] P. Liskowski and K. Krawiec. Discovery of implicit objectives by compression

of interaction matrix in test-based problems. In Parallel Problem Solving from
Nature–PPSN XIII, pages 611–620. Springer, 2014.

[25] P. Liskowski and K. Krawiec. Non-negative matrix factorization for unsupervised

derivation of search objectives in genetic programming. In Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, pages 749–756. ACM,

2016.

[26] P. Liskowski and K. Krawiec. Online Discovery of Search Objectives for Test-

based Problems. Evolutionary Computation, mar 2016.

[27] P. Liskowski and K. Krawiec. Surrogate �tness via factorization of interaction

matrix. In European Conference on Genetic Programming, pages 68–82. Springer,

2016.

[28] S. M. Lucas. Learning to play Othello with N-tuple systems. Australian Journal
of Intelligent Information Processing Systems, Special Issue on Game Technology,

9(4):01–20, 2007.

[29] S. Luke and R. P. Wiegand. Guaranteeing coevolutionary objective measures. In

K. A. de Jong, R. Poli, and J. E. Rowe, editors, Foundations of Genetic Algorithms
VII, pages 237–251, Torremolinos, Spain, 2002. Morgan Kaufman.

[30] E. P. Manning. Using Resource-Limited Nash Memory to Improve an Othello

Evaluation Function. IEEE Transactions on Computational Intelligence and AI in
Games, 2(1):40–53, 2010.

[31] L. Panait and S. Luke. A comparison of two competitive �tness functions. In

GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference,
pages 503–511, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[32] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons. Text mining using

non-negative matrix factorizations. In Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 452–456. SIAM, 2004.

[33] E. Popovici, A. Bucci, R. P. Wiegand, and E. D. de Jong. Coevolutionary Principles.

In G. Rozenberg, T. Bäck, and J. N. Kok, editors, Handbook of Natural Computing,

pages 987–1033. Springer, 2012.

[34] C. Reynolds. Competition, coevolution and the game of tag. In R. A. Brooks and

P. Maes, editors, Arti�cial Life IV, Proceedings of the fourth International Workshop
on the Synthesis and Simulation of Living Systems, pages 59–69, MIT, Cambridge,

MA, USA, 1994. MIT Press.

[35] T. Runarsson and S. Lucas. Preference Learning for Move Prediction and Evalua-

tion Function Approximation in Othello. Computational Intelligence and AI in
Games, IEEE Transactions on, 6(3):300–313, 2014.

[36] I. E. Skoulakis and M. G. Lagoudakis. E�cient Reinforcement Learning in

Adversarial Games. In 2012 IEEE 24th International Conference on Tools with
Arti�cial Intelligence, pages 704–711. IEEE, Nov. 2012.

[37] M. Szubert and W. Jaśkowski. Temporal di�erence learning of n-tuple networks

for the game 2048. In Proceedings of the IEEE Conference on Computational
Intelligence and Games, pages 1–8. IEEE, 2014.

[38] M. Szubert, W. Jaśkowski, and K. Krawiec. On scalability, generalization, and hy-

bridization of coevolutionary learning: a case study for othello. IEEE Transactions
on Computational Intelligence and AI in Games, 5(3):214–226, 2013.

[39] M. Szubert, W. Jaśkowski, P. Liskowski, and K. Krawiec. Shaping Fitness Function

for Evolutionary Learning of Game Strategies. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’13, pages 1149–

1156, New York, NY, USA, 2013. ACM.

[40] M. Thill, P. Koch, and W. Konen. Reinforcement Learning with N-tuples on the

Game Connect-4. In Proc. of the 12th International Conference on Parallel Problem
Solving from Nature, pages 184–194, Berlin, Heidelberg, 2012. Springer.

[41] S. van den Dries and M. A. Wiering. Neural-Fitted TD-Leaf Learning for Playing

Othello With Structured Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 23(11):1701–1713, Nov. 2012.

464

	Abstract
	1 Introduction
	2 Background
	2.1 Test-based Problems
	2.2 Coevolutionary Algorithms
	2.3 Matrix Factorization

	3 Methods
	3.1 Constant- Matrix Factorization-based Interaction Scheme
	3.2 Adaptive Matrix Factorization-based Interaction Scheme

	4 Position Evaluation for Othello
	4.1 Othello
	4.2 Position Evaluation with n-Tuple Networks

	5 Related work
	6 Experiments
	6.1 CoCMAES+MFIS (constant)
	6.2 CoCMAES+AMFIS (adaptive)
	6.3 Other AMFIS variants

	7 Conclusions
	References

