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ABSTRACT
E�cient Global Optimization (EGO) is an e�ective method to opti-
mize expensive black-box functions and utilizes Kriging models (or
Gaussian process regression) trained on a relatively small design
data set. In real-world applications, such as experimental optimiza-
tion, where a large data set is available, the EGO algorithm becomes
computationally infeasible due to the time and space complexity of
Kriging. Recently, the so-called Cluster Kriging methods have been
proposed to reduce such complexities for the big data, where data
sets are clustered and Kriging models are built on each cluster. Fur-
thermore, Kriging models are combined in an optimal way for the
prediction. In addition, we analyze the Cluster Kriging landscape
to adopt the existing in�ll-criteria, e.g., the expected improvement.
�e approach is tested on selected global optimization problems. It
is shown by the empirical studies that this approach signi�cantly
reduces the CPU time of the EGO algorithm while maintaining the
convergence rate of the algorithm.
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1 INTRODUCTION
In many real-world optimization problems, such as optimizing the
manufacturing of car body parts, function evaluations are costly,
either in time or money. E�cient Global Optimization (EGO) [11]
is a procedure designed to use a very low number of function
evaluations while optimizing a speci�c function. �e procedure
uses a surrogate model to approximate the response surface of the
real function. �e surrogate model is ��ed using an initial space
�lling Design of Experiments (DOE) [17]. Once the surrogate model
is ��ed on this data, optimization on the surrogate model’s response
surface can be performed to �nd good candidate solutions for the
black-box function to be optimized. �is step does not require any
additional expensive function evaluations since it uses the surrogate
model. For the selection of these candidate points, EGO uses an
in�ll-criterion, which is meant to provide a nice balance between
exploration and exploitation. �e newly found candidate solution
is then evaluated against the black-box function and added to the
data set and used to re-�t the surrogate model. �is procedure is
repeated untill the convergence criteria are met.

EGO normally uses Kriging [20] as the surrogate model. Kriging,
orGaussian Process Regression is a popular regression model, capable
of modeling very complex functions. Unfortunately, Kriging is
not designed to be used on relatively large or high dimensional
datasets due to its cubic time complexity and squared memory
complexity. Real world problems o�en consist of many parameters
and therefore require several hundreds or thousands of data points
to provide a good model ��ing. One of the main assumptions of
EGO is that the black-box function evaluations are extremely costly.
�is assumption justi�es the expensive time and space complexity
of Kriging when data sets are relatively small. However, when
the data available is more than a few thousand points, the time
complexity of Kriging becomes a real bo�leneck. In many complex
real-world optimization problems, a lot of initial data is already
available, using such a big data set for the standard EGO algorithm
would be computationally infeasible while using only a subset of
the initial data would result in poorly ��ed Kriging models and
therefor a poor optimization performance.

Contributions. Proposed is the use of a Kriging approxima-
tion algorithm, Cluster Kriging [28, 29], in the EGO procedure, to
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make EGO feasible on big data sets without losing its good con-
vergence rate. Additionally, proposed are several modi�cations
of the Model Tree Cluster Kriging (MTCK) algorithm to give an
additional speedup, by making the model update only a part of
its internal Kriging models when applying new points. In Section
2, related modi�cations and improvements to the EGO procedure
are discussed and how they di�er from the proposed solution. A
more in-depth discussion of E�cient Global Optimization is given
in Section 3 and the proposed algorithm and modi�cations are ex-
plained into detail in Section 4. Several experiments are conducted
to compare di�erent Kriging approximation techniques with the
original EGO implementation using Ordinary Kriging. �e experi-
mental setup is explained in Section 5, with the empirical results
shown. Both the convergence of the EGO procedures as well as the
execution time are taken into account for the comparison. Finally,
in Section 6, conclusions are drawn and future research steps are
proposed.

2 RELATED RESEARCH
EGO has received quite some a�ention in the last several years,
di�erent variants of the original EGO algorithm are proposed, us-
ing di�erent surrogate models or adapting the EGO algorithm to
solve a speci�c set of problems more e�ciently. In Viana et al. [30],
multiple surrogate e�cient global optimization is proposed, using
multiple surrogate techniques in parallel to allow multiple candi-
date solutions per optimization run. Apart from the traditional
Kriging model, additional surrogate models are used which use the
uncertainty estimate of the Kriging model in combination with their
predictions. Due to this inheritance of the uncertainty estimate, all
kinds of di�erent surrogate models can be used, which might be
bene�cial to both the time complexity as well as the convergence
rate. However, a Kriging model or similar meta-model that provides
the uncertainty estimate is still required. In Basudhar et al. [3],
Support Vector Machines are used to apply EGO for constrained
optimization problems. �e main surrogate model used in the EGO
procedure however, remains a Kriging model. Radial Basis Func-
tions are also used in combination with EGO in Sóbester et al. [25],
to perform parallel multi-point optimization.

Next to optimizing complex black-box functions, EGO is also
recently used to optimize machine learning parameters. �e �rst
time that such an idea was proposed is in Bartz-Beielstein et al.
[2], their sequential parameter optimization (SPO) toolbox uses
EGO to analyze and optimize various algorithms’ parameters. In
continuation of this work, Hu�er et al. proposes a time-bound
SPO using an approximation of Kriging named projected process
approximation [19] and later on Hu�er uses the Random Forest
model as the surrogate model for EGO. �e Random Forest model
is used primarily such that categorical parameters of the machine
learning algorithms can be be�er optimized, since Random Forests
support categorical parameters natively. However, to use Random
Forests for the application of optimizing complex black-box func-
tions would likely result in less ��ed models and therefore slower
convergence.

In addition to modi�cations of the EGO algorithm with di�erent
surrogate techniques and using EGO for di�erent purposes, other
work has been done in a�empts to improve the traditional EGO

algorithm. For example, an adaption to the EGO algorithm is pro-
posed, in Kleijnen et al. [12], to improve the uncertainty estimate
of the Kriging model using a Kriging bootstrapping approach. In
another work, EGO is adapted to optimize stochastic black-box
functions using an augmented expected improvement function [9].

�is paper is focused on the time complexity reduction of EGO
with Ordinary Kriging, and does not take the EGO modi�cations
mentioned before into account since they can be easily combined
with the proposed algorithm and its modi�cations. For later re-
search, it would be interesting to compare EGO procedures de-
signed to optimize machine learning parameters with those that
are designed to optimize expensive black-box functions.

3 EFFICIENT GLOBAL OPTIMIZATION
�e E�cient Global Optimization [11] or Bayesian optimization [14,
16] is a sequential model-based global optimization algorithm that
is built on stochastic models over the unknown objective function.
�e Kriging modeling technique [13] is originally proposed as the
underlying model in EGO. We shall brie�y introduce the Kriging
model and discuss its computational bo�leneck.

3.1 Kriging
Kriging originates from spatial analysis/geostatistics and is widely
used in Bayesian optimization and design and analysis of com-
puter experiments (DACE) [22, 23]. As a nonparametric regression
method, Kriging (or Gaussian process regression) models the dis-
tribution of an unknown function f : Rd → R by placing a prior
stochastic process on it1. A�er evaluating the objective function
at input points X = {x(1) , x(2) , . . . , x(n) } ⊂ Rd , the corresponding
(noisy) observations: y = [y (1) ,y (2) , . . . ,y (n)]> are collected and
used as a data set to update the prior distribution into a so-called
posterior process, via Bayesian inference. Speci�cally, the mostly
used variant of Kriging, Ordinary Kriging (OK), treats the unknown
function f as the combination of a centered Gaussian Process ε (of
zero mean) with an unknown constant trend term µ:

y (x) =

f︷   ︸︸   ︷
µ + ε (x) +γ (x),

ε (x) ∼ N (0,σ 2
ε (x)), γ (x) ∼ N (0,σ 2

γ )

Note that γ is the error variable in the regression which is known as
the “nugget” e�ect in Kriging. In noiseless computer experiments,
its variance is o�en set to a small number in order to relax the con-
ditioning of the covariance matrix [1]. In this paper, it is assumed
that noise term γ is homoscedastic and independent from each
other and the Gaussian Process ε . �e centered Gaussian Process
ε is a stochastic process of zero mean and any �nite collection of
its random variables has a joint Gaussian distribution [20]. It can
be completely speci�ed by providing a covariance function k (·, ·):
Cov[ε (x), ε (x′)] = k (x, x′). �roughout this paper, we choose the
well-known Matérn 3/2 kernel function for k :

k (x, x′) = σ 2
ε

(
1 +
√

3l
)
e−
√

3l , l =

√√√ d∑
i=1

θi
(
xi − x

′
i

)2 (1)

1When such a prior stochastic process is assumed to be Gaussian, Kriging is equivalent
to Gaussian Process Regression (GPR).
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where θi ’s are the hyper-parameters of the model that are com-
monly chosen through the maximum likelihood principle. Using
the Bayesian inference principle to estimate the unknown trend µ,
the posterior distribution of y is obtained, that is again a Gaussian
process2:

y | X, y ∼ N
(
m(x), s2 (x)

)
(2)

�e posterior mean functionm(·) is the maximum a posteriori
probability (MAP) estimate of the unknown f at x and the posterior
s2 (·) measures the mean squared error (MSE) of the estimation. �e
prediction variance is of high importance for the development of
the acquisition functions in EGO.

�e Kriging model mainly su�ers from the high time and space
complexity when applied to large data sets. �e major bo�leneck
is in the model ��ing procedure: �e covariance matrix Σ (Σi j =
k (x(i ) , x(j ) )) of the input dataX needs to be inverted to calculate the
model likelihood value. Such operations take roughly O (n3) time
complexity. Note that, such a high overhead is embedded in each
iteration of the optimization procedure on the hyper-parameters,
which renders the model ��ing inapplicable for a large input data
set X, y.

3.2 �e E�cient Global Optimization
Algorithm

EGO [11] is proposed to optimize expensive objective functions by
sequentially choosing new candidate solutions from an underlying
Kriging model. �e candidate solutions are obtained by maximiz-
ing the so-called acquisition function or in�ll-criterion. Acquisition
functions usually take the mean and variance of the posterior pro-
cess (Eq. 2) into account, in order to balance the exploration and
exploitation of the global search. Adding the newly obtained data
points into the underlying Kriging model, its posterior process is
modi�ed and the acquisition function is updated accordingly. In
this manner, a sequence of new solutions are generated iteratively.
�is algorithm is summarized in Algorithm 1. Many acquisition

Algorithm 1 E�cient Global Optimization
1 Generate the initial data set X, y
2 Fit the Kriging model hyper-parameters on the initial data set
X, y.

3 while the stop criteria are not ful�lled do
4 Find global optimum of the in�ll criterion:

x∗ = arдmaxx EI(x)

5 Evaluate x∗: y∗ = y (x∗) and append x∗,y∗ to X, y.
6 Re-estimate the Kriging model hyper parameters
7 end while

functions have been proposed and investigated [10]. �e most popu-
lar ones are: Lower Bound (LB) [5], the Probability of Improvement
(PI) [15, 31] and Expected Improvement (EI) [11]. In this paper, we
focus only on the expected improvement, that is de�ned as follows,

2It is possible to give the posterior covariance function. See [6] for the detail.

in terms of minimization:

EI(x) = IE[max{0,min(y) − y (x)} | y]

= (min(y) −m(x))Φ
(

min(y) −m(x)
s (x)

)
+ s (x)ϕ

(
min(y) −m(x)

s (x)

)
(3)

whereΦ(·),ϕ (·) denote the cumulative distribution function and the
probability density function of the standard normal distribution,
respectively. It takes into account the quantity of the expected
improvement and also rewards a higher variance. In addition, the
gradient of the expected improvement is given in the Equation 4,
as it is required by the quasi-Newton optimization procedure, that
is used in the next sections.

∇EI(x) = ϕ (u)∇s (x) − Φ(u)∇m(x) (4)

u =
min(y) −m(x)

s (x)

4 CLUSTER KRIGING-BASED EGO
When applying the EGO algorithm to a large initial data set (e.g. in
the experiment design), the CPU time spent on the hyper-parameter
re-estimation becomes computationally infeasible. To relax this
issue, it is proposed to use time complexity reduction techniques
that have been developed for the Kriging model. In this paper, we
adopt the so-called Cluster Kriging models that are proposed by
van Stein and Wang et al [27–29].

4.1 Time complexity reduction for Kriging
Cluster Kriging employs a divide-and-conquer strategy that splits a
huge data set into several small clusters. For each cluster, a Kriging
model is built using only the data set Xi , yi of this clusters:

y | Xi , yi ∼ N
(
mi (x), s2

i (x)
)
, i = 1, . . . ,q (5)

Using q clusters on the data set, the time complexity for building
the Kriging model above is O (n3/q2), if all the clusters has roughly
the same size. Compared to the original complexity O (n3) for
Kriging, the reduction of CPU time will be signi�cantly large in
practice, if the number of clusters is large or proportional to n.
Furthermore, the model ��ing procedures for each Kriging model
are independent such that they can also be parallelized, which
leads to a time complexity O (n3/q3).

�e predictions are made by combining the predictions from all
clusters in a smart way. When constructing such a model, mainly
two modeling aspects should be considered: 1) which clustering
algorithm to use? and 2) should the Kriging model built on each
cluster be considered as local models, that is, not used for any pre-
diction beyond its cluster boundary? Depending on these options,
the following three variants are proposed as alternative models to
be used in EGO.

Superposition of Kriging models. In this approach, the input data
set is partitioned by hard clustering methods (K-means for instance).
Due to the fact that there is no overlap between clusters, the Krig-
ing models built on di�erent clusters are considered independent
stochastic processes. Consequently, a global posterior Gaussian pro-
cess can be constructed by the superposition or linear combination
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of the Kriging models built on each cluster:

y | X, y ∼ N *
,

q∑
i=1

wimi (x),
q∑
i=1

w2
i s

2
i (x)+

-
(6)

Note that mi (·), s
2
i (·) stand for the posterior mean and variance

function of the Kriging model built on the i-th cluster. �e mean
function above is again used for the prediction. �e combination
weights are chosen by minimizing the variance of the global pro-
cess [27]: wi = s

−2
i (x)/

∑k
i=1 s

−2
i (x).

Mixture of Kriging models. As an alternative to the superposition
of Kriging models, it is possible to construct the global process
as the mixture of Kriging models from each of the clusters. In
this manner, the posterior density function д of y is treated as a
weighted combination of those on each cluster:

д(y | X, y) =
q∑
i=1

wiϕ (y | Xi , yi )

�e combination weights can be speci�ed as a user preference or
obtained from a membership probability to each clusters when
using fuzzy clustering methods, e.g. the Gaussian mixture models
(GMM) [28]. In this approach, the global process a�er combination
is no longer Gaussian and its mean and variance function are given
as follows:

m(x) =
q∑
i=1

wimi (x) (7)

s2 (x) =
q∑
i=1

wi
(
s2
i (x) +m

2
i (x)

)
− *

,

q∑
i=1

wimi (x)+
-

2

(8)

�e mean function is used for prediction as it is an unbiased esti-
mator.

Tree-based local Kriging models. Another �avor of Cluster Krig-
ing, called Model Tree Cluster Kriging (MTCK) [29], partitions the
search space by building the regression tree [4]. A�er the cluster-
ing procedure, a local Kriging model is built for each leaf node of
the tree. Unlike two previous approaches, the Kriging model for
each cluster is considered as local. To predict the function value at
a point x, the cluster that x belongs to is determined �rst and only
the Kriging model on this cluster is used for the prediction (Eq. 5)

In addition to the time complexity reduction, this approach also
brings advantages in the model ��ing. In the regression tree model,
the search space is recursively divided into smaller hypercube,
in an optimal way that reduces the variances on each node. �e
small variance in the data set makes the Kriging model ��ing
more numerically stable, as the covariance matrix tends to become
singular when the data points varies abruptly. An example of the
MTCK is illustrated on the 2-D Ackley function in Fig. 1. On the top
row, the function landscape is shown on the le� and the contours
of MTCK mean function is in the middle, where each leaf node of
the regression tree is depicted by the dashed boundaries. On the
right subplot, the expected improvement function is drawn and it is
clear that each leaf node contains a maximum of EI (marked by the
red star symbol). Compared to the Ordinary Kriging model built on
the same function (on the bo�om row), although the mean function
of MTCK resembles OK, the landscape of EI is multi-modal.

4.2 �e algorithm
It is proposed to exploit the three Cluster Kriging variants in the
EGO algorithm, for time complexity reduction. Although various
complexity reduction (or approximation) methods exist for Kriging
(for instance, FITC [18, 24] and Bayesian Commi�ee Machines [26]),
we state that Cluster Kriging is more suitable for the EGO algorithm
for the following reasons.

Firstly, the Kriging models (posterior processes in Eq. 5) on each
cluster can be executed in parallel, which yields an additional lin-
ear speedup in practice. Secondly, a�er a new candidate solution
is found through the acquisition function, the hyper-parameters
of Kriging needs to be re-estimated. Taking the cluster informa-
tion into account, it is proposed to only re-estimate the Kriging
models on the clusters that this new solution belongs to. �is op-
eration results in another linear speedup in the hyper-parameter
re-estimation procedure, as in the best scenario, only one Kriging
model is subject to re-��ing. �irdly, the acquisition function, e.g.
the expected improvement is still well-de�ned on Cluster Kriging
because either the posterior process (Eq. 6) or at least the mean and
variance function (Eq. 7) can be derived. �e algorithm is presented
in Alg. 2.

Algorithm 2 Cluster Kriging based E�cient Global Optimization
(CK-EGO)
Input: Data set X, y obtained on a black-box function f . �e

number of clusters q. �e clustering method is chosen from
K-means, GMM or regression trees by the user.

1: Initial Clustering: {
Xi , yi

}q
i=1 ← X, y

2: Create the Kriging model for each cluster:

y | Xi , yi ∼ N
(
mi (x), s2

i (x)
)
, i = 1, . . . ,q

3: c ← 0
4: while the stop criteria are not ful�lled do
5: x∗ = arдmaxx EI(x)
6: Evaluation: y∗ = f (x∗)
7: c ← c + 1
8: if c > 10% the number of data points in X then
9: Merge the data set: X, y← {

Xi , yi
}q
i=1

10: Clustering the data setX, y and re-create the Kriging mod-
els for each cluster.

11: c ← 0
12: else
13: for every cluster i that x∗ belongs to do
14: Append x∗,y∗ to Xi , yi .
15: Re-estimate the hyper-parameter for the Kriging model

on cluster i .
16: end for
17: end if
18: end while
19: return x∗

In the algorithm, the initial ��ing procedure can be parallelized
(line 2). Usually, the cluster (and the Kriging model on it) that
the new solution belongs to is updated (line 13-16). A counter c is
incremented every time when a new candidate solution is generated
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Figure 1: Comparison between Tree-based local Kriging models and Ordinary Kriging. Top row: Model tree Cluster Kriging
and bo�om row: Ordinary Kriging. First column: �e landscape of the two dimensional Ackley function, second column is
the contours of the model mean function, with the tree partitioning visualized by dashed lines for the MTCK model. �e
index of the clusters are shown in middle of each rectangle. Third column: �e expected improvement function and the
maximum point (red star) that is found by the quasi-Newton method. For the MTCK, multiple maximum points are obtained
by conducting the quasi-Newton runs on each partition.

(line 5). If the c value, that is the recently appended data points, are
more than 10% of the initial data set, the clustering is performed
again to keep the size of each cluster balanced and capture the
information contained in the newly added points.

4.3 Maximization of the Expected
Improvement

For the maximization of the expected improvement (line 5 in Alg. 2),
it is possible to exploit fast black-box optimization algorithms, for
instance the well-known Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [7, 8], because the evaluation of the expected
improvement is not expensive compared to the Kriging ��ing proce-
dure. However, as the formula of EI is well-expressed, its gradient is
frequently utilized for the optimization. In this paper, it is proposed
to optimize the expected improvement by �rst conducting a quasi-
Newton method (using the gradient of EI) with random restarts and
then exploiting the CMA-ES to optimize it again. �e maximum

of EI is chosen from the best runs from these two optimization
algorithms.

To align with existing work [21] on using gradient-based opti-
mization techniques for EI, we give the gradient of the mean and
variance function in Cluster Kriging, as they are required by the
computation of the EI gradient (Eq. 4). For the superposition of
Kriging models (Eq. 6), the gradient of its mean and variance are:

∇m(x) =
q∑
i=1

(wi∇mi +mi∇wi )

∇s2 (x) =
q∑
i=1

(
w2
i ∇s

2
i + 2wis

2
i ∇wi

)
∇wi =

q∑
i=1

*
,

∇s2
i

s4
iM
+

∑q
i=1 ∇s

2
i /s

4
i

s2
iM

2
+
-
, M =

q∑
i=1

(
s2
i

)−1

�e gradient of the Kriging model on each cluster ∇mi ,∇s
2
i , is

the usual gradient for Ordinary Kriging [21]. �e gradient of the
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mixture of Kriging models can be obtained in a similar way. We
omit this here for simplicity.

In addition, for the Tree-based local Kriging models (MTCK), it
is shown (Fig. 1) that each cluster (leaf node) can be treated as a sub-
problem in the EI maximization. �erefore, it is proposed to conduct
independent optimization in each leaf node of the regression tree
and choose the best point from all these sub-problems. In this
manner, it is also possible to balance the search budget in each
region of the search space such that a bigger leaf node will receive
a high function evaluation budget.

5 EXPERIMENTS
Several experiments are conducted to show both the empirical
time complexity and convergence rate of the proposed Cluster
Kriging based EGO, including all the variants of Cluster Kriging
discussed in section 4. �e performance of the proposed algorithm
is compared to the original EGO that uses Ordinary Kriging (OK).
For our experiments, the benchmark functions chosen are Ackley,
Rastrigin and Scha�er. �ese functions are chosen because they are
used o�en in optimization experiments, are highly multi modal,
and are of a relatively high complexity.

Experiment 1 �e algorithms compared are: EGO with Ordi-
nary Kriging (OK), Tree-based local Kriging models (MTCK), Su-
perposition of Kriging models (OWCK) and the mixture of Kriging
models (GMMCK). Each of the Cluster Kriging variants uses 5 clus-
ters. Both execution time and convergence rate are being measured
with a �xed set of EGO iterations and optimization budget. �e
convergence is measured by taking the absolute error between the
real optimum of the benchmark functions and the found optimum
for each iteration of EGO. Each EGO run performs 10 iterations
for the three benchmark functions in two dimensions. �ree dif-
ferent initial sample sizes are used to train the surrogate models,
500, 1000 and 5000 points in order to illustrate the growth of CPU
time required per algorithm, when the size of the data available
increases. For each di�erent experimental setup, the average time
and distance to the optimum is recorded over 20 runs with di�erent
random seed.

Experiment 2 �e algorithms, OK, MTCK and OWCK are com-
pared in �ve dimensions on the benchmark functions Ackley and
Rastrigin also varying the algorithm that maximizes the expected
improvement. CMA-ES and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm are compared.

Results From Figure 3 it can be observed that the Cluster Krig-
ing based EGO variants perform very similar to OK, depending on
the target function, a speci�c variant even outperforms Ordinary
Kriging. Due to the relatively large variance in the results it is
di�cult to judge which algorithm performs be�er. However, from
the CPU time in Figure 2 it can be observed that Cluster Kriging and
in particular MTCK takes only a fragment of the time that Ordinary
Kriging requires. Using a sample size of 500 points this di�erence
is mainly due to the re-��ing of only one local model at a time.
�is can be seen by comparing MTCK with GMMCK and OWCK,
since all three cluster Kriging variants use the same number of
local models and only MTCK uses an adaptive local model strategy.
When the number of points increases to 1.000 and even 5.000, the
di�erence between the three cluster Kriging variants decreases

but the di�erence with Ordinary Kriging becomes enormous. �is
shows that using EGO with Ordinary Kriging quickly becomes
infeasible when the number of data points grow.

From Figure 4 it can be observed that also in higher dimensions
Cluster Kriging does not under-perform Ordinary Kriging. In addi-
tion, it can be observed that using di�erent optimization strategies

(a) CPU time (500, 2)

(b) CPU time (1000, 2)

(c) CPU time (5000, 2)

Figure 2: Average CPU time (in sec.) per benchmark func-
tion for varying sample sizes (nsamples,ddimensions ).
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(a) Ackley (500, 2) (b) Rastrigin (500, 2) (c) Scha�er (500, 2)

(d) Ackley (5000, 2) (e) Rastrigin (5000, 2) (f) Scha�er (5000, 2)

Figure 3: Average convergence of the absolute error of three benchmark functions in two dimensions, with varying training
sample sizes n and 10 iterations of EGO. Shown is the average over 20 runs (lines) and one standard deviation (shaded areas).

for the expected improvement a�ects the convergence rate. How-
ever, the best optimization strategy clearly depends on the target
function.

6 CONCLUSION AND FUTURE RESEARCH
In this paper, we propose to relax the time complexity issue of the
EGO algorithm by adopting a complexity reduction technique, the
so-called Cluster Kriging as the surrogate model. In this approach,
a collection of small Kriging models are created on the data clusters,
which are obtained in the clustering method. In EGO, a global
Kriging model is constructed by combining all the small Kriging
models in a reasonable way. �ree variants of the Cluster Kriging
are proposed for the EGO and their performance is validated on
some test functions.

Based on the empirical results that are shown in Section 5, it can
be concluded that EGO using the Cluster Kriging is much faster
in terms of time complexity compared to the traditional EGO that
employs a Ordinary Kriging model. Moreover, each of the Cluster
Kriging variants perform very well compared EGO using Ordinary
Kriging in terms of convergence speed. From the results shown in
Section 4, it can be inferred that the MTCK model �ts the objective
function well due to the reason that it captures local information
much be�er than Ordinary Kriging.

For future research additional modi�cations can be proposed to
Cluster Kriging based EGO algorithm to further optimize the time
complexity and convergence speed. For instance, it is possible to
utilize the tree partitioning information to calculate the bound of
the acquisition function on each leaf node. In this way, some leaf
nodes can be pruned from the search space. In addition to these
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(a) Ackley (500, 5) (b) Rastrigin (500, 5)

Figure 4: Average convergence of the absolute error of two benchmark functions in �ve dimensions using di�erent optimiza-
tion algorithms. 500 training samples and 50 iterations of EGO are used. Shown is the average over 20 runs (lines) and one
standard deviation (shaded areas).

modi�cations, it would be interesting to make a comparison to
other alternatives currently used for optimizing machine learning
algorithms to see how Cluster Kriging based EGO performs on
these problems.
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