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ABSTRACT 
Refactoring is a highly valuable solution to reduce and manage the 
growing complexity of software systems. However, programmers 
are “opportunistic” when they apply refactorings since most of 
them are interested in improving the quality of the code fragments 
that they frequently update or those related to the planned activities 
for the next release (fixing bugs, adding new functionalities, etc.). 
In this paper, we describe a search based approach to recommend 
refactorings based on the analysis of the history of changes to 
maximize the recommended refactorings for recently modified 
classes, classes containing incomplete refactorings detected in 
previous releases, and buggy classes identified in the history of 
previous bug reports. The obtained results on two industrial 
projects show significant improvements of the relevance of 
recommended refactorings, as evaluated by the original developers 
of the systems. 
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and management →  Search-based software engineering 
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1 INTRODUCTION 

Several studies show that programmers are postponing software 
maintenance activities that improve software quality, even while 
seeking high-quality source code for themselves when updating 
existing projects. High-quality source code can be characterized 
using several quality attributes, but maintaining this high level of 
quality is expensive. One reason is that time, and monetary 
pressures force programmers to neglect to enhance the quality of 
their source code. 

The challenge that programmers face when trying to improve 
the software design structure while preserving the behavior is 
termed the “software refactoring problem” [1][7][11]. A large 
portion of existing refactoring tools suggests refactorings improve 
the overall quality of systems without a concrete prioritization plan 
[2][13]. As a result, the number of refactorings to apply can be 
large, and developers may spend a long time to select relevant 
refactorings.  

When a high number of refactorings are recommended, manual 
refactoring becomes error-prone and time-consuming. Murphy-
Hill et al. [2] show that most developers do not use fully automated 
refactoring techniques because they want to mix refactorings with 
semantic changes, something that is not permitted by existing 
methods. Also, developers find fully automated refactoring risky 
because it can introduce bugs or undesired changes.  

In the current literature, Search-based refactoring techniques 
obtained promising results based on the use of mono-objective and 
multi-objective algorithms to optimize quality metrics [5][6][7] 
[15][17][16][18]. However, most of these techniques explore a 
large search space of possible solutions and recommend a large 
sequence of refactorings to apply. In fact, developers are more 
interested, in general, to refactor recently modified entities related 
to their current tasks (e.g. features update, fixing bugs, etc.) [2]. 
Furthermore, recent empirical studies show that most of the 
refactored code fragments in practice are buggy classes.   

In this paper, we propose a profile-based approach for 
refactoring recommendations to satisfy the following requirements: 
1) programmers prefer to improve mainly the quality of recently 
modified code before a new release due to limited resources and 
time, 2) several empirical studies [8][9][19][20] identified 
correlation between bugs and refactoring opportunities, and 3) 
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recently introduced refactorings may give an indication of quality 
issues that should be fixed and show an interest from programmers 
to refactor these code fragments.  

To consider the above observations, we propose a search-based 
refactoring approach, based on multi-objective simulated annealing 
[4], to find the best solution satisfying two objectives: maximizing 
the number refactorings applied to buggy or recently modified 
classes, and minimizing the number of antipatterns [1] using a set 
of antipatterns detection rules [5]. We implemented our proposed 
approach and evaluated it on a set of two industrial systems 
provided by our industrial partner from the automotive industry. 
We did the evaluation only on these two systems since it is critical 
to evaluate the relevance of recommended refactorings by the 
original developers of the systems. Statistical analysis of our 
experiments showed that our proposal performed significantly 
better than existing search-based refactoring approaches [6][7] and 
an existing refactoring tool not based on heuristic search, 
JDeodorant [8] regarding the relevance and importance of 
recommended refactorings. In our qualitative analysis, we 
conducted a survey with the software developers who participated 
in our experiments to evaluate the relevance of the fixed quality 
violations in their daily development activities. 

The remainder of this paper is structured as follows. Section 2 
provides an account of the related work. Section 3 describes our 
profile-based refactoring approach while the results obtained from 
our experiments are presented and discussed in Section 4. Finally, 
in Section 5, we summarize our conclusions and present some ideas 
for future work. 

2 BACKGROUND AND RELATED WORK 
Refactoring is the process of improving the code quality of an 

existing system while preserving its external behavior [2]. The 
refactoring process includes several steps, but the most important 
ones are the detection of refactoring opportunities and the 
recommendation of relevant refactorings to fix those detected 
quality issues. To identify refactoring opportunities, the majority of 
existing studies are based on the concept of code smells [1]. These 
code smells correspond to design practices that have a negative 
impact on the maintainability, understandability, and performance 
of the software[3].  

Meananeatra [11] proposed a semi-automated graph-based 
algorithm to reduce the refactoring effort. The proposed algorithm 
is based on three objectives to reduce the number of detected code 
smells, the number of applied changes and number of refactored 
code fragments. Another tool is proposed, called JDeodorant [8], 
and implemented as an Eclipse plug-in based on the use of quality 
metrics to detect design quality violations. Several templates are 
proposed to cover different possible standard strategies to fix the 
detected code smells. Kessentini et al. [5] proposed a mono-
objective genetic algorithm to identify the optimal sequence of 
refactorings that reduce the number of code smells using a set of 
detection rules. 

Nevertheless, Refactoring studies were not only limited to 
fixing design defects, but also driven by the optimization of the 
software design through optimizing software quality attributes. For 

example, Du Bois et al. [14] has intended to find an optimal 
distribution of features within software modules through moving 
existing methods and classes while decreasing coupling and 
increasing cohesion. Seng et al. [15] used a genetic algorithm the 
generate refactoring sequences that optimize class level properties 
based on several quality metrics.  

In contrast with combining metrics into one fitness function, 
Harman and Tratt [17] suggested a multi-objective optimization 
approach to generate refactoring operations that find the best 
tradeoff among two conflicting measures namely, the coupling and 
the standard deviation of methods per class.  

3 CONTEXT-BASED REFACTORING USING 
LOCAL SEARCH 

3.1 Approach Overview 
The goal of our approach is to find the most relevant 

refactorings for software developers to refactor their systems based 
on their recent update of the system. The general structure of our 
approach is sketched in Figure 1.  

Our technique comprises two main components. The first 
component is the pre-processing phase to rank the list of possible 
classes to refactor. During this phase, three different parsers are 
executed to extract classes that are recently modified or refactored 
in recent releases or those mentioned in previous bug reports. The 
classes mentioned in recent commits, are maybe important to 
refactor since they have a high probability to include bugs or to be 
updated in the future comparing to stable classes that were not 
modified for many releases. Several empirical studies show that 
correlation exists between buggy classes and poor quality 
symptoms […]. Thus, relevant refactorings for the developers’ 
context could be identified in these classes based on this pre-
processing phase. 

 

 
Figure 1: Approach overview 
 
Developers, for example, may introduce bugs because of the 

complexity of the system and its poor design. Furthermore, the 
classes that are refactored recently by the developers but still 
contain quality issues can be recommended for further refactoring 
since already programmers expressed an interest in fixing them. 
The list of applied refactorings in previous releases are detected 
using the technique proposed in [18]. The outcome of this first 
phase is a list of classes that could be refactored based on the three 
main criteria detailed above.  
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The outcome of the first phase is used to reduce the search space 
to find the best refactoring sequence to recommend for developers. 
A multi-objective search algorithm is used to focus mainly on 
refactoring, if needed, the classes of the first phase while fixing 
some other quality issues as well. To this end, a multi-objective 
simulated annealing algorithm is executed for a number of 
iterations to find the solutions balancing the two objectives of 1) 
improving the relevance of recommended refactorings, which 
corresponds to maximize the number of refactoring 
recommendation in recently modified or buggy classes and 2) 
minimizing the number of antipatterns using a set of detection rules 
defined in the literature [5]. The first objective of the refactorings 
relevance is based on an average of three different measures of 
recently modified classes, recent classes mentioned in bug reports 
and recently refactored classes including incomplete refactoring 
activities or may need to be further refactored. The formalization 
of these measures will be described in the next section.  

A multi-objective simulated annealing algorithm [4] is selected 
due to the small search space to explore after the pre-processing 
phase. A set of semantic constraints is used to check the correctness 
and feasibility of recommended refactorings based on textual 
similarities, call graphs and pre/post-conditions. These constraints 
are described in more details in [7]. The next section will discuss 
the formalization of our approach and the adaptation of the multi-
objective simulated annealing algorithm to our problem. 

3.2 Problem Formulation and Solution Approach 
Simulated annealing is a local search heuristic inspired by the 

concept of annealing in metallurgy where metal is heated, raising 
its energy and relieving it of defects due to its ability to move 
around more easily [4]. As its temperature drops, the metal's energy 
drops and eventually it settles in a more stable state and becomes 
rigid. The local search algorithm of the Simulated Annealing is 
very suitable for exploring small search spaces. More details about 
Multi-Objective Simulated Annealing can be found in the 
following reference [4]. 

In the next sections, we described the three main steps of 
adaptation of MOSA to our problem. 

Solution representation. A solution of our problem is defined 
as a sequence of a number of refactorings involving one or multiple 
source code fragments of the software to refactor. As described in 
Table I, the vector-based representation is used to define the 
refactoring sequence. Each dimension of the vector has a 
refactoring, and its index in the vector indicates the order in which 
it will be applied. For every refactoring, pre- and post-conditions 
are specified to guarantee the correctness of the operation. 

The initial population is created by randomly selecting a 
sequence of operations to a randomly chosen set of code elements, 
or actors identified in the first phase of search space reduction. The 
type of actor usually depends on the type of the refactoring it is 
assigned to and also depends on its role in the refactoring operation. 
In our experiments, we used the following list of refactorings: 
Extract class, Extract interface, Inline class, Move field, Move 
method, Push down field, Push down method, Pull up field, Pull up 
method, Move class, and Extract method.  

Fitness functions. The generated solutions are evaluated using 
two fitness functions as detailed in the following paragraphs. 

Minimize the number of code smells: This fitness function is 
calculated based on the following equation: 

grefactorin before smells code#

grefactorinafter  smells code#
)(Min 1 sf  

 This function represents the proportion between the number of 
corrected defects (detected using bad smells detection rules) and 
the total number of possible defects that can be detected. The 
detection of defects is based on some metrics-based rules according 
to which a code fragment can be classified as a design defect or not 
(without a probability/risk score), i.e., 0 or 1, as defined in the 
detection rules of previous studies [5].  

Maximize refactorings relevance: The main goal of the second 
fitness function is to evaluate the refactoring solutions based on 
their relevance to the developers. Formally, this function is defined 
as follows: 



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where n is the number of classes to be refactored by the solution 
S, c is the class that contain at least one code smell and commitf(c) 
and bugreportsf(c) are respectively the functions to estimate the 
relevance of the class for refactoring based on previous changes in 
recent commits and previous bug reports.  

The first function commitf(c) checks if a class was recently 
changed. In fact, a class that was modified recently has a high 
probability to be refactored comparing to stable classes. Thus, the 
function compares between the date of the last commit and the last 
date where the class was modified in the previous commit. If a 
suggested class was modified in the last commit, then the value of 
this function is 1. We define this normalized function, normalized 
in the range of [0, 1] as following: 

1.)(.

1
)(




datelastcommitcdatecommit
ccommitf

 
 

The second function bugreportsf(c) counts the number of times 
a class was fixed to eliminate bugs based on the history of bug 
reports divided by the maximum number of times that a class in the 
system was fixed in previous bug reports. In fact, a class that was 
fixed several times has a high probability of being a buggy class 
and thus need to be refactored. Formally, this function, normalized 
between [0,1] is defined as: 

2

)(

),(

1.)(.

1
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reportsBugsMaxNbFixed

creportssNbFixedBug

datelastcommitcdateortlastbugrep
cfbugreports
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
 

Change operators 
MOSA is using a mutation operator to generate new solutions. 

For mutation, we use the bit-string mutation operator that selects 
one or more refactoring operations (or their controlling parameters) 
from the solution and replaces them by other ones from the list of 
possible operations to apply. 

When applying the change operators, the different pre- and post-
conditions are checked to ensure the applicability of the newly 
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generated solutions. We also apply a repair operator to randomly 
select new refactorings to replace those creating conflicts. 

 
Table I. Example of first randomly generated operations. 

Ref Refactoring operation 

RO001 
MoveMethod(org.apache.xerces.xinclude.XIncludeTextReade
r, org.apache.xerces.xinclude.XIncludeTextReader, close()) 

RO002 
MergePackage(org.apache.xerces.xpointer, 
org.apache.xerces.xs) 

RO003 

PullUpMethod(org.apache.html.dom.HTMLTableCaptionEle
mentImpl,org.apache.html.dom.HTMLElementImpl, 
addEventListener()) 

RO004 
ExtractInterface(org\apache.xml.serialize.SerializerFactory,ap
ache.xml.serialize.SerializerFactoryInterface) 

4 EVALUATION 

4.1Research Questions and Evaluation Metrics 
To evaluate and compare the performance and relevance of the 

recommended refactoring by our context-based multi-objective 
simulated annealing algorithm, we defined the following three 
research questions: 

RQ1: To what extent can our approach recommends relevant 
refactorings to developers? 

RQ2: To what extent can our approach reduces the number of 
refactorings and the execution time while improving the quality and 
recommending relevant refactorings compared to existing 
refactoring techniques? 

RQ3: Can our approach be relevant for programmers in 
practice? 

To address the first research question RQ1, we used both 
qualitative and quantitative evaluations of the recommended 
refactorings by our approach and existing studies.  

For the quantitative validation, we asked a group of developers 
from our industrial partner to manually suggest a list of possible 
refactorings to apply based on the latest release source code of the 
system to refactor. Then, we used the precision (PR) and recall 
(RC) measures to evaluate the similarity between the recommended 
refactorings by our approach and those manually found by the 
original programmers of the industrial projects: 

gs)refactorin (expectedset 

gs)refactorin (expectedset  gs)refactorin ed(recommendset 
RC

 

gs)refactorin ed(recommendset 

gs)refactorin (expectedset  gs)refactorin ed(recommendset 
PR

 
Another metric that we considered for the quantitative 

evaluation is the percentage of fixed antipatterns (NF) by the 
refactoring solution. The code smells are detected on the new 
source code after refactoring based on the detection rules provided 
by [10]. Formally, NF is defined as  

 
The detection of antipatterns is very subjective and some 

developers prefer not to fix some smells because the code is stable 
or some of them are not important to fix. To this end, we considered 

another metrics the total gain in quality G for each of the considered 
QMOOD [3] quality attributes qi before and after refactoring can 
be easily estimated as: 

, where q’i and qi represents the value of the 
quality attribute i respectively after and before refactoring. 

Since several good solutions can be relevant, it is important to 
check the relevance and correctness of recommended refactorings 
not only by comparing them with one expected solution 
(quantitative validation). Thus, we performed a qualitative 
evaluation where we asked the original programmers of the 
industrial projects to review, manually, if the recommended 
refactorings are relevant and correct or not from their perspectives. 
We define the metric Refactoring Relevance (RR) to mean the 
number of relevant refactorings divided by the total number of 
suggested refactorings. RR is given by the following equation:  

gsrefactorin proposed#

gsrefactorinrelevant #
RR

 
To answer RQ2, we compared our approach to random search 

(RS), mono-objective simulated annealing (SA) aggregating both 
objectives, another multi-objective evolutionary algorithm 
(NSGA-II) and an existing work based on search algorithms to 
fully-automate the refactoring recommendation process: O’Keeffe 
and Ó Cinnéide [11] and Ouni et al. [12].  

O’Keeffe and Ó Cinnéide proposed a mono-objective 
formulation to automate the refactoring process by optimizing a set 
of quality metrics. Ouni et al. [7] proposed a multi-objective 
refactoring formulation that generates solutions to fix code smells. 
Both techniques are fully-automated and did not consider the 
personalization of refactoring recommendations. We have also 
compared our results with an existing tool, called JDeodorant, not 
based on heuristic search to fix quality issues by recommending 
refactorings. JDeodorant implements a set of templates to fix 
different design violations by providing a generic list of 
refactorings to apply. Since JDeodorant just recommends a few 
types of refactoring with respect to the ones considered by our tool. 
We restricted, in this case, the comparison to the same refactoring 
types supported by JDeodorant.  

We used the metrics PR, RC, NF, RC and G to perform the 
comparisons and two new metrics related to the computational time 
(CT) and the number of refactorings (NR). 

To answer RQ3, we asked the programmers to answer to a post-
study questionnaire to get their opinions and feedback about our 
personalized refactoring recommendations. 

4.2 Experimental Setup 
To get feedback from the original developers of a system, we 

considered in our experiments two large industrial projects 
provided by our industrial partner, from the automotive industry.  
The first project is a marketing return on investment tool, called 
MROI, used by the marketing department to predict the sales of 
cars based on the demand, dealers’ information, advertisements, 
etc. The tool can collect, analyze and synthesize a variety of data 
types and sources related to customers and dealers. It was 

]1,0[
smells code# 

 smells code fixed#
NF

iiq qqG
i

 '
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implemented over a period of more than eight years and frequently 
changed to include and remove new/redundant features.  

The second project is a Java-based software system, JDI, which 
helps the Company to create the best schedule of orders from the 
dealers based on many business constraints. This system is also 
used by the company to find the best configurations of cars based 
on the requirements of dealers and customers. Software developers 
have developed several releases of this system at the company over 
the past 10 years. Due to the high number of changes introduced to 
this system over the years and its importance, it is critical to ensure 
that they remain of high quality and minimize the effort required 
by developers to fix bugs and extend the system in the future. Table 
IV described the statistics related to the two studied systems.  

Our study involved 19 software developers from the company. 
Participants include 9 original developers of the MROI system and 
10 original developers of the JDI one. All the developers who 
participated in the experiments are expert in Java, quality assurance 
and testing. The experience of these participants on these areas 
ranged from 7 to 18 years.  

The questionnaire includes five main questions to be answered 
by the participants. Some of the questions are related to the 
background of the participants to evaluate their experience and 
ability to evaluate the results of our technique. Furthermore, we 
organized a lecture for all the participants about different concepts 
and examples related to software refactoring then they took six tests 
about evaluating the relevance of recommended refactorings on 
code fragments extracted from open source systems. 

We formed two groups. Each of the two groups (A and B) is 
composed of the original developers of each system. We selected 
the participants of each group based on the collected background 
information to make sure that both groups have, in average, the 
same level of expertise with software refactoring and quality 
assurance. We provided to all the participants the questionnaire, the 
guidelines about the different steps to perform the experiments, the 
different used tools and source code of the systems to evaluate. 
After the first step of the quantitative evaluation, we provided to 
the participants the list of recommended refactorings by the 
different tools and asked them to evaluate their relevance and 
correctness. The participants are not aware of the tools used to get 
the different results. We counted the votes of the programmers for 
every of the recommended refactorings then we considered the 
highest number of votes to evaluate the correctness/relevance of the 
evaluated operations.  

In the first scenario, we asked every participant to manually 
apply refactorings after reviewing the code of their systems. As an 
outcome of the first scenario, we estimated the similarity between 
the suggested refactorings and the expected ones as defined by the 
programmers.  

In the second scenario, we asked the developers to manually 
evaluate the relevance of every recommended refactoring by our 
approach. In the third scenario, we collected the opinions of the 
developers about our tool based on a post-study questionnaire that 
will be detailed later. The programmers commented on the different 
evaluated refactorings and these comments/justifications were 
discussed later with the organizers of the study. 

We used different population sizes of the used algorithms to 
evaluate their performance ranging from 100, 200, 300 and 500 
individuals per population.  

The maximum number of iterations is 100,000 evaluations for 
all the studied systems. We used the Wilcoxon test to compare 
between the different algorithms considered in our experiments. 
For each algorithm and project, we use the trial and error strategy 
to find the good parameters setting. For all the systems and 
algorithms, the obtained results in our experiments are statistically 
significant on 30 independent executions using the Wilcoxon rank 
sum test with a confidence level of 95% (α < 5%). 

 
Table 2. The Evaluated Industrial Projects 

Syst. Release Avg. 
#classes 

Avg. 
KLOC 

Avg. 
#code 
smells 

#manual 
Refactoring
s 

JDI V1.0 -
V5.8 (26 
releases) 

694 252 88 94 

MROI V1.0-
V6.4 (31 
releases) 

827 269 116 119 

 
To evaluate the difference in magnitude, we used the Vargha-

Delaney A measure as a non-parametric effect size metric. Based 
on the different evaluation measures used in our experiments (such 
as PR, RC, RR, etc.), the A statistic estimates the probability that 
the execution of an algorithm B1 (MOSA) has better performance 
than executing another algorithm B2 (other existing refactoring 
studies). In the validation of this work, we found the following 
results: a) On the JDI system, the performance of our MOSA 
algorithm based on all the different evaluation metrics is better than 
existing studies with an A effect size more than 0.91; and b) On the 
MORI system, the performance of our MOSA algorithm based on 
all the different evaluation metrics is better than existing studies 
with an A effect size more than 0.88. 

We used in our experiments, eight different types of code smells 
[1]: Blob, Long Parameter List (LPL), Functional Decomposition 
(FD), Spaghetti Code (SC), Data Class (DC), Feature Envy (FE), 
Shotgun Surgery (SS), and Lazy Class (LC). We selected these 
code smells because they are the most frequent and hard to fix 
defects based on recent empirical studies[2]. 

For the starting temperature and alpha value, we used 
respectively the following values 0.0003 and 0.999. When 
randomly generating a mutation, each type of mutation had the 
same probability of being generated; there was a one-third chance 
of adding a refactoring, modifying a refactoring, or removing a 
refactoring. 

4.3 Results and Discussions 
Results for RQ1. Figure 2 (RR) summarized the results of our 

approach of the qualitative evaluation when programmers manually 
evaluated the relevance and correctness of the recommended 
refactorings. Most of the solutions recommended by our 
personalized approach are relevant and correct from the perceptive 
of the programmers.  
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On average, for the two studied projects, around 88% of the 
proposed refactoring operations are found to be useful by the 
software developers of our experiments. The highest MC score is 
89% for the JDI project and the RR score is 87% for the second 
system MROI. Thus, it is clear the obtained results are not 
dependent on the size of the systems and the number of 
recommended refactorings. Most of the refactorings that were not 
manually approved by the developers were found to be either fixing 
non-relevant quality issues or introducing design incoherence.   

We also compared the proposed refactoring solutions with the 
ones that are provided manually by the programmers of these 
industrial systems. Figures 3-4 show that the majority of the 
proposed refactorings, with an average of 84% in terms of precision 
and 87% of recall, are equivalent to those manually found by the 
programmers when trying to refactor the system. The higher score 
of the recall comparing to the precision can be explained by the fact 
that our approach proposes a complete list of refactorings 
comparing to the manually recommended operations by the 
programmers due to the time-consuming process of code 
refactoring. Also, we found that the slight deviation with the 
expected refactorings is not related to incorrect operations but to 
the fact that the developers were interested mainly in fixing the 
severest quality issues or those related more to find better ways to 
extend the current design.  

 

 
Figure 2. Median refactoring relevance (RR) value for 30 

executions on the two systems with a 95% confidence level 
(α<5%). 

 
Figure 6 shows that the refactorings recommended by the 

approach and applied by developers improved the quality metrics 
value (G) of the two systems. The average quality gain for the two 
industrial systems was the highest among the systems with more 
than 0.2. The improvements in the quality gain confirm that the 
recommended refactorings helped to optimize different quality 
metrics by fixing the most severe quality issues. Although the 
average quality gain is lower comparing to existing techniques, it 
is still comparable to them due to the much lower number of 
refactorings recommended by our technique. 

Result for RQ2. Figures 3, 4, 5, 6, 7 and 8 confirm the average 
superior performance of our personalized refactoring approach 
compared to existing refactoring approaches. Figure 3 describes 
that our approach provides better refactoring relevance results (RR) 

than existing approaches having RR scores between 55% and 79%, 
as RR scores, on average, on the two different systems. The same 
results are similar for the precision and recall as described in Figure 
4 and 5. However, the quality gain is slightly lower than most of 
the existing techniques as showed in Figure 6. This can be 
explained by the reason that the main goal of developers is not to 
fix the maximum number the quality issues detected in the system 
(which was the goal of most of the existing studies). Also, our 
approach is based on a multi-objective algorithm to find a trade-off 
between improving the quality and reducing the number of 
refactorings. 

Figure 7 clearly shows that our personalized refactoring 
approach converges much faster to acceptable refactoring solutions 
comparing to most of the existing studies. For example, the work 
of Ouni et al. required at least 20 minutes to converge to a good 
quality of solutions however our approach was able to recommend 
good refactoring opportunities within two minutes. One reason of 
the low execution time of our approach is the number of 
recommended refactorings as described in Figure 9.  

To conclude, our interactive approach provides better results, on 
average, than existing fully-automated refactoring techniques 
(answer to RQ2). 

 

 
Figure3. Median precision (PR) value for 30 executions on 

all the two systems with a 95% confidence level (α<5%).   
 
                           

 
Figure 4. Median recall (RC) value for 30 executions on all 

the two systems with a 95% confidence level (α<5%).  
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Results for RQ3. In the first component of the post-study 
questionnaire, the participants were asked to rate their agreement 
on a Likert scale from 1 (complete disagreement) to 5 (complete 
agreement) with the following statements: 1. The proposed 
personalized refactoring technique is a desirable feature in 
integrated development environments. 2. The reduced number of 
recommended relevant refactorings may help developers 
performing every-day design, implementation and maintenance 
activities.  

       

 
Figure 5. Median quality gain (G) value for 30 executions on 

all the two systems with a 95% confidence level (α<5%).      

 
Figure 6.Median execution time (CT) for 30 executions on 

all the two systems with a 95% confidence level (α<5%). 

 
Figure 7.Median number of refactorings (NR) for 30 

executions on all the two systems with a 95% confidence level 
(α<5%).         

In the second component of the questionnaire, the subjects were 
asked to specify the possible usefulness of the suggested 
refactorings to perform some activities such as quality 
assurance/assessment, regression testing, effort prediction, code 
inspection, and features extension. In the third part, we asked the 
programmers about possible improvements of our personalized 
refactoring tool.  

As described in Figure 7, the agreement of the participants was 
4.6 and 4.3 for the first and second statements respectively. This 
confirms the usefulness of our approach for the software 
developers. Regarding the possible usefulness to perform some 
activities, the developers agreed that quality assurance/assessment 
and features extension are the three main activities where the 
personalized refactorings could be very helpful with an agreement 
of more than 4.3.  

The three other activities of effort prediction, regression testing 
and code inspection are considered less relevant for our tool with 
an agreement of around 3.8. The majority of the programmers we 
interviewed found that the personalized refactorings give 
interesting quick advices about possible refactoring opportunities 
to improve the quality and mainly facilitate extending the design of 
the system to update recently introduced features. 

The remaining questions of the post-study questionnaire were 
about the benefits and also limitations (possible improvements) of 
our approach. They found that the personalized refactoring 
technique is much more efficient than the traditional manual and 
fully-automated techniques. The programmers considered the use 
of most of existing manual refactoring techniques as a time-
consuming process, and it is more relevant to apply refactorings 
related to their recent development activities. Most of the 
participants mention that our personalized approach to refactor the 
code is much faster than analyzing the long list of recommended 
refactorings by current techniques. The programmers also 
highlighted that our personalized approach recommended relevant 
refactorings to continue improving the quality of some code 
fragments that they started refactoring them in the past. 

 

 
Figure 8. Post-study questionnaire results 
 
The participants also suggested some possible improvements to 

our personalized refactoring approach. Several participants found 
that it will be very interesting and helpful to integrate to the tool a 
new functionality to visualize the design before and after 
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refactoring. The developers also proposed to explore the area of 
impact changes analysis as a complementary step of our technique 
after applying the recommended refactorings.  

Threats To Validity. Conclusion validity is concerned with the 
statistical relationship between the treatment and the outcome. We 
addressed conclusion threats to validity by performing 30 
independent simulation runs for each problem instance and 
statistically analyzing the obtained results using the Wilcoxon rank 
sum test with a 95% confidence level (α = 5%). However, the 
parameter tuning of the different optimization algorithms used in 
our experiments, such as MOSA and NSGA-II, creates another 
internal threat that we need to evaluate in our future work.  

Internal validity is concerned with the causal relationship 
between the treatment and the outcome. A possible internal threat 
is related to the variation of relevance and speed between the 
different groups when using our approach and other tools such as 
JDeodorant. In fact, our approach may not be the only reason for 
the superior performance because the participants have different 
programming skills and familiarity with refactoring tools. To 
counteract this, we assigned the developers to different groups 
according to their programming experience so as to reduce the gap 
between the different groups and we also adapted a counter-
balanced design. 

Construct validity is concerned with the relationship between 
theory and what is observed. To evaluate the results of our 
approach, we selected solutions at the knee point when we 
compared our approach with existing techniques, but the 
developers may select a different solution based on their 
preferences to give different weights to the objectives when 
selecting the best refactoring solution. The different developers 
involved in our experiments may have divergent opinions about the 
recommended refactorings. We considered in our experiments the 
majority of votes from the developers. External validity refers to 
the generalizability of our findings. In this study, we performed our 
experiments on only two industrial systems belonging to different 
domains and having different sizes to get the feedback from the 
original developers of these systems.  

5 CONCLUSION AND FUTURE WORK 
In this work, we described a personalized search based 

technique for software refactoring to recommend refactorings for 
programmers based on the history of changes of the system. Our 
personalized approach helps programmers to take the advantage of 
search-based refactoring tools with a reasonable execution time or 
a short list of refactorings to recommend. In fact, the pre-processing 
phase reduced the search space to explore based on analyzing 
previous commits and bug reports.  

The paper describes an evaluation of the proposed personalized 
multi-objective approach based on two industrial systems.  The 
obtained results show the outperformance of the proposed 
technique comparing to existing search-based refactoring 
approaches and an existing refactoring tool not based on heuristic 
search, JDeodorant when evaluating the relevance and correctness 
of recommended refactorings by programmers. Future work may 

involve the validation of our technique with additional refactoring 
types.  
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