

A Context-Based Refactoring Recommendation Approach Using
Simulated Annealing: Two Industrial Case Studies

Marouane Kessentini
CIS department

University of Michigan
Dearborn, MI, USA

marouane@umich.edu

Troh Josselin Dea
CIS department

University of Michigan
Dearborn, MI, USA
deatroh@umich.edu

Ali Ouni
College of Information Technology

UAE University
Al Ain, UAE

ouniali@uaeu.ac.ae

ABSTRACT
Refactoring is a highly valuable solution to reduce and manage the
growing complexity of software systems. However, programmers
are “opportunistic” when they apply refactorings since most of
them are interested in improving the quality of the code fragments
that they frequently update or those related to the planned activities
for the next release (fixing bugs, adding new functionalities, etc.).
In this paper, we describe a search based approach to recommend
refactorings based on the analysis of the history of changes to
maximize the recommended refactorings for recently modified
classes, classes containing incomplete refactorings detected in
previous releases, and buggy classes identified in the history of
previous bug reports. The obtained results on two industrial
projects show significant improvements of the relevance of
recommended refactorings, as evaluated by the original developers
of the systems.

CCS CONCEPTS
• CCS → Software and its engineering → Software creation
and management → Search-based software engineering

KEYWORDS
Refactoring, search based software engineering, software quality

ACM Reference format:
M. Kessentini, J. Dea, and A. Ouni. 2017. In Proceedings of
GECCO ’17, Berlin, Germany, 8 pages.

DOI: http://dx.doi.org/10.1145/3071178.3071334

1 INTRODUCTION

Several studies show that programmers are postponing software
maintenance activities that improve software quality, even while
seeking high-quality source code for themselves when updating
existing projects. High-quality source code can be characterized
using several quality attributes, but maintaining this high level of
quality is expensive. One reason is that time, and monetary
pressures force programmers to neglect to enhance the quality of
their source code.

The challenge that programmers face when trying to improve
the software design structure while preserving the behavior is
termed the “software refactoring problem” [1][7][11]. A large
portion of existing refactoring tools suggests refactorings improve
the overall quality of systems without a concrete prioritization plan
[2][13]. As a result, the number of refactorings to apply can be
large, and developers may spend a long time to select relevant
refactorings.

When a high number of refactorings are recommended, manual
refactoring becomes error-prone and time-consuming. Murphy-
Hill et al. [2] show that most developers do not use fully automated
refactoring techniques because they want to mix refactorings with
semantic changes, something that is not permitted by existing
methods. Also, developers find fully automated refactoring risky
because it can introduce bugs or undesired changes.

In the current literature, Search-based refactoring techniques
obtained promising results based on the use of mono-objective and
multi-objective algorithms to optimize quality metrics [5][6][7]
[15][17][16][18]. However, most of these techniques explore a
large search space of possible solutions and recommend a large
sequence of refactorings to apply. In fact, developers are more
interested, in general, to refactor recently modified entities related
to their current tasks (e.g. features update, fixing bugs, etc.) [2].
Furthermore, recent empirical studies show that most of the
refactored code fragments in practice are buggy classes.

In this paper, we propose a profile-based approach for
refactoring recommendations to satisfy the following requirements:
1) programmers prefer to improve mainly the quality of recently
modified code before a new release due to limited resources and
time, 2) several empirical studies [8][9][19][20] identified
correlation between bugs and refactoring opportunities, and 3)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
GECCO '17, July 15-19, 2017, Berlin, Germany
© 2017 ACM. ISBN 978-1-4503-4920-8/17/07 $15.00
DOI: http://dx.doi.org/10.1145/3071178.3071334

1303

2

recently introduced refactorings may give an indication of quality
issues that should be fixed and show an interest from programmers
to refactor these code fragments.

To consider the above observations, we propose a search-based
refactoring approach, based on multi-objective simulated annealing
[4], to find the best solution satisfying two objectives: maximizing
the number refactorings applied to buggy or recently modified
classes, and minimizing the number of antipatterns [1] using a set
of antipatterns detection rules [5]. We implemented our proposed
approach and evaluated it on a set of two industrial systems
provided by our industrial partner from the automotive industry.
We did the evaluation only on these two systems since it is critical
to evaluate the relevance of recommended refactorings by the
original developers of the systems. Statistical analysis of our
experiments showed that our proposal performed significantly
better than existing search-based refactoring approaches [6][7] and
an existing refactoring tool not based on heuristic search,
JDeodorant [8] regarding the relevance and importance of
recommended refactorings. In our qualitative analysis, we
conducted a survey with the software developers who participated
in our experiments to evaluate the relevance of the fixed quality
violations in their daily development activities.

The remainder of this paper is structured as follows. Section 2
provides an account of the related work. Section 3 describes our
profile-based refactoring approach while the results obtained from
our experiments are presented and discussed in Section 4. Finally,
in Section 5, we summarize our conclusions and present some ideas
for future work.

2 BACKGROUND AND RELATED WORK
Refactoring is the process of improving the code quality of an

existing system while preserving its external behavior [2]. The
refactoring process includes several steps, but the most important
ones are the detection of refactoring opportunities and the
recommendation of relevant refactorings to fix those detected
quality issues. To identify refactoring opportunities, the majority of
existing studies are based on the concept of code smells [1]. These
code smells correspond to design practices that have a negative
impact on the maintainability, understandability, and performance
of the software[3].

Meananeatra [11] proposed a semi-automated graph-based
algorithm to reduce the refactoring effort. The proposed algorithm
is based on three objectives to reduce the number of detected code
smells, the number of applied changes and number of refactored
code fragments. Another tool is proposed, called JDeodorant [8],
and implemented as an Eclipse plug-in based on the use of quality
metrics to detect design quality violations. Several templates are
proposed to cover different possible standard strategies to fix the
detected code smells. Kessentini et al. [5] proposed a mono-
objective genetic algorithm to identify the optimal sequence of
refactorings that reduce the number of code smells using a set of
detection rules.

Nevertheless, Refactoring studies were not only limited to
fixing design defects, but also driven by the optimization of the
software design through optimizing software quality attributes. For

example, Du Bois et al. [14] has intended to find an optimal
distribution of features within software modules through moving
existing methods and classes while decreasing coupling and
increasing cohesion. Seng et al. [15] used a genetic algorithm the
generate refactoring sequences that optimize class level properties
based on several quality metrics.

In contrast with combining metrics into one fitness function,
Harman and Tratt [17] suggested a multi-objective optimization
approach to generate refactoring operations that find the best
tradeoff among two conflicting measures namely, the coupling and
the standard deviation of methods per class.

3 CONTEXT-BASED REFACTORING USING
LOCAL SEARCH

3.1 Approach Overview
The goal of our approach is to find the most relevant

refactorings for software developers to refactor their systems based
on their recent update of the system. The general structure of our
approach is sketched in Figure 1.

Our technique comprises two main components. The first
component is the pre-processing phase to rank the list of possible
classes to refactor. During this phase, three different parsers are
executed to extract classes that are recently modified or refactored
in recent releases or those mentioned in previous bug reports. The
classes mentioned in recent commits, are maybe important to
refactor since they have a high probability to include bugs or to be
updated in the future comparing to stable classes that were not
modified for many releases. Several empirical studies show that
correlation exists between buggy classes and poor quality
symptoms […]. Thus, relevant refactorings for the developers’
context could be identified in these classes based on this pre-
processing phase.

Figure 1: Approach overview

Developers, for example, may introduce bugs because of the

complexity of the system and its poor design. Furthermore, the
classes that are refactored recently by the developers but still
contain quality issues can be recommended for further refactoring
since already programmers expressed an interest in fixing them.
The list of applied refactorings in previous releases are detected
using the technique proposed in [18]. The outcome of this first
phase is a list of classes that could be refactored based on the three
main criteria detailed above.

1304

 3

The outcome of the first phase is used to reduce the search space
to find the best refactoring sequence to recommend for developers.
A multi-objective search algorithm is used to focus mainly on
refactoring, if needed, the classes of the first phase while fixing
some other quality issues as well. To this end, a multi-objective
simulated annealing algorithm is executed for a number of
iterations to find the solutions balancing the two objectives of 1)
improving the relevance of recommended refactorings, which
corresponds to maximize the number of refactoring
recommendation in recently modified or buggy classes and 2)
minimizing the number of antipatterns using a set of detection rules
defined in the literature [5]. The first objective of the refactorings
relevance is based on an average of three different measures of
recently modified classes, recent classes mentioned in bug reports
and recently refactored classes including incomplete refactoring
activities or may need to be further refactored. The formalization
of these measures will be described in the next section.

A multi-objective simulated annealing algorithm [4] is selected
due to the small search space to explore after the pre-processing
phase. A set of semantic constraints is used to check the correctness
and feasibility of recommended refactorings based on textual
similarities, call graphs and pre/post-conditions. These constraints
are described in more details in [7]. The next section will discuss
the formalization of our approach and the adaptation of the multi-
objective simulated annealing algorithm to our problem.

3.2 Problem Formulation and Solution Approach
Simulated annealing is a local search heuristic inspired by the

concept of annealing in metallurgy where metal is heated, raising
its energy and relieving it of defects due to its ability to move
around more easily [4]. As its temperature drops, the metal's energy
drops and eventually it settles in a more stable state and becomes
rigid. The local search algorithm of the Simulated Annealing is
very suitable for exploring small search spaces. More details about
Multi-Objective Simulated Annealing can be found in the
following reference [4].

In the next sections, we described the three main steps of
adaptation of MOSA to our problem.

Solution representation. A solution of our problem is defined
as a sequence of a number of refactorings involving one or multiple
source code fragments of the software to refactor. As described in
Table I, the vector-based representation is used to define the
refactoring sequence. Each dimension of the vector has a
refactoring, and its index in the vector indicates the order in which
it will be applied. For every refactoring, pre- and post-conditions
are specified to guarantee the correctness of the operation.

The initial population is created by randomly selecting a
sequence of operations to a randomly chosen set of code elements,
or actors identified in the first phase of search space reduction. The
type of actor usually depends on the type of the refactoring it is
assigned to and also depends on its role in the refactoring operation.
In our experiments, we used the following list of refactorings:
Extract class, Extract interface, Inline class, Move field, Move
method, Push down field, Push down method, Pull up field, Pull up
method, Move class, and Extract method.

Fitness functions. The generated solutions are evaluated using
two fitness functions as detailed in the following paragraphs.

Minimize the number of code smells: This fitness function is
calculated based on the following equation:

grefactorin before smells code#

grefactorinafter smells code#
)(Min 1 sf

 This function represents the proportion between the number of
corrected defects (detected using bad smells detection rules) and
the total number of possible defects that can be detected. The
detection of defects is based on some metrics-based rules according
to which a code fragment can be classified as a design defect or not
(without a probability/risk score), i.e., 0 or 1, as defined in the
detection rules of previous studies [5].

Maximize refactorings relevance: The main goal of the second
fitness function is to evaluate the refactoring solutions based on
their relevance to the developers. Formally, this function is defined
as follows:







n

i

ii

n

cfbugreportsccommitf

sf
1

2
2

)()(

)(Max ,

where n is the number of classes to be refactored by the solution
S, c is the class that contain at least one code smell and commitf(c)
and bugreportsf(c) are respectively the functions to estimate the
relevance of the class for refactoring based on previous changes in
recent commits and previous bug reports.

The first function commitf(c) checks if a class was recently
changed. In fact, a class that was modified recently has a high
probability to be refactored comparing to stable classes. Thus, the
function compares between the date of the last commit and the last
date where the class was modified in the previous commit. If a
suggested class was modified in the last commit, then the value of
this function is 1. We define this normalized function, normalized
in the range of [0, 1] as following:

1.)(.

1
)(




datelastcommitcdatecommit
ccommitf

The second function bugreportsf(c) counts the number of times
a class was fixed to eliminate bugs based on the history of bug
reports divided by the maximum number of times that a class in the
system was fixed in previous bug reports. In fact, a class that was
fixed several times has a high probability of being a buggy class
and thus need to be refactored. Formally, this function, normalized
between [0,1] is defined as:

2

)(

),(

1.)(.

1

)(
reportsBugsMaxNbFixed

creportssNbFixedBug

datelastcommitcdateortlastbugrep
cfbugreports






Change operators
MOSA is using a mutation operator to generate new solutions.

For mutation, we use the bit-string mutation operator that selects
one or more refactoring operations (or their controlling parameters)
from the solution and replaces them by other ones from the list of
possible operations to apply.

When applying the change operators, the different pre- and post-
conditions are checked to ensure the applicability of the newly

1305

4

generated solutions. We also apply a repair operator to randomly
select new refactorings to replace those creating conflicts.

Table I. Example of first randomly generated operations.

Ref Refactoring operation

RO001
MoveMethod(org.apache.xerces.xinclude.XIncludeTextReade
r, org.apache.xerces.xinclude.XIncludeTextReader, close())

RO002
MergePackage(org.apache.xerces.xpointer,
org.apache.xerces.xs)

RO003

PullUpMethod(org.apache.html.dom.HTMLTableCaptionEle
mentImpl,org.apache.html.dom.HTMLElementImpl,
addEventListener())

RO004
ExtractInterface(org\apache.xml.serialize.SerializerFactory,ap
ache.xml.serialize.SerializerFactoryInterface)

4 EVALUATION

4.1Research Questions and Evaluation Metrics
To evaluate and compare the performance and relevance of the

recommended refactoring by our context-based multi-objective
simulated annealing algorithm, we defined the following three
research questions:

RQ1: To what extent can our approach recommends relevant
refactorings to developers?

RQ2: To what extent can our approach reduces the number of
refactorings and the execution time while improving the quality and
recommending relevant refactorings compared to existing
refactoring techniques?

RQ3: Can our approach be relevant for programmers in
practice?

To address the first research question RQ1, we used both
qualitative and quantitative evaluations of the recommended
refactorings by our approach and existing studies.

For the quantitative validation, we asked a group of developers
from our industrial partner to manually suggest a list of possible
refactorings to apply based on the latest release source code of the
system to refactor. Then, we used the precision (PR) and recall
(RC) measures to evaluate the similarity between the recommended
refactorings by our approach and those manually found by the
original programmers of the industrial projects:

gs)refactorin (expectedset

gs)refactorin (expectedset gs)refactorin ed(recommendset 
RC

gs)refactorin ed(recommendset

gs)refactorin (expectedset gs)refactorin ed(recommendset 
PR

Another metric that we considered for the quantitative

evaluation is the percentage of fixed antipatterns (NF) by the
refactoring solution. The code smells are detected on the new
source code after refactoring based on the detection rules provided
by [10]. Formally, NF is defined as

The detection of antipatterns is very subjective and some

developers prefer not to fix some smells because the code is stable
or some of them are not important to fix. To this end, we considered

another metrics the total gain in quality G for each of the considered
QMOOD [3] quality attributes qi before and after refactoring can
be easily estimated as:

, where q’i and qi represents the value of the
quality attribute i respectively after and before refactoring.

Since several good solutions can be relevant, it is important to
check the relevance and correctness of recommended refactorings
not only by comparing them with one expected solution
(quantitative validation). Thus, we performed a qualitative
evaluation where we asked the original programmers of the
industrial projects to review, manually, if the recommended
refactorings are relevant and correct or not from their perspectives.
We define the metric Refactoring Relevance (RR) to mean the
number of relevant refactorings divided by the total number of
suggested refactorings. RR is given by the following equation:

gsrefactorin proposed#

gsrefactorinrelevant #
RR

To answer RQ2, we compared our approach to random search

(RS), mono-objective simulated annealing (SA) aggregating both
objectives, another multi-objective evolutionary algorithm
(NSGA-II) and an existing work based on search algorithms to
fully-automate the refactoring recommendation process: O’Keeffe
and Ó Cinnéide [11] and Ouni et al. [12].

O’Keeffe and Ó Cinnéide proposed a mono-objective
formulation to automate the refactoring process by optimizing a set
of quality metrics. Ouni et al. [7] proposed a multi-objective
refactoring formulation that generates solutions to fix code smells.
Both techniques are fully-automated and did not consider the
personalization of refactoring recommendations. We have also
compared our results with an existing tool, called JDeodorant, not
based on heuristic search to fix quality issues by recommending
refactorings. JDeodorant implements a set of templates to fix
different design violations by providing a generic list of
refactorings to apply. Since JDeodorant just recommends a few
types of refactoring with respect to the ones considered by our tool.
We restricted, in this case, the comparison to the same refactoring
types supported by JDeodorant.

We used the metrics PR, RC, NF, RC and G to perform the
comparisons and two new metrics related to the computational time
(CT) and the number of refactorings (NR).

To answer RQ3, we asked the programmers to answer to a post-
study questionnaire to get their opinions and feedback about our
personalized refactoring recommendations.

4.2 Experimental Setup
To get feedback from the original developers of a system, we

considered in our experiments two large industrial projects
provided by our industrial partner, from the automotive industry.
The first project is a marketing return on investment tool, called
MROI, used by the marketing department to predict the sales of
cars based on the demand, dealers’ information, advertisements,
etc. The tool can collect, analyze and synthesize a variety of data
types and sources related to customers and dealers. It was

]1,0[
smells code#

 smells code fixed#
NF

iiq qqG
i

 '

1306

 5

implemented over a period of more than eight years and frequently
changed to include and remove new/redundant features.

The second project is a Java-based software system, JDI, which
helps the Company to create the best schedule of orders from the
dealers based on many business constraints. This system is also
used by the company to find the best configurations of cars based
on the requirements of dealers and customers. Software developers
have developed several releases of this system at the company over
the past 10 years. Due to the high number of changes introduced to
this system over the years and its importance, it is critical to ensure
that they remain of high quality and minimize the effort required
by developers to fix bugs and extend the system in the future. Table
IV described the statistics related to the two studied systems.

Our study involved 19 software developers from the company.
Participants include 9 original developers of the MROI system and
10 original developers of the JDI one. All the developers who
participated in the experiments are expert in Java, quality assurance
and testing. The experience of these participants on these areas
ranged from 7 to 18 years.

The questionnaire includes five main questions to be answered
by the participants. Some of the questions are related to the
background of the participants to evaluate their experience and
ability to evaluate the results of our technique. Furthermore, we
organized a lecture for all the participants about different concepts
and examples related to software refactoring then they took six tests
about evaluating the relevance of recommended refactorings on
code fragments extracted from open source systems.

We formed two groups. Each of the two groups (A and B) is
composed of the original developers of each system. We selected
the participants of each group based on the collected background
information to make sure that both groups have, in average, the
same level of expertise with software refactoring and quality
assurance. We provided to all the participants the questionnaire, the
guidelines about the different steps to perform the experiments, the
different used tools and source code of the systems to evaluate.
After the first step of the quantitative evaluation, we provided to
the participants the list of recommended refactorings by the
different tools and asked them to evaluate their relevance and
correctness. The participants are not aware of the tools used to get
the different results. We counted the votes of the programmers for
every of the recommended refactorings then we considered the
highest number of votes to evaluate the correctness/relevance of the
evaluated operations.

In the first scenario, we asked every participant to manually
apply refactorings after reviewing the code of their systems. As an
outcome of the first scenario, we estimated the similarity between
the suggested refactorings and the expected ones as defined by the
programmers.

In the second scenario, we asked the developers to manually
evaluate the relevance of every recommended refactoring by our
approach. In the third scenario, we collected the opinions of the
developers about our tool based on a post-study questionnaire that
will be detailed later. The programmers commented on the different
evaluated refactorings and these comments/justifications were
discussed later with the organizers of the study.

We used different population sizes of the used algorithms to
evaluate their performance ranging from 100, 200, 300 and 500
individuals per population.

The maximum number of iterations is 100,000 evaluations for
all the studied systems. We used the Wilcoxon test to compare
between the different algorithms considered in our experiments.
For each algorithm and project, we use the trial and error strategy
to find the good parameters setting. For all the systems and
algorithms, the obtained results in our experiments are statistically
significant on 30 independent executions using the Wilcoxon rank
sum test with a confidence level of 95% (α < 5%).

Table 2. The Evaluated Industrial Projects

Syst. Release Avg.
#classes

Avg.
KLOC

Avg.
#code
smells

#manual
Refactoring
s

JDI V1.0 -
V5.8 (26
releases)

694 252 88 94

MROI V1.0-
V6.4 (31
releases)

827 269 116 119

To evaluate the difference in magnitude, we used the Vargha-

Delaney A measure as a non-parametric effect size metric. Based
on the different evaluation measures used in our experiments (such
as PR, RC, RR, etc.), the A statistic estimates the probability that
the execution of an algorithm B1 (MOSA) has better performance
than executing another algorithm B2 (other existing refactoring
studies). In the validation of this work, we found the following
results: a) On the JDI system, the performance of our MOSA
algorithm based on all the different evaluation metrics is better than
existing studies with an A effect size more than 0.91; and b) On the
MORI system, the performance of our MOSA algorithm based on
all the different evaluation metrics is better than existing studies
with an A effect size more than 0.88.

We used in our experiments, eight different types of code smells
[1]: Blob, Long Parameter List (LPL), Functional Decomposition
(FD), Spaghetti Code (SC), Data Class (DC), Feature Envy (FE),
Shotgun Surgery (SS), and Lazy Class (LC). We selected these
code smells because they are the most frequent and hard to fix
defects based on recent empirical studies[2].

For the starting temperature and alpha value, we used
respectively the following values 0.0003 and 0.999. When
randomly generating a mutation, each type of mutation had the
same probability of being generated; there was a one-third chance
of adding a refactoring, modifying a refactoring, or removing a
refactoring.

4.3 Results and Discussions
Results for RQ1. Figure 2 (RR) summarized the results of our

approach of the qualitative evaluation when programmers manually
evaluated the relevance and correctness of the recommended
refactorings. Most of the solutions recommended by our
personalized approach are relevant and correct from the perceptive
of the programmers.

1307

6

On average, for the two studied projects, around 88% of the
proposed refactoring operations are found to be useful by the
software developers of our experiments. The highest MC score is
89% for the JDI project and the RR score is 87% for the second
system MROI. Thus, it is clear the obtained results are not
dependent on the size of the systems and the number of
recommended refactorings. Most of the refactorings that were not
manually approved by the developers were found to be either fixing
non-relevant quality issues or introducing design incoherence.

We also compared the proposed refactoring solutions with the
ones that are provided manually by the programmers of these
industrial systems. Figures 3-4 show that the majority of the
proposed refactorings, with an average of 84% in terms of precision
and 87% of recall, are equivalent to those manually found by the
programmers when trying to refactor the system. The higher score
of the recall comparing to the precision can be explained by the fact
that our approach proposes a complete list of refactorings
comparing to the manually recommended operations by the
programmers due to the time-consuming process of code
refactoring. Also, we found that the slight deviation with the
expected refactorings is not related to incorrect operations but to
the fact that the developers were interested mainly in fixing the
severest quality issues or those related more to find better ways to
extend the current design.

Figure 2. Median refactoring relevance (RR) value for 30

executions on the two systems with a 95% confidence level
(α<5%).

Figure 6 shows that the refactorings recommended by the

approach and applied by developers improved the quality metrics
value (G) of the two systems. The average quality gain for the two
industrial systems was the highest among the systems with more
than 0.2. The improvements in the quality gain confirm that the
recommended refactorings helped to optimize different quality
metrics by fixing the most severe quality issues. Although the
average quality gain is lower comparing to existing techniques, it
is still comparable to them due to the much lower number of
refactorings recommended by our technique.

Result for RQ2. Figures 3, 4, 5, 6, 7 and 8 confirm the average
superior performance of our personalized refactoring approach
compared to existing refactoring approaches. Figure 3 describes
that our approach provides better refactoring relevance results (RR)

than existing approaches having RR scores between 55% and 79%,
as RR scores, on average, on the two different systems. The same
results are similar for the precision and recall as described in Figure
4 and 5. However, the quality gain is slightly lower than most of
the existing techniques as showed in Figure 6. This can be
explained by the reason that the main goal of developers is not to
fix the maximum number the quality issues detected in the system
(which was the goal of most of the existing studies). Also, our
approach is based on a multi-objective algorithm to find a trade-off
between improving the quality and reducing the number of
refactorings.

Figure 7 clearly shows that our personalized refactoring
approach converges much faster to acceptable refactoring solutions
comparing to most of the existing studies. For example, the work
of Ouni et al. required at least 20 minutes to converge to a good
quality of solutions however our approach was able to recommend
good refactoring opportunities within two minutes. One reason of
the low execution time of our approach is the number of
recommended refactorings as described in Figure 9.

To conclude, our interactive approach provides better results, on
average, than existing fully-automated refactoring techniques
(answer to RQ2).

Figure3. Median precision (PR) value for 30 executions on

all the two systems with a 95% confidence level (α<5%).

Figure 4. Median recall (RC) value for 30 executions on all

the two systems with a 95% confidence level (α<5%).

1308

 7

Results for RQ3. In the first component of the post-study
questionnaire, the participants were asked to rate their agreement
on a Likert scale from 1 (complete disagreement) to 5 (complete
agreement) with the following statements: 1. The proposed
personalized refactoring technique is a desirable feature in
integrated development environments. 2. The reduced number of
recommended relevant refactorings may help developers
performing every-day design, implementation and maintenance
activities.

Figure 5. Median quality gain (G) value for 30 executions on

all the two systems with a 95% confidence level (α<5%).

Figure 6.Median execution time (CT) for 30 executions on

all the two systems with a 95% confidence level (α<5%).

Figure 7.Median number of refactorings (NR) for 30

executions on all the two systems with a 95% confidence level
(α<5%).

In the second component of the questionnaire, the subjects were
asked to specify the possible usefulness of the suggested
refactorings to perform some activities such as quality
assurance/assessment, regression testing, effort prediction, code
inspection, and features extension. In the third part, we asked the
programmers about possible improvements of our personalized
refactoring tool.

As described in Figure 7, the agreement of the participants was
4.6 and 4.3 for the first and second statements respectively. This
confirms the usefulness of our approach for the software
developers. Regarding the possible usefulness to perform some
activities, the developers agreed that quality assurance/assessment
and features extension are the three main activities where the
personalized refactorings could be very helpful with an agreement
of more than 4.3.

The three other activities of effort prediction, regression testing
and code inspection are considered less relevant for our tool with
an agreement of around 3.8. The majority of the programmers we
interviewed found that the personalized refactorings give
interesting quick advices about possible refactoring opportunities
to improve the quality and mainly facilitate extending the design of
the system to update recently introduced features.

The remaining questions of the post-study questionnaire were
about the benefits and also limitations (possible improvements) of
our approach. They found that the personalized refactoring
technique is much more efficient than the traditional manual and
fully-automated techniques. The programmers considered the use
of most of existing manual refactoring techniques as a time-
consuming process, and it is more relevant to apply refactorings
related to their recent development activities. Most of the
participants mention that our personalized approach to refactor the
code is much faster than analyzing the long list of recommended
refactorings by current techniques. The programmers also
highlighted that our personalized approach recommended relevant
refactorings to continue improving the quality of some code
fragments that they started refactoring them in the past.

Figure 8. Post-study questionnaire results

The participants also suggested some possible improvements to

our personalized refactoring approach. Several participants found
that it will be very interesting and helpful to integrate to the tool a
new functionality to visualize the design before and after

1309

8

refactoring. The developers also proposed to explore the area of
impact changes analysis as a complementary step of our technique
after applying the recommended refactorings.

Threats To Validity. Conclusion validity is concerned with the
statistical relationship between the treatment and the outcome. We
addressed conclusion threats to validity by performing 30
independent simulation runs for each problem instance and
statistically analyzing the obtained results using the Wilcoxon rank
sum test with a 95% confidence level (α = 5%). However, the
parameter tuning of the different optimization algorithms used in
our experiments, such as MOSA and NSGA-II, creates another
internal threat that we need to evaluate in our future work.

Internal validity is concerned with the causal relationship
between the treatment and the outcome. A possible internal threat
is related to the variation of relevance and speed between the
different groups when using our approach and other tools such as
JDeodorant. In fact, our approach may not be the only reason for
the superior performance because the participants have different
programming skills and familiarity with refactoring tools. To
counteract this, we assigned the developers to different groups
according to their programming experience so as to reduce the gap
between the different groups and we also adapted a counter-
balanced design.

Construct validity is concerned with the relationship between
theory and what is observed. To evaluate the results of our
approach, we selected solutions at the knee point when we
compared our approach with existing techniques, but the
developers may select a different solution based on their
preferences to give different weights to the objectives when
selecting the best refactoring solution. The different developers
involved in our experiments may have divergent opinions about the
recommended refactorings. We considered in our experiments the
majority of votes from the developers. External validity refers to
the generalizability of our findings. In this study, we performed our
experiments on only two industrial systems belonging to different
domains and having different sizes to get the feedback from the
original developers of these systems.

5 CONCLUSION AND FUTURE WORK
In this work, we described a personalized search based

technique for software refactoring to recommend refactorings for
programmers based on the history of changes of the system. Our
personalized approach helps programmers to take the advantage of
search-based refactoring tools with a reasonable execution time or
a short list of refactorings to recommend. In fact, the pre-processing
phase reduced the search space to explore based on analyzing
previous commits and bug reports.

The paper describes an evaluation of the proposed personalized
multi-objective approach based on two industrial systems. The
obtained results show the outperformance of the proposed
technique comparing to existing search-based refactoring
approaches and an existing refactoring tool not based on heuristic
search, JDeodorant when evaluating the relevance and correctness
of recommended refactorings by programmers. Future work may

involve the validation of our technique with additional refactoring
types.

REFERENCES
[1] Brown, W.H., Malveau, R.C., McCormick, H.W., and Mowbray, T.J.:

‘AntiPatterns: refactoring software, architectures, and projects in crisis’ (John
Wiley & Sons, Inc., 1998. 1998)

[2] Murphy-Hill, E., Parnin, C., and Black, A.P.: ‘How we refactor, and how we
know it’, TSE, 2012, 38, (1), pp. 5-18

[3] Bansiya, J., and Davis, C.G.: ‘A hierarchical model for object-oriented design
quality assessment’, TSE, 2002, 28, (1), pp. 4-17

[4] Ulungu, E., Teghem, J., Fortemps, P., and Tuyttens, D.: ‘MOSA method: a tool
for solving multiobjective combinatorial optimization problems’, Journal of
multicriteria decision analysis, 1999, 8, (4), pp. 221

[5] Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., and Ouni, A.:
‘Design Defects Detection and Correction by Example’, in Editor (Ed.)^(Eds.):
‘Book Design Defects Detection and Correction by Example’ (2011, edn.), pp.
81-90

[6] O’Keeffe, M., and Ó Cinnéide, M.: ‘Search-based refactoring for software
maintenance’, Journal of Systems and Software, 2008, 81, (4), pp. 502-516

[7] Ouni, A., Kessentini, M., Sahraoui, H., and Boukadoum, M.: ‘Maintainability
defects detection and correction: a multi-objective approach’, Automated
Software Engineering, 2012, 20, (1), pp. 47-79

[8] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A.: ‘JDeodorant:
identification and application of extract class refactorings’, in Editor
(Ed.)^(Eds.): ‘Book JDeodorant: identification and application of extract class
refactorings’ (2011, edn.), pp. 1037-1039

[9] Piveta, E.K., Hecht, M., Moreira, A., Pimenta, M.S., Araújo, J., Guerreiro, P.,
and Price, R.T.: ‘Avoiding Bad Smells in Aspect-Oriented Software’, in Editor
(Ed.)^(Eds.): ‘Book Avoiding Bad Smells in Aspect-Oriented Software’
(Citeseer, 2007, edn.), pp. 81-

[10] Marinescu, C., Marinescu, R., Mihancea, P.F., and Wettel, R.: ‘iPlasma: An
integrated platform for quality assessment of object-oriented design’, in Editor
(Ed.)^(Eds.): ‘Book iPlasma: An integrated platform for quality assessment of
object-oriented design’ (Citeseer, 2005, edn.), pp.

[11] Ali Ouni, Marouane Kessentini, Houari A. Sahraoui, Katsuro Inoue, Kalyanmoy
Deb: Multi-Criteria Code Refactoring Using Search-Based Software
Engineering: An Industrial Case Study. ACM Trans. Softw. Eng. Methodol.
25(3): 23:1-23:53 (2016)

[12] Meananeatra, P.: ‘Identifying refactoring sequences for improving software
maintainability’, in Editor (Ed.)^(Eds.): ‘Book Identifying refactoring
sequences for improving software maintainability’ (ACM, 2012, edn.), pp. 406-
409

[13] Bader Alkhazi, Terry Ruas, Marouane Kessentini, Manuel Wimmer, William I.
Grosky: Automated refactoring of ATL model transformations: a search-based
approach. MoDELS 2016: 295-304

[14] Bois, B.D., Demeyer, S., and Verelst, J.: ‘Refactoring - improving coupling and
cohesion of existing code’, in Editor (Ed.)^(Eds.): ‘Book Refactoring -
improving coupling and cohesion of existing code’ pp. 144-151

[15] Seng, O., Stammel, J., and Burkhart, D.: ‘Search-based determination of
refactorings for improving the class structure of object-oriented systems’, in
Editor (Ed.)^(Eds.): ‘Book Search-based determination of refactorings for
improving the class structure of object-oriented systems’ (ACM, 2006, edn.),
pp. 1909-1916

[16] Ali Ouni, Marouane Kessentini, Houari A. Sahraoui, Mounir Boukadoum:
Maintainability defects detection and correction: a multi-objective approach.
Autom. Softw. Eng. 20(1): 47-79 (2013)

[17] Harman, M., and Tratt, L.: ‘Pareto optimal search based refactoring at the design
level’. Proc. Proceedings of the 9th annual conference on Genetic and
evolutionary computation, London, England2007 pp. Pages

[18] Ben Fadhel, A., Kessentini, M., Langer, P., and Wimmer, M.: ‘Search-based
detection of high-level model changes’, in Editor (Ed.)^(Eds.): ‘Book Search-
based detection of high-level model changes’ (IEEE, 2012, edn.), pp. 212-221

[19] Adnane Ghannem, Ghizlane El-Boussaidi, Marouane Kessentini: On the use of
design defect examples to detect model refactoring opportunities. Software
Quality Journal 24(4): 947-965 (2016)

[20] Hanzhang Wang, Marouane Kessentini, Ali Ouni: Bi-level Identification of
Web Service Defects. ICSOC 2016: 352-368

1310

