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ABSTRACT
In genetic programming (GP), the outcomes of the evaluation phase

can be represented as an interaction matrix, with rows correspond-

ing to programs in a population and columns corresponding to

tests that de�ne a program synthesis task. Recent contributions

on Discovery of Objectives via Clustering (DOC) and Discovery of

Objectives by Factorization of interaction matrix (DOF) show that

informative characterizations of programs can be automatically

derived from interaction matrices in discrete domains and used as

search objectives in multidimensional setting. In this paper, we pro-

pose analogous methods for continuous domains and compare them

with conventional GP that uses tournament selection, Age-Fitness

Pareto Optimization, and GP with epsilon-lexicase selection. Exper-

iments show that the proposed methods are e�ective for symbolic

regression, systematically producing better-�tting models than the

two former baselines, and surpassing epsilon-lexicase selection on

some problems. We also investigate the hybrids of the proposed

approach with the baselines, concluding that hybridization of DOC

with epsilon-lexicase leads to the best overall results.

CCS CONCEPTS
•Software and its engineering→Genetic programming; •Theory
of computation→ Evolutionary algorithms;

KEYWORDS
Genetic Programming; Machine Learning; Nonnegative Matrix

Factorization; Multiobjective optimization

ACM Reference format:
Paweł Liskowski and Krzysztof Krawiec. 2017. Discovery of Search Objec-

tives in Continuous Domains. In Proceedings of GECCO ’17, Berlin, Germany,
July 15-19, 2017, 8 pages.

DOI: http://dx.doi.org/10.1145/3071178.3071344

1 INTRODUCTION
Fitness function in GP is intended to re�ect candidate program’s

conformance with the desired behavior, typically given as a set of

training examples (�tness cases, tests). It is arguably convenient as

a succinct yardstick of program’s quality. On the other hand, it is

also extremely crude in its aggregate characterization of the out-

comes resulting from applying a program to particular tests. Even
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though some programs in a population may fare better than others

on some tests but not on others (and vice versa), these individual dif-

ferences are often not re�ected in the overall �tness, which informs

on the average performance only. Arguably, a richer characteri-

zation of program performance might help making search more

e�ective, not least by providing natural means for di�erentiation

in the population.

In this paper, we follow the works that aim at enriching program

characteristics by describing them with multiple performance char-

acteristics rather than one. Speci�cally, by this we do not mean

conventional ‘helper objectives’ occasionally used in EC and GP

and typically designed and/or engaged manually (like, e.g., pro-

gram size in GP). It has been posited in recent works [10, 14, 16]

that useful multi-objective characterization of programs can be

achieved automatically, in a largely data-driven manner. The key

observation behind those works is thatm programs in the popula-

tion confronted with n tests result in anm × n interaction matrix,

which can be automatically ‘datamined’ for derived objectives. Such

objectives may, but do not have to, correspond to underlying objec-
tives of a problem, a concept devised in the area of coevolutionary

algorithms [1, 3, 7]. Either way, they o�er a richer characterization

of program behavior than scalar �tness.

Empirical evidence brought in previous works suggests signi�-

cant practical utility of methods of this kind, which not only prove

better than conventional GP that navigates the search space using

scalar �tness function, but can also successfully compete with ef-

�cient alternative techniques like Lexicase selection [5, 12]. The

methods proposed to date are however limited in being applicable

only to problems with binary interaction outcomes, i.e. domains

where programs either pass a test or not. Given that a signi�cant

fraction of GP practice revolves around continuous domains (viz.

symbolic regression), it becomes natural to seek for means of ex-

tending such approaches in that direction.

The novel contribution of this paper is thus a (largely universal)

approach for transforming interaction matrices generated in contin-

uous domains to a form that is appropriate for the existing methods

that construct derived objectives from interaction matrices. Apart

from presenting and motivating this particular method, we thor-

oughly assess its performance on a range of uni- and multivariate

symbolic regression benchmarks. Additionally, we hybridize our

approach with Lexicase selection and compare it against it. Empiri-

cal evidence indicates high e�ectiveness of the proposed approach

and points to possibilities of interesting extensions.

2 BACKGROUND
For conformance with its ‘mother �eld’ of evolutionary computa-

tion, it is rather common in GP to characterize programs with scalar

�tness. As argued in Introduction, there is nothing wrong with

this perspective, as long as it does not stop one from considering
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the alternatives. In contrast to, e.g. black-box optimization, where

nothing or little more than candidate solution’s �tness is available,

�tness in GP stems from program’s interaction with multiple tests.

Crucially, the outcomes of those interactions are easily available,

at no extra cost, to a search algorithm.

Formally, the �tness f (p) of a program p assessed on a set of n
tests T of the form (in,out ) is for discrete domains usually de�ned

as the number of passed tests:

f (p) =
∑

(in,out )∈T

[p (in) = out], (1)

where p (in) is the output produce by p for in, and [·] is the Iverson

bracket. For continuous domains, f will usually compute some

form of error, e.g. the mean absolute deviation:

f (p) =
1

m

∑
(in,out )∈T

|p (in) − out |. (2)

In these and most other cases, individual interactions of p with tests

matter only en masse. In the context of the current population P ,

they can be conveniently gathered in an interaction matrix G =
[дi j ], where дi j is the outcome of interaction of ith program in P
with jth test in T . In the discrete case, дi j = [pi (inj ) = outj ] (cf.

(1)). In the continuous case, дi j = |pi (inj ) − outj | (cf. (2)).

Even for relatively small population sizem = |P | and a moderate

number of tests n, the m × n interaction matrix G may become

quite large. However, the elements of G are routinely computed

also in conventional GP, as evidenced by (1) and (2) – it is just

they are usually not memorized, as in conventional GP there is

no need for that. Thus, other than signi�cant memory footprint,

obtaining interaction matrices do not bring any computational

overheads. On the positive side, they o�er rich information on the

behavior of individual programs on individual tests. On one side, an

interaction matrix may convey useful information on the structure

of the current population – for instance the most straightforward

distribution of �tness. On the other hand, it reveals a great deal

about the characteristics of tests, not least about their di�culty

– exploited in past approaches like implicit �tness sharing [19].

These ‘marginal’ perspectives on G are however still rather limited,

compared to the more recent approaches that focus on individual

interactions, which we cover in the next section.

3 METHODS
3.1 Discovery of Objectives by Clustering
Discovery of Search Objectives by Clustering (DOC) [10] is a method

that autonomously derives new search objectives by clustering the

outcomes of interactions between programs in the population and

the tests. These objectives characterize the programs in P and form

the basis for selecting the most promising programs for the next

generation. Technically, DOC applies clustering to n columns of

G that are treated as points in m-dimensional space. For each re-

sulting cluster Tj , the corresponding columns in G are averaged

row-wise, giving rise to m × k derived interaction matrix G ′ with

the elements de�ned as follows:

д′i j =
1

|Tj |

∑
t ∈Tj

д(pi , t ), (3)

where pi is the program corresponding to the ith row of G, and

j = 1, . . . ,k . Each derived objective is intended to capture a subset

of ‘capabilities’ exhibited by the programs in the context of other

individuals in a population. The k derived objectives replace the

conventional �tness function (Eq. 1) and are subsequently used

to drive the selection process in a multi-objective fashion. DOC

builds upon the approach designed for coevolutionary algorithms

in [13, 15].

DOC is designed to be sensitive to inherent di�culty of tests by

avoiding the problem of compensation deeply rooted in aggregating

�tness functions (cf. Section 1). For this purpose, DOC transforms

a single objective-problem given by the original objective function

into a multi-objective one to facilitate the use of dominance relation.

The dominance relation in the original space of interaction out-

comes (where each test is treated as a separate objective) tends to be

sparse. DOC compresses (in a lossy way) the interaction outcomes

into a low number of derived objectives, so that the dominance

relation induced in their space is more likely to be dense and lend

itself to elicitation of useful search gradient.

3.2 Discovery of Objectives by Factorization
Discovery of Objectives via Factorization (DOF) proposed in [14] is

another method that aims at scrutinizing the individual outcomes

of programs’ interactions and leveraging them for better perfor-

mance. DOF employs a non-negative matrix factorization (NMF) to

heuristically derive search objectives from an interaction matrix G ,

and similarly to DOC, uses these objectives to drive search using

a multi-objective selection method. DOF searches for matricesW
and H that together form a lower rank approximation of G, i.e.:

G ≈WH s .t . W ,H ≥ 0, (4)

whereW ∈ Rm×r is calledweights matrix,H ∈ Rr×n is a feature ma-
trix, and r is a desired factorization rank (typically r �min(m,n)).
Each program p ∈ P is associated with a row in W (a vector

wp ∈ R
r
), and each test t ∈ T corresponds to a column in H (a

vectorht ∈ R
r
). To perform factorization, DOF solves the following

optimization problem:

min
W ,H

f (W ,H ) ≡
1

2

| |G −WH | |2F s .t . W ,H ≥ 0, (5)

where | | · | |F is the Frobenius norm. OnceW and H are known, an

estimate of an interaction outcome of a program p with a test t is

given by the dot product of two vectors corresponding to p and t :

д̂pt = w
T
p ht =

r∑
j=1

wpjhjt . (6)

The central observation that motivates DOF is that NMF can be used

to explain the interaction outcomes in G by characterizing both

programs and tests in terms of factors inferred from the patterns

observed in their interactions. These factors are used to recast the

GP problem as multi- rather than single-optimization problem. In

every generation, DOF feeds the factors fromW directly into NSGA-

II [4] selection procedure in order to select the parent programs

and generate candidate solutions for the next generation.

The main di�erence between DOF and DOC is that the objectives

in the former cover the interaction matrix, while they partition it in

the latter. In DOC, a test contributes to exactly one objective, while
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in DOF each derived objective (a column ofW ) depends in general

on all program-test interactions. The space of derived objectives

that can be designed by DOF is thus larger than for DOC. Moreover,

DOC needs all interaction outcomes to be available, while DOF can

work with a partial interaction matrix. Performing only a fraction

of interactions and employing NMF to estimate the outcomes of

remaining ones allows for substantial reduction of computational

e�ort [16], or investing these savings in increased population [14].

4 DISCOVERY OF OBJECTIVES IN
CONTINUOUS DOMAINS

DOC and DOF have been originally applied to discrete domains

and can handle only binary interaction outcomes, where a program

either passes a test or not. In order to apply them to domains with

continuous interaction outcomes, we introduce a preprocessing

step that maps the – in general arbitrary large – continuous error

to interaction outcomes.

The method proceeds as follows:

(1) Calculate the interaction matrix G between the programs

from the current population P and the tests from T . We

assume G initially contains errors, i.e. дi j ∈ R≥0 ∪ {NaN},

where NaNs signal execution errors (like division by zero

etc.). For regression tasks considered in this paper, дi j is

the absolute deviation of program output w.r.t. desired

output, i.e. дi j = |pi (tj ) − yj |.
(2) Replace inG NaNs and values that are greater than a thresh-

old φ with the positive in�nity +∞.

(3) Standardize the columns of G, omitting any in�nities.

(4) Apply sigmoid ‘squeezing’ non-linearity 1/(1+ e−x ) to the

elements of G.

As a result of applying the above preprocessing steps, the values

in G are now guaranteed to be in the range [0, 1]. Crucially, the

smaller φ, the more sensitive the method becomes to small errors.

For example, assuming φ = 200 and the following errors made by a

single individual on six test cases in the initial G:

0.3 1.6 3.3 150.8 51.3 160.3

none of them would be omitted during standardization. Moreover,

relatively small interaction outcomes for the second and third ele-

ments, become indiscernible after standardization and squeezing:

0.29 0.3 0.3 0.79 0.46 0.81

which may have consequences for further processing, in particular

for selection. If, on the other hand, we set φ = 50, only the �rst

three errors would be considered for computing mean and standard

deviation necessary for standardization. As a result, the di�erences

between the smaller errors are ampli�ed:

0.24 0.47 0.78 1.0 1.0 1.0

The motivation for parameterizing this process with φ is that main-

taining the di�erences between smaller errors may be more impor-

tant than doing so for the bigger errors, as for the latter it may be

justi�ed to consider them ‘equally bad’. In the experimental section,

we propose to automate the choice of φ by setting it to the 95th

percentile of the errors in an interaction matrix.

Other design choices such as standardization and sigmoid non-

linearity are motivated by the importance of providing for the same

magnitude of outcomes on tests while maintaining their individual

capability of discrimination between programs, and the desire to

map the outcomes in entire matrix to the same interval so that

they are globally comparable. The former is particularly important

for DOC, as it employs clustering based on Euclidean distances

that is isotropic in all directions of space and therefore sensitive to

unequal variances in di�erent dimensions.

5 RELATEDWORK
The concept of derived search objectives has a counterpart in co-

evolutionary algorithms. De Jong [3] and Bucci [1] independently

proposed to map interaction matrices to coordinate systems, with

axes representing di�erent skills exhibited by candidate solutions,

and in this sense embodying underlying objectives. Such coordinate

systems are guaranteed preserve dominance in the original inter-

action matrix, and their dimensionality re�ects problem di�culty.

However, because the problem of �nding the coordinate system of

minimal dimensionality is NP-hard [7], and system’s dimensional-

ity for even the simplest test-based problems turns out to be very

high, using these formalisms to actually drive search is rare and

usually does not lead to spectacular improvements.

Methods that that attempt to derive alternative search objec-

tives are also related to semantic GP [20] and behavioral [9, 11] GP

methods that de�ne program semantics as the vector of outputs

produced by a program for particular tests. A single row in an

interaction matrix might be viewed as the outcome of confronting

program’s semantics with the vector of desired outputs. With the

increasing popularity of semantic methods in GP, recent years have

seen a large number of contributions that employ this character-

ization of program behavior to design new initialization, search,

and selection operators. However, those methods are in general

not designed to rede�ne search objectives, which is the primary

goal of the methods that derive new search objectives.

Regarding other, less related approaches, the methods studied

here can be likened to methods that rede�ne �tness function. The

arguably best known approach of this type is implicit �tness shar-

ing (IFS) introduced by Smith et al. [24] and further explored for

genetic programming by McKay [19]. IFS estimates the di�culty of

particular tests from an interaction matrix and weighs accordingly

the rewards granted to programs. Higher rewards are provided for

solving tests that are rarely solved by population members. The

di�culties of tests change with evolution, which can help escaping

local minima and diversi�es population.

6 EXPERIMENTS
We conduct an extended experimental assessment of DOC and DOF

by confronting them with reference approaches on a suite of 18

symbolic regression benchmarks. The objective of the experiment

is to gauge the performance of the these methods in terms of typical

metrics such as training set error, test set error and program size in

the domain of tree-based GP.

As already signaled in Section 4, we setφ to 95th percentile of the

errors in an interaction matrix. This allows us to ignore the top 5% of

the biggest errors that would otherwise distort the standardization

of G. In the preliminary experiments, we also considered median

which turned out to perform slightly worse.

971



GECCO ’17, July 15-19, 2017, Berlin, Germany Paweł Liskowski and Krzysztof Krawiec

Table 1: Parameters of evolution.

Parameter Value

population size 1000

termination condition 200 generation or �tness =0

initialization ramped half-and-half

instruction set {+,-,×,/,exp,log,sin,cos}

tournament size 7

crossover probability 0.9

mutation probability 0.1

number of runs 50

All compared methods implement generational evolutionary

algorithm and share the same parameter settings, with initial pop-

ulation of size |P | = 1000 �lled with the ramped half-and-half oper-

ator, subtree-replacing mutation engaged with probability 0.1, and

subtree-swapping crossover engaged with probability 0.9. Search

lasts up to 200 generations and terminates when the assumed num-

ber of generation elapses or an ideal program is found. Details

concerning these and other GP settings are summarized in Table 1.

6.1 Compared algorithms
DOC employs x-means [22] clustering algorithm that extends k-

means by autonomously adjusting k . Given an admissible range

of k , x-means picks the k that leads to clustering that maximizes

the Bayesian Information Criterion. In this experiment, we allow

x-means consider k ∈ [1, 5] and employ the Euclidean metric to

measure the distances between the observations (columns of G).

DOF employs NMF that is realized by the stochastic gradient

descent algorithm. The factorization rank r is set to 2 since NSGA-

II tends to work best with few objectives. Following [14], we set

the fraction of calculated interactions α = 0.4 and increase the

population size by the factor (1 − α ) to align the computational

e�ort. The remaining parameters are set according to [14].

Both DOC and DOF rely on NSGA-II [4] selection procedure in

order to select the parent programs and generate candidate solu-

tions for the next generation. NSGA-II uses the default value of

tournament size, i.e., 2.

We confront the above methods with several control setups.

The �rst baseline is the conventional Koza-style GP (GP in the

following), which employs tournament of size 7 in the selection

phase. The other control methods are shortly introduced in the

following subsections.

6.1.1 Lexicase selection. ϵ-lexicase selection (LEX) has been re-

cently proposed for symbolic regression problems [12], and builds

upon lexicase selection that has been originally designed for ‘un-

compromising’ problems [5]. In each parent selection event, the

method starts by shu�ing the test cases, and proceeds by remov-

ing the individuals in the selection pool that do not satisfy a pass

condition ct on the �rst test. In its original de�nition, ct �lters all

individuals with a �tness worse than the best �tness on the current

test. If more than one individuals remains in the pool, the �rst case

is removed and the procedure is repeated for the next case until

only one individuals remains and becomes a parent, or all �tness

cases are used. In such a case, a parent is chosen randomly from

the remaining individuals. ϵ-lexicase selection addresses poor per-

formance of lexicase selection on continuous errors by modulating

the pass condition ct on test cases via ϵ , so that only individuals

outside ϵ are �ltered during selection. In the following, we use the

variant of ϵ-lexicase selection that proved to be the most e�ective

in [12] and uses pass condition:

et (p) < e∗t + λ(et ), (7)

where et (p) is the error of program p on test t , e∗t is the best error

on t in P , and λ(et ) is the median absolute deviation of the errors

on test t across the population.

Similarly to DOC, in addition to rewarding the programs for solv-

ing test cases, ϵ-lexicase selection promotes diversi�ed programs

that pass randomly selected subset of tests. In this way, di�erent

tests are emphasized in each selection event. An individual that

passes test(s) that are rarely passed by its competitors has substan-

tial chance to propagate to the next generation even if it performs

poorly on many other test. Note that in contrast to DOC and DOF,

LEX does not explicitly de�ne any objectives or alternative �tness

functions. In this sense, it is ‘natively’ a selection method.

6.1.2 Age-Fitness Pareto Optimization. Age-Fitness Pareto Opti-

mization (AFPO) [23] is a multi-objective method that assigns each

individual an age equal to the number of generations since incep-

tion of its oldest ancestor. Each generation, AFPO selects random

parents from the population and applies crossover and mutation

operators to produce |P | − 1 o�spring. The o�spring and a single

randomly initialized individual are then added to the population

doubling its size. Next, Pareto tournament selection is iteratively

applied by randomly selecting a subset of individuals and remov-

ing the dominated ones until the size of the population is reduced

back to |P |. To determine which individuals are dominated, the

algorithm identi�es the Pareto front using two objectives: age and

�tness.

6.1.3 Hybrid Approaches. In their original form, derived objec-

tives identi�ed by DOC and DOF drive the selection process in

a multi-objective fashion to avoid aggregation of interaction out-

comes with all tests into a single scalar value, which is characteristic

for the traditional objective function. One of the main motivations

for LEX is also to avoid such aggregation, and the decisions made

by the algorithm regarding which programs to select are based on

distinct tests. These observations encourage us to combine these

methods into a hybrid approaches in which lexicase selection is

performed on the derived objectives.

In hybrid approaches, DOCLEX andDOFLEX, we �rst derive new

search objectives and subsequently, we apply ϵ-lexicase selection,

using the particular derived objectivesdi as if they were test cases in

ϵ-lexicase selection. In each iteration, a derived objective is drawn

at random. Then, individuals in the population that do not satisfy

the pass condition ct on that objective are �ltered. If more than

one individual remains, the process repeats, �ltering any remaining

individuals that do not satisfy ct on the next derived objective

drawn at random. This process continues until only one individual

remains and is selected, or until all derived objectives have been

processed, in which case a random program is selected from the

remaining programs. In DOCLEX, we set k = [10, 100]. Similarly,

in DOFLEX, we set r = [10, 100] and use all factors fromW .
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6.2 Benchmark problems
We compare the methods on 18 uni- and bi-variate symbolic regres-

sion problems that come from [18, 21]. In univariate problems, 20

Chebyshev nodes [2] are used from training, and 20 uniformly sam-

pled points for testing. For bivariate problems, 10 values are picked

in analogous way for each input variable. Their Cartesian product

constitutes a data set. By varying in the number of variables, the

required functions, and the characteristic of desired output, this

selection of benchmarks forms good representation of problems

considered in research on GP and its practical applications.

6.3 Results
Figure 1 shows the average best-of-generation �tness achieved by

particular methods on di�erent benchmark problems, with 95%

con�dence intervals marked as semi-transparent bands. Clearly,

each of the considered methods that drive the search using derived

objectives signi�cantly improves the performance of the standard

GP algorithm. The best performance is achieved either by DOC

or DOCLEX, depending on the problem. LEX and DOCLEX tend

to maintain the lowest training set error during evolution, with

DOC eventually catching up. DOF performs slightly worse than the

already mentioned methods, but still better than two other control

methods AFPO and GP. DOFLEX, on the other hand, seems to be the

weakest algorithm of the analyzed. It has the highest variance, and

often achieves inferior results when compared to other methods.

These observations are con�rmed by Table 2 that demonstrates

average and 95% con�dence intervals of the best-of-run �tness.

To provide an aggregated perspective on performance, we em-

ploy the Friedman’s test for multiple achievements of multiple

subjects [8] on the best-of-run �tness. The p-value for Friedman

test is 3.46×10−12, which strongly indicates that at least one method

performs signi�cantly di�erent from the remaining ones. To deter-

mine the signi�cantly di�erent pairs we conduct post-hoc analysis

using symmetry test [6]. Table 5 presents the p-values for the hy-

pothesis that a setup in a row is better than a setup in a column. The

signi�cant p-values are marked in bold. This comparison indicates

that the performance improvement of DOC and DOCLEX relative

to control methods GP and AFPO is signi�cant. For a more detailed

insight, we also rank all con�gurations in the bottom row of Table

2. The best overall average rank of 1.39 is achieved by DOCLEX

which outperforms the other methods on 13/18 benchmarks. The

second is DOC with the average rank of 2.22 and the lowest error

on 3/18 benchmarks. Third place is taken by LEX with the average

rank of 2.89 and the lowest error on 1/18 benchmarks.

Table 3 presents the median and 95% con�dence interval of test

set �tness of the best-of-run program. The results are mostly con-

sistent with the results on the training set, and again we observe the

positive e�ects of driving search using derived objectives. Across

all problems, the median best �tness on the test sets is obtained

by DOC which achieves the best overall average rank of 1.72. DO-

CLEX is second with the rank of 2.67, while LEX and DOF both

rank third with the same average result of 3.33. The methods do not

exhibit heavy over�tting to training data except for Kj8, Kj15 and

Pg1, where higher test errors are apparent. Interestingly, despite

this tendency, DOC and DOF manage to maintain the lowest errors

on these benchmarks.

Friedman’s test conducted on test set �tness from Table 3 results

in p-value of 8.02 × 10−10 and Table 6 demonstrates its post-hoc

analysis. Observations are largely con�rmed: DOC and DOF are

both better than GP, while DOC and DOCLEX also signi�cantly

outperform AFPO.

Table 4 shows the average and 95% con�dence interval of the

number of nodes in the best-of-run programs. We are not surprised

to see AFPO produce the smallest programs on average, as one of

its motivations is to address the issue of bloat in GP. DOC comes

second, with the rank of 2.27, and produces much smaller programs

than the control methods. LEX, which ranked next after DOC

in terms of �tness, turns out to produce much larger programs,

even though its average run lengths do not diverge much from

those of DOC (cf. Table 2). This observation is con�rmed by the

Friedman’s test - DOC produces signi�cantly smaller programs

than LEX, DOCLEX, DOF and DOFLEX. LEX also seems to have

slightly detrimental e�ect on program size when used in a hybrid

approach with DOC.

In terms of pure wall clock times (cf. Table 2), AFPO takes the

least mean time to run a single trial. DOC is more computationally

expensive than tournament selection in GP, but slightly cheaper

than LEX. DOF and DOFLEX are among the most expensive meth-

ods, most likely due to employing NMF.

7 DISCUSSION
The overall positive results corroborate the �ndings from previous

works and extend them to continuous domains. The alternative,

transient objectives derived automatically from interaction matrices

by DOC, DOCLEX and DOF turn out to surpass a range of other

methods on key performance indicators. Crucially, this holds even

for LEX, which showed superior performance in multiple previous

studies [5, 12, 17]. Acceptable runtimes that do not diverge much

from those of more conventional methods strengthen this claim.

This outcome suggests also that the decisions we made when

designing the preprocessing method described in Section 4, were

largely appropriate. Indeed, preliminary experiments not reported

here suggested that all key components of that method are essen-

tial: the ‘capping’ of maximum error with φ in Step 2 to emphasize

the di�erences in low ranges of error, the standardization in Step

3 to provide for the same magnitude of outcomes on tests while

maintaining their individual capability of discrimination between

programs, and the sigmoid squeezing in Step 4 to map the out-

comes in entire matrix to the same interval so that they are globally

comparable for DOC and DOF. Sigmoid squeezing also reduces the

impact of outliers on clustering in DOC and factorization in DOF.

It is encouraging to see that the low errors on the training set in

most cases translate to test sets. Given that smaller programs often

generalize better, this result can be in part attributed, particularly for

DOC and DOCLEX, to moderate sizes of programs evolved by these

methods. This is interesting, given that, except for AFPO, none

of the setups considered here explicitly rewards smaller programs.

It would be interesting to �nd out whether there are any other

(than size) characteristics of the programs evolved with derived

objectives that make them perform so well, and we consider this

one of interesting follow-up directions.
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Figure 1: Average and .95-con�dence interval of the best-of-generation �tness.
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Table 2: Average and .95-con�dence interval of the best-of-run �tness. Last rows present the averaged ranks of setups and the
average time to run a single trial of each algorithm.

Problem gp lex afpo doc doclex dof do�ex

R1 0.133 ±0.027 0.039 ±0.013 0.235 ±0.025 0.046 ±0.008 0.034 ±0.011 0.076 ±0.013 0.093 ±0.013
R2 0.104 ±0.020 0.037 ±0.007 0.122 ±0.014 0.040 ±0.006 0.019 ±0.003 0.057 ±0.008 0.141 ±0.032
R3 0.022 ±0.004 0.005 ±0.001 0.037 ±0.003 0.007 ±0.001 0.003 ±0.001 0.022 ±0.003 0.050 ±0.006
Kj1 0.060 ±0.013 0.010 ±0.003 0.067 ±0.009 0.012 ±0.003 0.009 ±0.002 0.060 ±0.010 0.117 ±0.015
Kj4 0.128 ±0.021 0.092 ±0.021 0.152 ±0.022 0.045 ±0.009 0.034 ±0.006 0.110 ±0.011 0.195 ±0.040
Kj8 0.427 ±0.128 0.208 ±0.048 0.297 ±0.059 0.126 ±0.030 0.099 ±0.020 0.174 ±0.051 0.306 ±0.056
Kj14 2.586 ±0.463 2.468 ±0.415 2.031 ±0.242 1.354 ±0.182 0.923 ±0.153 1.457 ±0.196 2.957 ±0.630
Kj15 10.229 ±1.380 4.517 ±0.793 14.236 ±1.189 7.426 ±0.921 2.069 ±0.324 6.629 ±0.946 10.428 ±1.432
Ng3 0.103 ±0.022 0.029 ±0.016 0.128 ±0.016 0.030 ±0.005 0.031 ±0.010 0.045 ±0.007 0.097 ±0.024
Ng4 0.135 ±0.035 0.040 ±0.016 0.184 ±0.018 0.031 ±0.007 0.033 ±0.010 0.064 ±0.012 0.111 ±0.019
Ng5 0.016 ±0.006 0.006 ±0.002 0.012 ±0.003 0.005 ±0.001 0.004 ±0.001 0.009 ±0.002 0.045 ±0.010
Ng6 0.047 ±0.012 0.021 ±0.007 0.066 ±0.012 0.015 ±0.005 0.016 ±0.004 0.022 ±0.004 0.073 ±0.013
Ng7 0.030 ±0.010 0.012 ±0.004 0.034 ±0.006 0.007 ±0.001 0.007 ±0.002 0.016 ±0.003 0.041 ±0.007
Ng8 0.025 ±0.005 0.024 ±0.006 0.022 ±0.005 0.009 ±0.003 0.011 ±0.003 0.007 ±0.005 0.045 ±0.009
Ng9 0.184 ±0.042 0.061 ±0.022 0.154 ±0.048 0.038 ±0.030 0.030 ±0.011 0.072 ±0.029 0.331 ±0.065
Ng12 0.184 ±0.021 0.089 ±0.010 0.228 ±0.020 0.094 ±0.011 0.062 ±0.008 0.180 ±0.017 0.310 ±0.019
Pg1 0.259 ±0.079 0.221 ±0.069 0.247 ±0.046 0.121 ±0.026 0.094 ±0.042 0.223 ±0.075 0.495 ±0.112
Vl1 0.138 ±0.018 0.189 ±0.042 0.196 ±0.018 0.107 ±0.009 0.063 ±0.011 0.191 ±0.018 0.311 ±0.036
Rank: 5.444 2.889 5.778 2.222 1.389 3.722 6.556

Time: 00:08:50 00:18:32 00:01:58 00:12:41 00:17:18 00:23:04 00:41:43

Table 3: Median and .95-con�dence interval of test set �tness of the best-of-run programs.

Problem gp lex afpo doc doclex dof do�ex

R1 0.192 ±0.042 0.046 ±0.017 0.266 ±0.032 0.055 ±0.009 0.042 ±0.016 0.071 ±0.012 0.124 ±0.043
R2 0.127 ±0.022 0.059 ±0.017 0.141 ±0.018 0.047 ±0.008 0.033 ±0.017 0.071 ±0.012 0.184 ±0.045
R3 0.043 ±0.006 0.010 ±0.003 0.052 ±0.005 0.011 ±0.002 0.009 ±0.002 0.028 ±0.004 0.068 ±0.009
Kj1 0.126 ±0.021 0.071 ±0.027 0.108 ±0.018 0.031 ±0.009 0.044 ±0.014 0.098 ±0.017 0.180 ±0.027
Kj4 0.555 ±0.097 0.329 ±0.068 0.291 ±0.058 0.164 ±0.052 0.282 ±0.076 0.274 ±0.052 0.684 ±0.131
Kj8 210.659 ±405.680 29.085 ±37.352 1.029 ±0.307 0.882 ±0.273 3.235 ±3.101 0.639 ±0.237 1.218 ±0.410
Kj14 3.785 ±0.647 3.040 ±0.541 2.516 ±0.340 1.548 ±0.179 1.672 ±0.364 2.151 ±0.425 4.264 ±0.855
Kj15 11.380 ±1.391 5.466 ±1.063 14.601 ±1.108 7.367 ±0.831 3.005 ±0.471 6.885 ±0.910 12.243 ±1.545
Ng3 0.120 ±0.025 0.033 ±0.017 0.146 ±0.018 0.034 ±0.006 0.034 ±0.010 0.043 ±0.006 0.099 ±0.023
Ng4 0.173 ±0.035 0.049 ±0.019 0.205 ±0.019 0.035 ±0.010 0.047 ±0.015 0.071 ±0.014 0.133 ±0.020
Ng5 0.024 ±0.010 0.018 ±0.009 0.011 ±0.003 0.005 ±0.001 0.005 ±0.002 0.009 ±0.002 0.053 ±0.021
Ng6 0.046 ±0.013 0.025 ±0.011 0.037 ±0.011 0.008 ±0.004 0.016 ±0.005 0.014 ±0.004 0.070 ±0.015
Ng7 0.040 ±0.012 0.018 ±0.007 0.038 ±0.008 0.012 ±0.005 0.066 ±0.045 0.025 ±0.008 0.051 ±0.011
Ng8 0.129 ±0.018 0.135 ±0.032 0.077 ±0.024 0.056 ±0.016 0.114 ±0.038 0.024 ±0.015 0.176 ±0.041
Ng9 0.211 ±0.055 0.058 ±0.032 0.079 ±0.038 0.012 ±0.012 0.131 ±0.088 0.085 ±0.041 0.501 ±0.107
Ng12 0.265 ±0.044 0.187 ±0.029 0.282 ±0.020 0.188 ±0.031 0.220 ±0.064 0.297 ±0.023 0.448 ±0.048
Pg1 2.085 ±0.277 1.746 ±0.272 1.580 ±0.217 1.170 ±0.168 1.475 ±0.198 1.717 ±0.222 2.252 ±0.217
Vl1 0.636 ±0.076 0.532 ±0.079 0.608 ±0.086 0.427 ±0.043 0.427 ±0.075 0.562 ±0.052 0.831 ±0.081
Rank: 5.667 3.333 4.889 1.722 2.667 3.333 6.389

Last but not least, let us note that the overall underperformance

of DOFLEX should be mainly attributed to the fact that for large

r weights matrix becomes sparse. In such setting LEX tends to

use only one case for each parent selection, resulting in poor per-

formance. For DOF, no obvious means for automatic setting of

factorization rank have been proposed to date, so we also exper-

imented with the minimal value of r = 2. This proves to work

reasonably well when combined with conventional DOF, as the

NSGA-II selection is known to operate well in low-dimensional

spaces. However for LEX this setting is also sub-optimal, as there

is substantial conceptual and empirical evidence that this selection

method yields the best results when the number of tests is at least

in dozens.

8 CONCLUSIONS
In this study, we empirically generalized previous �ndings con-

cerning methods that derive search objectives from interaction

matrices. We may thus claim now that derived objectives, though

heuristically derived and transient, are e�ective means of search

not only for discrete domains, but also for the continuous ones.

This elevates derived objectives to a fully-�edged concept for meta-

heuristics applied to test-based problems, including, but not limited

to, GP. Given that many such methods are practically parameter-

free, and so is the preprocessing method proposed in this paper, one

may seriously consider including these solutions as out-of-the-box

features in metaheuristic toolkits.

In a broader perspective, the results presented here form yet

another argument for the quest for alternative means of driving

search in heuristic algorithms [9]. Indeed, in many domains there

are no conceptual nor technical obstacles for distilling more pre-

cise and useful information from candidate solutions. To that aim,

we employed here the interaction matrix, but potential other ap-

proaches abound. Given the potential bene�ts evidenced in this

paper, such opportunities should be exploited more often in re-

search and practice of GP and other test-based problems, and we

strongly encourage the readers to consider this path.
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Table 4: Average and .95-con�dence interval of number of nodes in the best-of-run program.

Problem gp lex afpo doc doclex dof do�ex

R1 92.437 ±9.833 100.008 ±11.078 30.170 ±1.387 81.442 ±7.024 101.085 ±12.206 89.206 ±4.571 87.903 ±14.132
R2 99.776 ±17.784 101.452 ±9.665 25.597 ±1.353 84.166 ±6.028 110.236 ±14.055 109.446 ±6.626 90.809 ±8.168

R3 112.906 ±14.584 122.057 ±10.600 32.255 ±1.636 103.675 ±7.762 123.575 ±13.857 134.024 ±9.053 122.974 ±9.672

Kj1 111.203 ±16.660 134.972 ±16.185 32.499 ±1.593 96.185 ±9.052 109.394 ±12.523 144.953 ±10.278 148.799 ±13.634
Kj4 133.811 ±15.045 130.992 ±9.754 40.949 ±2.224 108.622 ±9.683 134.536 ±13.969 142.368 ±10.577 146.039 ±13.207
Kj8 150.517 ±16.563 140.043 ±11.708 35.363 ±1.815 95.444 ±7.903 147.541 ±12.499 117.642 ±8.253 131.048 ±10.252
Kj14 89.812 ±7.699 86.670 ±7.108 23.324 ±1.247 71.025 ±3.976 98.103 ±9.044 95.905 ±9.338 110.179 ±8.010

Kj15 110.263 ±11.370 116.492 ±8.230 26.498 ±1.362 108.840 ±7.486 134.830 ±9.140 104.770 ±6.949 136.477 ±10.615
Ng3 89.343 ±11.995 99.310 ±12.007 27.755 ±1.867 65.468 ±5.011 100.422 ±12.846 100.974 ±8.165 94.524 ±8.106

Ng4 91.692 ±11.229 91.805 ±9.541 27.099 ±1.329 86.014 ±9.434 98.851 ±9.930 94.838 ±6.475 93.499 ±7.341

Ng5 60.719 ±9.520 66.786 ±10.729 19.564 ±1.637 51.837 ±6.405 67.796 ±10.529 99.257 ±12.233 84.411 ±10.612
Ng6 82.674 ±11.563 80.698 ±7.670 24.255 ±2.011 69.064 ±8.436 83.287 ±10.081 113.484 ±16.390 96.361 ±9.407

Ng7 66.389 ±9.146 75.943 ±6.520 19.454 ±1.475 67.261 ±5.456 90.062 ±10.930 129.159 ±15.665 89.042 ±9.225

Ng8 63.756 ±8.558 80.615 ±10.483 22.530 ±1.268 54.663 ±6.226 75.417 ±8.860 89.167 ±10.359 81.057 ±7.619

Ng9 90.664 ±14.549 98.202 ±13.235 20.756 ±2.439 64.692 ±11.441 87.062 ±11.478 104.855 ±12.879 98.217 ±10.351
Ng12 83.121 ±13.884 91.343 ±6.956 22.000 ±1.443 95.799 ±6.730 116.942 ±11.983 142.845 ±14.956 104.046 ±15.909
Pg1 64.462 ±7.809 87.612 ±7.157 24.062 ±1.121 64.629 ±3.858 90.902 ±10.217 91.096 ±8.086 110.165 ±12.050
Vl1 107.003 ±10.537 111.494 ±10.925 29.776 ±1.473 100.707 ±6.986 126.004 ±10.708 120.169 ±7.465 121.183 ±13.613
Rank: 3.556 4.278 1.000 2.278 5.556 5.833 5.500

Table 5: Post-hoc analysis of Friedman’s test on Table 2. Sig-
ni�cant values (α = 0.05) are in bold.

gp lex afpo doc doclex dof do�ex

gp 0.999 0.719

lex 0.007 0.001 0.910 0.000
afpo 0.934

doc 0.000 0.969 0.000 0.363 0.000
doclex 0.000 0.363 0.000 0.910 0.020 0.000

dof 0.201 0.065 0.002
do�ex

Table 6: Post-hoc analysis of Friedman’s test on Table 3. Sig-
ni�cant values (α = 0.05) are in bold.

gp lex afpo doc doclex dof do�ex

gp 0.953

lex 0.020 0.317 0.000
afpo 0.934 0.363

doc 0.000 0.275 0.000 0.847 0.275 0.000
doclex 0.001 0.969 0.033 0.969 0.000

dof 0.020 1.000 0.317 0.000
do�ex
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