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ABSTRACT
This paper evaluates anomaly detection approaches for drinking-
water quality. Two major machine learning techniques are com-
pared. One is manual feature engineering with feature subset selec-
tion for dimensionality reduction. The other is automatic feature
learning through a recurrent neural network. Both methods incor-
porate the time domain for change detection. Preliminary results
show a superior performance of automatic feature learningwith an
F1 score of 80%. While the feature set proposed in this work out-
performs naive classification with original features, it needs fur-
ther analysis to reach comparable performance to the automatic
approach.
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1 INTRODUCTION
Precise detection of changes in water quality is a crucial task for
public water companies and urgently required for a fast reaction
to contaminated drinking water. This problemmotivates the inves-
tigation of machine learning methods for detecting changes and
anomalies in water quality. The data set of the GECCO Challenge
2018 contains the time stamps, nine time series of various mea-
surable water properties and a target vector of marked anomalies.
Six of these measured features are quality indicators, including the
pH value, Redox potential, electric conductivity, turbidity of water
and the amount of chlorine dioxide in the two different water lines.
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Drastic changes of the behaviour in one of these features indicate
anomalous events. While the amount of chlorine dioxide is con-
trollable by humans, the other features are produced by external
circumstances. The remaining three time series correspond to fea-
tures that do not directly influence the water quality. These series
are the water temperature and the flow rates of both water lines.
Finally, a target vector marks time points in the series as abnormal
or normal. This vector serves as labels for the anomaly detection
algorithms in this work.

The results of the GECCO 2017 challenge shows highest perfor-
mance on a second order polynomial feature space transformation.
This indicates that the problem setting has a non-linear charac-
ter and suggests the usage of non-linear anomaly detection meth-
ods. In order to create an appropriate bias-variance trade-off, the
anomaly detection in drinking-water is systematically approached
through data preprocessing and feature engineering. These meth-
ods allow to control the complexity of the model and obtain a de-
cent set of parameters. Feature engineering is performed in two
ways: First, a set of manual features incorporating the time domain
is designed and statistical tests are employed to select a subset for
detector training. Second, deep learning with a recurrent neural
network is used to learn complex feature representations and de-
tection models at the same time. The performance and decision
behaviour of the detectors are assessed with the F1 scores. The fol-
lowing section describes the usedmethod, the subsequent presents
preliminary results and the last discusses these results and gives an
outlook.

2 METHOD
2.1 Data Preprocessing
The first step when working with industrial data is the assurance
of data quality. Missing values need to be either removed from the
training set or interpolated. This work uses forward propagation
for interpolation. It propagates the last valid observation forward
up to the next valid one. This interpolation is suitable w.r.t. online
operation in real-time settings, where only the last valid value is
known at processing time. Furthermore, interpolated values do not
fall outside the value range, thus preventing the creation of a false
anomaly.

2.2 Manual Feature Engineering
This step aims to derive new, time-dependent features from the
data as change detection occurs naturally in the time domain. There-
fore, some time-dependent features are expected to better capture
certain properties of the studied time series. For them, the first
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Figure 1: Logistic Regression on origi-
nal features, the F1 score is 25%.

Figure 2: Logistic Regression on engi-
neered features, the F1 score is 48%.

Figure 3: LSTMNeuralNetworkwith au-
tomatic feature learning, the F1 score is
80%

time-dependent feature is the lag operator c. It indicates howmany
preceding time steps are incorporated into the feature space.

The second time-dependent feature is derived by integrating the
deviation between signal and reference points over a time interval.
It takes the rate of change and the time duration into account. The
time series is transformed via quadrature over an interval contain-
ing two time steps (i.e. c = 2).

The third time-dependent feature measures the complexity of
the probability distribution [1] . Consider a sliding window, each
composed of c time steps over which a histogramwithb bins is con-
structed. Subsequently, the entropy over the probability of finding
the time step xt in the i-th bin is calculated through:
H (x) = −

∑b
i=1 pi · logpi .

The last time-dependent feature is the composition gradient. It
measures the amount of change between the current state xt and
the previous state fCG (xt ; 1) = (xt − xt−c )/c One of the binary
classes is aminority and hence reduces the effective amount of data
points required to fit models without overfitting. Dimensionality
reduction of the feature space is therefore performed. The derived
features are submitted to two feature selection criteria in order to
determine a subset of features with high predictive power.

These criteria are the ANOVA F-value and the mutual informa-
tion. The first determines the ratio between the variance of the fea-
tures and the dependent variable. The latter measures the mutual
information between features and dependent variable. The inter-
section of the k highest scoring features in both criteria constitutes
the selected feature subset to span a k-dimensional feature space
for an anomaly classifier.

2.3 Automatic Feature Learning
An alternative to the feature engineering is deep learning neural
networks. Assuming that the data situation is large enough, neu-
ral networks render manual feature engineering obsolete by learn
appropriate feature representations in their hidden layers. Detect-
ing changes in drinking-water is a time series problem for which
a Long Short-term Memory (LSTM) neural network [2] is able to
incorporate the time domain through recurrent connections. In or-
der to decide whether the quality of water at time t is an anomaly
or in a normal state, we assume that the relevant changes occur
within the previous 30 minutes. The detector in this work consists

of one LSTM layer and eight fully connected layers (10 hidden neu-
rons each). The inputs to the LSTM network are all nine features
from the challenge data set.

3 PRELIMINARY RESULTS
Figure 1, Figure 2 and Figure 3 show preliminary results for models
trained with manual feature engineering and the automatic fea-
ture learning approach using a LSTM neural network. The mod-
els are trained on the data set provided by Thüringer Wasserver-
sorgung for the GECCO IoT Challenge 2018 and tested using 10-
fold cross-validation. The performancemetric is the F1 scorewhich
trades precision and recall. The prediction of all classification mod-
els used in this work are of probabilistic nature. Hence, perfor-
mance metrics are evaluated over the classification thresholds (i.e.
a data point is classified as an anomalywhen the prediction reaches
the classification threshold).

4 DISCUSSION & OUTLOOK
The cross-validated F1 score of logistic regression with the original
features in Figure 1 is below 10% for the standard 50% classification
threshold and peaks at 25% for a threshold around 90%. The perfor-
mance of logistic regression with the nine best engineered features
in Figure 2 reaches 28% at a 50% classification threshold and even
peaks at almost 50% at the 70% threshold. These results indicate
that the features presented in this work indeed increase the perfor-
mance of an anomaly detector. However, the LSTMneural network
with automatic feature learning in Figure 3 has a stable classifica-
tion behaviour with a peak F1-Score of 80% and shows a superior
performance compared to the logistic regression models evaluated
in this work. However, it is to be noted that logistic regression
is used to determine if the engineered features increase the per-
formance compared to the original features. The next steps are to
evaluate the engineered features using non-linear models and sup-
port the feature space with anomaly scores from unsupervised de-
tection models. A larger amount of samples through a greater time
span is also expected to capture cyclic (e.g. seasonal) patterns.
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