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ABSTRACT
Botnets represent a widely deployed framework for remotely infect-
ing and controlling hundreds of networked computing devices for
malicious ends. Traditionally, detection of Botnets from network
data using machine learning approaches is framed as an offline,
supervised learning activity. However, in practice both normal
behaviours and Botnet behaviours represent non-stationary pro-
cesses in which there are continuous developments to both as new
services/applications and malicious behaviours appear. This work
formulates the task of Botnet detection as a streaming data task in
which finite label budgets, class imbalance and incremental/online
learning predominate. We demonstrate that effective Botnet detec-
tion is possible for label budgets as low as 0.5% when an active
learning approach is adopted for genetic programming (GP) stream-
ing data analysis. The full article appears as S. Khanchi et al., (2018)
“On Botnet Detection with Genetic Programming under Streaming
Data, Label Budgets and Class Imbalance” in Swarm and Evolution-
ary Computation, 39:139-140. https://doi.org/10.1016/j.swevo.2017.
09.008
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1 INTRODUCTION
Botnets represent a collection of networked devices that at some
point have had their security compromised (bots), so letting a bot
master remotely control them. Unknown to the original users, the
bot master is then free to use the compromised devices to perform
malicious behaviours (e.g. spam, click fraud, distributed denial of
service, identify theft). Detection of Botnets is non-trivial because:
1) malicious behaviours are mixed in with legitimate normal be-
haviours; 2) users have a wide range of ‘normal’ behaviours; 3) net-
work load and applicationmix are time varying parameters; 4) many
applications dynamically switch between different modes of oper-
ation in unpredictable ways (e.g., services such as Skype and Tor
explicitly attempt to hide their communication protocols); 5) new
applications/updates to current applications (whether malicious
or not) coexist with both old versions of the same application and,
6) the ratio of data pertaining to malicious versus non-malicious
behaviour is very low.

Typically, Botnet detection is framed as an off-line activity in
which either prior rules are used to detect Botnet activity, or detec-
tors are trained on a prior dataset using supervised learning (e.g. see
[3]). In this work an incremental approach is adopted in which data
is viewed as a continuous stream. Specifically, the task is framed as
follows. We cannot predict a priori when Botnet behaviours will ap-
pear in the stream, as network data represents a mixture of normal
and malicious data. Normal network data is also non-stationary,
implying that it is also not feasible to pre-train models off-line and
then deploy. Human expert(s) are available for providing true labels
for a small subset of the stream data (i.e. label budget) on a contin-
uous basis. This is necessary because an attacker can manipulate
stream data content leading to attacks against the machine learning
algorithm itself [1]. A champion GP individual must always be
available for label prediction, before any label querying can take
place (real-time anytime operation). The GP framework therefore
operates interactively with the stream providing predictions about
the content (normal or Botnet) and directs the human labelling of
the stream under a finite label budget. In framing the task this way,
the proposed system has the ability to operate under a wide range
of network devices including servers and client devices.

2 STREAMING GP
The development of machine learning algorithms for streaming
data has to address multiple properties [4], including but not lim-
ited to: change detection (non-stationary processes generating the
data), anytime operation, incremental or online updates, and small
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amounts of label information. Multiple mechanisms have been
proposed/developed for addressing these issues, although compar-
atively little from the perspective of evolutionary computation
(reviewed in [4]).

The form of GP deployed in this work cooperatively coevolves
teams of programs, where this is synonymous with the develop-
ment of an ensemble of classifiers, and has previously been shown
to be much more effective under streaming data scenarios than so-
lutions taking the form of single monolithic programs [7]. Thus, a
teaming approach to GP enables better selectivity for incrementally
removing specific components of a model, hence reacting to change
that might be specific to particular class(es) or sub-class(es).

The specific emphasis of this work is with regards to a set of
design decisions for enabling streaming operation under: limited
label budgets, incremental improvement to the classifier, and re-
silience to high degrees of class imbalance. To do so, an active
learning framework is adopted in which GP fitness evaluation is
only performed relative to the content of a small sample of labeled
exemplars. Two policies then need defining, a sampling policy and
an archiving policy. The sampling policy determines under what
conditions labels are requested for exemplars within the current
window (interface to the stream) and enforces the label budget. The
archiving policy determines what exemplars from the data subset
to replace (with the most recently labeled data). Two sampling poli-
cies are considered: uniform random sampling and biased sampling
in which the current champion GP classifier is used to prioritize
instances from the current window location for labelling. Two
archiving policies are considered: uniform random identification
of exemplars currently in the data subset, or biased replacement.
The biased replacement model prioritizes exemplars in proportion
to: 1) how overrepresented their class is in the data subset, and 2)
when a class is selected, replace the older instances.

This results in a total of 4 configurations for Streaming GP: Rnd
(both policies assume uniform random selection), Sample (Biased
sampling, Uniform archiving), Archive (Uniform sampling, Biased
archiving) and Both (Biased sampling and archiving).

3 EVALUATION
The CTU dataset [2] represents a state-of-the-art collection of 13
different datasets describing multiple Botnets. Labels define one
of four general categories: background, normal, Botnet, command
and control (C&C). The majority of the data present in the data
set takes the form of ‘background’ traffic, where this represents
network traffic collected from a real-world network. Filters were
then used to characterize definitively known examples of normal
behaviour [5]. Any data from the background traffic labelled by the
‘normal’ filters are labelled as normal, the remainder is labeled as
background. Finally, attack data is explicitly created using (Botnet)
attack tools from specific IP addresses on a virtual network. This
means that any data explicitly labeled as attack is definitely attack
data, although some amount of the background traffic data could
also be so. Moreover, data associated with the operation of the
Botnet master is explicitly distinguished from that of data associated
with Botnet slaves (labelled as C&C and Botnet respectively).

The data is described by 12 ‘flow’ statistics obtained by the
Argus network flow generator. However, out of these 12 features,

IP addresses and port numbers are not employed as many recent
network applications (Voice over IP, social media and network based
games) can dynamically change their port addresses based on the
blocked/unblocked port combinations. Moreover, IP addresses can
be spoofed by attackers for malicious intentions or can be hidden
by proxies for legitimate reasons to protect privacy of users. Thus,
any classifier relying on these attributes may not generalize well in
real world applications.

The resulting dataset is particularly challenging for streaming
machine learning algorithms because of the non-stationary proper-
ties present in both normal and Botnet behaviour. Moreover, the
datasets are extremely unbalanced, with the C&C class appearing
at a rate of less than 0.5% of stream content.

Comparator algorithms are adopted that also operate with la-
bel budgets care of the MOA toolset for machine learning under
streaming data [6]. Three label budget limits are assumed: 5%, 1%
and 0.5%. The 5% budget would be prohibitively high in practice,
but provides an indication of how much might be gained if more
labels could be provided.

4 RESULTS
A clear preference for ‘Archive’ and ‘Both’ configurations of Stream-
ing GP is demonstrated across all 13 CTU datasets with Naive Bayes
(with the variable active learning policy from [6]) typically ranked
third. This was true across all label budgets. In addition, analy-
sis of the the dynamic properties of the Streaming GP framework
indicated that it was particularly effective at detecting the two
Botnet classes both early and reacting to new instances. We also
demonstrate how the Archive and Both configurations result in
effective balancing of the Data Subset during the course of the
stream. Finally, the anytime nature of Stream GP is documented,
demonstrating that the evolutionary step is completed in ≈ 2.7
seconds and predictions made at the rate of 4.1µ seconds.
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