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ABSTRACT
�rough an extensive series of experiments over multiple evolution-
ary algorithm implementations and 25 problems we showed that
parameter space tends to be rife with viable parameters, somewhat
in contrast with common lore [6].
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In [6] we examined key parameters in evolutionary computation
(EC), asking whether we might �nd new insight into the ever-crucial
parameter-seeking process. EC practitioners o�en employ com-
monly used parameters “selected by conventions, ad hoc choices,
and very limited experimental comparisons” [1] (see also [2]). We
sought parameters that met a reasonable minimal performance
level over an entire set of several problems. We experimented with
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a large and variegated assortment of problems in what was ar-
guably one of the most extensive EC experiments, concluding that
parameter space, in fact, tends to be rife with viable parameters.
�is does not mean that the EC practitioner’s job is over, given
the many desiderata that still remain, including the representation
of solutions in the search space, de�ning the �tness function, de-
signing crossover and mutation operators, and more. However, our
experiments suggested that one can at least �nd good parameters
with a bit more ease.

We chose to work with two very di�erent evolutionary-algorithm
packages: Distributed Evolutionary Algorithms in Python (DEAP)
[3]—which uses tree-based GP, and M4GP [4]—which is a stack-
based evolutionary algorithm. We ran our experiments on a cluster
of 224 cores (Intel® Xeon® E5-2650L), with 2 threads per core.

DEAP, available at github.com/DEAP, comes with �ve sample
problems: Symbolic regression, Even-Parity, Multiplexer 3-8, Ar-
ti�cial Ant, and Spambase. M4GP is entirely di�erent, based on
stack-based GP. �is served to reinforce our conclusions by run-
ning our experiments on two very di�erent types of EC algorithms.
We ran M4GP over problems from PMLB, a new publicly avail-
able dataset suite (accessibly hosted on GitHub) initialized with
165 real-world, simulated, and toy benchmark datasets for evaluat-
ing supervised classi�cation methods [5]. Of the 165 datasets we
selected two suites of 10 datasets each. Note that PMLB focuses
on classi�cation benchmarks, whereas of the DEAP sample prob-
lems above only Spambase involves classi�cation. �us, our study
included di�erent types of problems.

We began by experimenting with a meta-level genetic algorithm
over the space of EC parameters, of which we identi�ed �ve major
ones: Population size (∈ N, [100, 3000]), number of generations
(∈ N, [100, 2000]), crossover rate (∈ R, [0, 1]), mutation rate (∈ R,
[0, 1]), and tournament size (∈ N, [3, 100]). We experimented with
the meta-GA for approximately two months, performing tens of
thousands of evolutionary runs. We noted that numerous good
parameter sets kept emerging, quite o�en appearing at random
generation zero. Eventually, we turned to study just how rife with
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good parameters parameter space is, through a random search over
parameter space, i.e., by generating parameter sets at random and
executing a full evolutionary run per set. All told, our experiments
involved a total of 93,615 GP runs, each with a population size and
generation count that could both be as high as 1000 or 2000.

We performed what is arguably one of the most extensive EC ex-
periments conducted, sample results of which are shown in Figure 1.
We came to the following conclusions:

• Good parameters range over the entire spectrum, some-
what in contrast with common lore, which tends to focus
on ad-hoc “good” values.

• While one is usually inclined to increase population size
and generation count we concluded that this need not be
so. At most, the two should not both be very low.

• A commonly used range for tournament size is 3-7, but our
experiments showed that many more values work just as
well.
• Crossover and mutation rates can take on widely diverse

values, departing from the o�-used high or intermediate
crossover rate and low mutation rate. Moreover, crossover-
mutation pairs showed no tendency to aggregate anywhere.
At most, such pairs should not both be low (which makes
sense given that an evolutionary algorithm requires inter-
generational variation).

So perhaps one need not always spend too much time and re-
sources on tuning hyper-parameters, with random search being a
good choice for such tuning (a�er which EC will use these random
hyper-parameters). Robustness to hyper-parameter tuning is a de-
sired quality of an evolutionary algorithm and if one’s algorithm
requires very speci�c parameters, the chance of �nding them is
slim; this would essentially be a needle-in-a-haystack situation in
hyper-parameter space.
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Figure 1: M4GP over the 10 problems of one of the suites
of datasets we used. Shown are plots for the successful pa-
rameter sets found: population size (a), generation count (b),
population size vs. generation count (c), crossover rate vs.
mutation rate (d), and tournament size (e).
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