
Better Runtime Guarantees Via Stochastic Domination
(Hot-off-the-Press Track at GECCO 2018)

Benjamin Doerr
École Polytechnique

Laboratoire d’Informatique (LIX)
Palaiseau, France

ABSTRACT
Apart from few exceptions, the mathematical runtime analysis of
evolutionary algorithms is mostly concerned with expected run-
times. In this work, we argue that stochastic domination is a notion
that should be used more frequently in this area. Stochastic domi-
nation allows to formulate much more informative performance
guarantees than the expectation alone, it allows to decouple the
algorithm analysis into the true algorithmic part of detecting a
domination statement and probability theoretic part of deriving the
desired probabilistic guarantees from this statement, and it allows
simpler and more natural proofs.

As particular results, we prove a fitness level theorem which
shows that the runtime is dominated by a sum of independent
geometric random variables, we prove tail bounds for several classic
problems, and we give a short and natural proof for Witt’s result
that the runtime of any (µ,p) mutation-based algorithm on any
function with unique optimum is subdominated by the runtime of
a variant of the (1 + 1) EA on the OneMax function.

This abstract for the Hot-off-the-Press track of GECCO 2018 sum-
marizes work that has appeared in Benjamin Doerr. Better runtime
guarantees via stochastic domination. In Evolutionary Computation
in Combinatorial Optimization (EvoCOP 2018), pages 1–17. Springer,
2018.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics; Optimization with randomized search heuristics;

KEYWORDS
Run time analysis, theory of evolutionary computation.

SUMMARY OF OUR RESULTS
The analysis of evolutionary algorithms via mathematical means
is an established part of evolutionary computation research. The
subarea of runtime analysis aims at giving proven performance
guarantees for the time an evolutionary algorithm takes to find
optimal or near-optimal solutions. Traditionally, this area produces
estimates for the expected runtime, which are occasionally aug-
mented by tail bounds. A justification for this is that for already

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3208209

very simply evolutionary algorithms and optimization problems,
the stochastic processes arising from running this algorithm on
this problem are so complicated that any more detailed analysis is
infeasible. See the analysis how the (1 + 1) evolutionary algorithm
optimizes linear functions x 7→ a1x1 + · · · + anxn in [9] for an
example for this complexity.

In this work, we shall argue that the restriction to expectations
is only partially justified and propose stochastic domination as an
alternative. It is clear that the precise distribution of the runtime
of an evolutionary algorithms in all cases apart from very trivial
ones is out of reach. Finding the precise distribution is maybe not
even an interesting target because most likely already the result
will be too complicated to be useful. What would be very useful is
a possibly not absolutely tight upper bound-type statement that
concerns the whole distribution of the runtime.

One way to formalize such statement is via the notion of sto-
chastic domination. We say that a real-valued random variable Y
stochastically dominates another oneX if and only if for each λ ∈ R,
we have Pr[X ≤ λ] ≥ Pr[Y ≤ λ]. If X and Y describe the runtimes
of two algorithmsA and B, then this domination statement is a very
strong way of saying that algorithmA is at least as fast as B. Clearly,
stochastic domination implies the same order on the expectations,
that is, here E[X ] ≤ E[Y ]. Also, stochastic domination is invariant
under monotonic rescaling. Hence if users have different (mono-
tonic) utility functions for the runtime, then stochastic domination
still tells them correctly which algorithm to prefer.

In [3] (extended version [4]), we give three main arguments for
a more frequent use of domination arguments in runtime analysis,
supported by a number of technical results of independent interest.

Stochastic domination is often easy to show. Surprisingly, despite
being a much stronger type of assertion, stochastic domination
statements are often easy to obtain. The reason is that many of
the classic proofs implicitly contain all necessary information, they
only fail to formulate the result as a domination statement.

As an example, we prove a natural domination version of the
classic fitness level method. In analogy to the classic result, which
translates pessimistic improvement probabilities p1, . . . ,pm−1 into
the expected runtime estimate E[T ] ≤ ∑m−1

i=1
1
pi , we show that un-

der the same assumptions the runtimeT is dominated by the sum of
independent geometric random variables with success probabilities
p1, . . . ,pm−1.

This statement implies the classic result, but also implies tail
bound for the runtime via Chernoff bounds for geometric random
variables. We note that, while our extension is very natural, the
proof surprisingly is not totally obvious, which might explain why
previous works were restricted to the expectation version.

https://doi.org/10.1145/3205651.3208209


GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Benjamin Doerr

Stochastic domination allows to separate the core algorithm analysis
and the probability theoretic derivation of probabilistic runtime state-
ments. The reason why stochastic domination statements are often
easy to obtain is that they are close to the actions of the algorithm.
When we are waiting for the algorithm to succeed in performing a
particular action, then it is a geometric distribution that describes
this waiting time. To obtain such a statement, we need a good un-
derstand of how the algorithm solves this particular problem, but
usually no greater expertise in probability theory. We give in [3]
several examples, mostly using the fitness level method, but also
for the single-source shortest paths problem, where the fitness level
method is not suitable to give the best known results.

Once we have a domination statement formulated, e.g., that the
runtime is dominated by a sum of independent geometric distribu-
tions, then deeper probability theoretic arguments like Chernoff-
type tail bounds come into play. This part of the analysis is indepen-
dent of the algorithm and only relies on the domination statement.
Exemplarily, we derive in [3] tail bounds for the runtime of the
(µ + 1) EA on OneMax, the (1 + 1) EA for sorting, and the multi-
criteria (1 + 1) EA for the single-source shortest path problem.

That these two stages of the analysis are of a different nature is
also visible in the history of runtime analysis. As discussed in the
previous paragraph, the classic fitness level method essentially con-
tains all ingredients to formulate a runtime domination statement.
However, the mathematical tools to analyze sums of independent
geometric random variables were developed much later (and this
development is still ongoing).

This historical note also shows that from the viewpoint of
research organization, it would have been profitable if previous
works would have been formulated in terms of domination
statements. This might have spurred a faster development of
suitable Chernoff bounds and, in any case, it would have made it
easier to apply recently found Chernoff bounds like [5, 6, 10, 13].

Stochastic domination often leads to more natural and shorter proofs.
To demonstrate this, we regard the classic lower-bound result
which, in simple words, states that OneMax is the easiest fitness
function for many mutation-based algorithms. This statement,
of course, should be formulated via stochastic domination (and
this has indeed been done in previous work). However, as we
argue in [3], we also have the statement that when comparing the
optimization of OneMax and some other function with unique
optimum, then the distance of the current-best solution from the
optimum for the general function dominates this distance for the
OneMax function. This natural statement immediately implies the
domination relation between the runtimes. We make this precise
for the current-strongest OneMax-is-easiest result [12]. This will
shorten the previous, two-and-a-half pages long complicated proof
to an intuitive proof of less than a page.

Related work. The use of stochastic domination is not totally
new in the theory of evolutionary computation, however, the results
so far appear rather sporadic than systematic. Possibly the first to
use this notion was Droste, who in [7, 8] employed it to make
precise an argument of the type “this artificial process is not faster
than the process describing a run of this algorithm on that problem.”
For an example of such an argument appearing at this conference

see [2]. Domination arguments were extensively used in [11] to
analyze the runtime of binary PSO algorithms. In [1], the notion of
stochastic domination (without mentioning its name) was used to
compare the performance of different evolutionary algorithms.

What comes closest to this work is the paper [14], which also
tries to establish runtime analysis beyond expectations. The
notion proposed in [14], called probable computational time L(δ ), is
the smallest time T such that the algorithm under investigation
within the first T fitness evaluations finds an optimal solution
with probability at least 1 − δ . To prove results on the probable
computational time, the domination version of the fitness level
method is used but not proven. At the time of writing of [14], good
tail bounds for sums of geometric random variables with different
success probabilities where not yet available (these appeared only
in [5, 13]). For this reason, a weaker, self-made tail bound had to
be used, which unfortunately gives a non-trivial tail probability
only for values above twice the expectation. With this restriction,
tail bounds are proven for the runtimes of the algorithms RLS,
(1+ 1) EA, (µ + 1) EA, MMAS∗ and binary PSO on the optimization
problems OneMax and LeadingOnes.

Conclusion: This work shows that with stochastic domination,
we can obtain performance guarantees for evolutionary algorithms
that are much more insightful than bounds just on the expectation.
Since often this additional strength comes at little extra cost, our
recommendation is formulate future results first as domination
results and only then deduce bounds on the expected runtime or
bounds that hold with high probability.

REFERENCES
[1] Pavel A. Borisovsky and Anton V. Eremeev. 2008. Comparing evolutionary

algorithms to the (1+1)-EA. Theoretical Computer Science 403 (2008), 33–41.
[2] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and

Dorian Nogneng. 2018. A new analysis method for evolutionary optimization of
dynamic and noisy objective functions. In Genetic and Evolutionary Computation
Conference, GECCO 2018. ACM.

[3] Benjamin Doerr. 2018. Better runtime guarantees via stochastic domination. In
Evolutionary Computation in Combinatorial Optimization, EvoCOP 2018. Springer,
1–17.

[4] Benjamin Doerr. 2018. Better runtime guarantees via stochastic domination.
CoRR abs/1801.04487 (2018). 41 pages.

[5] Benjamin Doerr and Carola Doerr. 2015. A tight runtime analysis of the (1+(λ,
λ)) genetic algorithm on OneMax. In Genetic and Evolutionary Computation
Conference, GECCO 2015. ACM, 1423–1430.

[6] Benjamin Doerr, Edda Happ, and Christian Klein. 2011. Tight analysis of the
(1+1)-EA for the single source shortest path problem. Evolutionary Computation
19 (2011), 673–691.

[7] Stefan Droste. 2003. Analysis of the (1+1) EA for a dynamically bitwise changing
OneMax. In Genetic and Evolutionary Computation Conference, GECCO 2003.
909–921.

[8] Stefan Droste. 2004. Analysis of the (1+1) EA for a noisy OneMax. In Genetic and
Evolutionary Computation Conference, GECCO 2004. 1088–1099.

[9] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.

[10] Swante Janson. 2017. Tail bounds for sums of geometric and exponential variables.
ArXiv e-prints arXiv:1709.08157 (2017). 8 pages.

[11] Dirk Sudholt and Carsten Witt. 2008. Runtime analysis of binary PSO. In Genetic
and Evolutionary Computation Conference, GECCO 2008. ACM, 135–142.

[12] Carsten Witt. 2013. Tight bounds on the optimization time of a randomized
search heuristic on linear functions. Combinatorics, Probability & Computing 22
(2013), 294–318.

[13] Carsten Witt. 2014. Fitness levels with tail bounds for the analysis of randomized
search heuristics. Information Processing Letters 114 (2014), 38–41.

[14] Dong Zhou, Dan Luo, Ruqian Lu, and Zhangang Han. 2012. The use of tail
inequalities on the probable computational time of randomized search heuristics.
Theoretical Computer Science 436 (2012), 106–117.


	Abstract
	References

