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ABSTRACT
Cyber-Physical Systems (CPSs) integrate digital cyber computations
with physical processes. Testing these systems in a time consum-
ing task. Furthermore, the input space for test cases is huge, and
several issues need to be considered when generating them. In [2]
we tackle the test case generation and prioritization problem for
CPSs. The approach is empirically evaluated with four different
case studies from different domains and complexities. Five pareto-
based algorithmswere evaluated and overall, the NSGA-II algorithm
outperformed the remaining algorithms. The NSGA-II algorithm
improved RS by 43.8% on average for each objective and 49.25% for
the Hypervolume quality indicator.
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) integrate digital cyber technologies
with parallel physical processes [5]. These systems have been cat-
aloged as “untestable” due to the difficulty to test them [4]. One
such difficulty lies on the generation of test cases, as the input
space for CPSs is huge. Thus, search algorithms are appropriate to
generate test cases, and in our work we propose a method based
on multi-objective search algorithms for that [2].

The test cases that we aim to generate are reactive test cases.
These test cases stimulate the inputs of the system and observe its
outputs to react om them. In figure 1, an example of three reactive
test cases for testing the cruise control system of a car is proposed.
In our paper [2], we propose a whole test suite generation approach
with prioritization for testing CPSs based on reactive test cases. The
test prioritization in the context of reactive test cases is important
for two main reasons. Firstly, to detect faults as fast as possible.
Secondly, because the test execution time of each test case can vary
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depending on the previously prioritized test case, as demonstrated
in previous work [3].

Engine.TurnON();
set: v = 0 km/h;
set: brake = false;

set: v = 100 km/h;
set: brake = false;

get: v ==0 km/h
&& 

get: a = 0 m/s2

get: v ==100 km/h
&& 

get: a < 0.25 m/s2

Engine.TurnON();
set: v = 150 km/h;
set: brake = false;

set: v = 0 km/h;
set: brake = false;

get: v ==150 km/h
&& 

get: a < 0.25 m/s2

get: v == 0 km/h
&& 

get: a ==0 m/s2

Engine.TurnON();
set: v = 180 km/h;
set: brake = false;

set: v = 180 km/h;
set: brake = true;

get: v ==180 km/h
&& 

get: a < 0.25 m/s2

get: v ==0 km/h
&& 

get: a ==0 m/s2

TC 1 TC 2 TC 3

Figure 1: Example of three reactive test cases for the cruise
control system testing of a vehicle [2]

2 METHOD
2.1 Cost-effectiveness measures
Four different cost effectiveness measures were selected [2]. The
first one was functional requirements coverage, which measures the
number of requirements that a specific test suite covers. The second
measure was related to similarity of test cases. Notice that the more
dissimilar the test cases are, the higher the chances to detect faults.
In this context, a similarity measure was proposed to measure the
distance between reactive test cases. The third measure was the
prioritization-aware similarity. This measure aimed at prioritizing
the most dissimilar test cases with its preceeding test cases. This
would allow to detect faults sooner. The last measure was related
to cost. In this case we selected the test execution time, which
measured the time required by a test suite to execute.

2.2 Solution representation
A solution returned by our search algorithms in this context was a
prioritized test suite (TS) composed by at least one test case (TC),
i.e., TS = {TC1,TC2, ...,TCN }. Each TC was composed by a set
of states (S), (i.e., TCi = {S1, S2, ..., SNTCi }), where NTCi is the
number of states that the i-th test case is composed of). Finally,
each state had a predefined set of stimulation signal that must be
connected to the simulation model of the CPS. These stimuli signals
were based on the CPS model being tested and each of them had a
maximum and a minimum value.

2.3 Crossover operator
We implemented a single-point crossover that exchanged test cases
of two different test suites. Furthermore, given the nature of test
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prioritization, this crossover eliminated those repeated test cases in
a specific test suite. Refer to the original paper for further details
[2].

2.4 Mutation operators
Two mutation operators were proposed (mutation at test suite level
and mutation at test case level), each of which operated at one level,
and had specific mutation sub-operators.

Regarding the mutation at test suite level, three sub-mutation
operatorswere developed: (1) addition of a new test case, (2) removal
of a test case and (3) exchange of two test cases. The first sub-
mutation operator randomly selected a new test case in a new
position. The second sub-mutation operator randomly removed one
of the test cases from the test suite. The third sub-mutation operator
randomly picked two test cases and swapped their position.

As for the mutation operator at test case level, four sub-mutation
operators were developed: (1) state addition sub-mutation operator
(2) state removal sub-mutation operator (3) state exchange sub-
mutation operator and (4) change of variable sub-mutation operator
for the test case level. The first sub-mutation operator randomly
selected one test case and it randomly added a new state in a random
position. The second operator randomly selected a test case and
it randomly removed one of its states. The third sub-mutation
operator randomly selected a test case, and it exchanged the position
of two of its states. The last operator randomly selected a test case
and changed one of its stimulation signals.

3 RESULTS
Three Research Questions were raised to evaluate our approach:

• RQ1: Are the selectedmulti-objective algorithms cost-effective
when compared to Random Search (RS) for solving the TC
generation and prioritization problem?

This RQ was defined a sanity check. We compared our approach
with different multi-objective search algorithms with RS. When
we ensured that these algorithms outperformed RS, we assessed
which multi-objective search algorithms could assist our approach
in achieving the best performance:.

• RQ2: Which of the selected multi-objective algorithms fares
best when solving the TC generation and prioritization prob-
lem?

RQ2 was defined to identify the best multi-objective search
algorithm to solve our problem. We chose five state-of-the-art
multi-objective search algorithms: Non-dominated Sorting Genetic
Algorithm-II (NSGA-II), strength pareto evolutionary algorithm 2
(SPEA2), multi-objective evolutionary algorithm based on decom-
position (MOEA/D), pareto envelope-based selection algorithm II
(PESA-II), and non-dominated sorting genetic algorithm III (NSGA-
III). Once the best multi-objective search algorithm was obtained,
we studied if different crossover and mutation rates could affect the
performance of our approach, which is the key motivation of RQ3:

• RQ3: How do the designed crossover and mutation opera-
tors with different crossover and mutation rates affect the
performance of our approach?

RQ3 is defined to assess the performance of the crossover and
mutation operators along with different rates. To deal with this RQ,

we chose in total five CXR (i.e., 0, 0.2, 0.5, 0.8, and 1) and three MR
(i.e., 1/N, 2/N, and 5/N) based on the guidelines from [1].

Four case studies modeled in MATLAB/Simulink were employed
in the proposed empirical evaluation. These case studies included
different characteristics and complexities, and they were defined
together with our industrial partners. The hypervolume (HV) qual-
ity indicator was selected as the evaluation metric for the empirical
evaluation. Furthermore, the four fitness values of each selected
objectives were measured.

Figure 2 shows the distribution of the algorithms when consider-
ing the HV quality indicator.1 As for RQ1, it can be observed, gener-
ally all algorithms outperformed RS. As for RQ2, when considering
the HV, the NSGA-II showed best performance. However, MOEA/D
performed quite well when considering both similarity measures.
We selected NSGA-II to assess RQ3. We observed that when the mu-
tation probability was N/2 the performance increased. Furthermore,
all crossover rates higher than 0 outperformed with statistical sig-
nificance the configuration that did not have the crossover operator
(i.e., crossover rate = 0); this suggests that the proposed crossover
operator works well.

Figure 2: Distribution of the results for the HV for each al-
gorithm in the four case studies

4 CONCLUSION
This paper proposes a test generation and prioritization approach
based on multi-objective search algorithms for CPSs. To this end,
corresponding crossover and mutation operators were developed
and integrated within five different pareto-based search algorithms.
An empirical evaluation with four case studies showed that the
NSGA-II was the algorithm performing best.
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1detailed results can be found in https://sites.google.com/view/tii2017
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