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ABSTRACT
Genetic Algorithms (GAs) use principles of natural selection to
evolve a population of candidate solutions obtained by the recom-
bination of individuals of the current generation. Albeit their huge
popularity, providing natural examples where standard GAs prov-
ably outperform more traditional mutation-based heuristics has
turned out to be a tedious task. In this paper we rigorously prove
that a standard steady state (µ+1) GA outperforms any evolution-
ary algorithm, that relies only on standard bit mutation (SBM) as
variation operator, for hillclimbing the classical OneMax bench-
mark function. In particular, we show that the GA is 25% faster
by providing an upper bound of (3/4)en lnn on its expected run-
time versus the en lnn expected function evaluations required by
any algorithm using only SBM. To achieve the result, we devise
a mathematical framework which extends the classical artificial
fitness levels method by coupling each level with a Markov chain.
This Markov chain allows to bound the improvement probabilities
of the current population based on its diversity. In turn it can be
appreciated how larger populations sustain diversity for a longer
time, effectively giving crossover more chances of finding improved
solutions. Since diversity is created via mutation, higher rates than
the standard 1/n mutation rate, lead to better upper bounds on the
expected runtime. This paper summarises the work that appeared
in [1]1.
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Algorithm 1: (µ+1) GA
1 P ← µ individuals, uniformly at random from {0, 1}n ;
2 repeat
3 Select x ,y ∈ P uniformly at random;
4 z ← Uniform crossover with probability 1/2 (x ,y);
5 Flip each bit in z with probability c/n;
6 P ← P ∪ {z};
7 Choose one element from P with lowest fitness and

remove it from P , breaking ties uniformly at random;
8 until termination condition satisfied;

andWolfgang DeMeuter (Eds.). ACM, New York, NY, USA, Article 4, 2 pages.
https://doi.org/10.1145/3205651.3208214

1 INTRODUCTION
Genetic algorithms (GAs) recombine promising solutions to gen-
erate new solutions. This distinguishes them from mutation based
evolutionary algorithms which concentrate their search in the im-
mediate vicinity of candidate solutions. The fact that standard GAs
themselves use the mutation operator to avoid losing diversity in
the population poses one of the longest lasting open problems in
evolutionary computation: “To what extent can the optimisation
capabilities of GAs be attributed to the crossover operator?”. To this
day a rigorous result which shows that a standard genetic algorithm
outperforms a standard bit mutation-only algorithm on a natural
benchmark problem is lacking.

The most prominent results addressing this problem rely on one
of two leeways; either additional mechanisms are introduced to
standard GAs to simplify the analysis, or an artificial function de-
signed to highlight the capabilities of the crossover operator is anal-
ysed. Several such examples are reported in the original paper [1].
By adding a diversity preserving mechanism to the steady-state
(µ+1) GA, an important recent work showed that its expected run-
time on the classical OneMax function is half of the (1 + 1) EA’s
runtime, which is the fastest standard bit mutation only evolution-
ary algorithm for OneMax [4]. Examplifying the second approach,
Dang et al. showed that the (µ+1) GA without any modification
optimises the artificially designed Jump function at least a linear
factor faster than the (1 + 1) EA [2].

In this paper we finally prove that the standard steady-state
(µ+1) GA (see Alg. 1) in its simplest form can optimise the funda-
mental benchmark function OneMax in 25% less function evalua-
tions (runtime) in expectation than any standard bit mutation based
algorithm.



GECCO ’18, July 15–19, 2018, Kyoto, Japan Dogan Corus and Pietro S. Oliveto

Figure 1: Markov Chain for fitness level i.
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2 MAIN RESULT
Since no SBM based algorithm can optimise OneMax in less than
en lnn expected function evaluations [4], the following theorem
establishes the main result when a mutation rate of 1/n is used by
the GA.

Theorem 2.1. The expected runtime of the (µ+1) GAwithmutation
rate c/n for any constant c , µ ≥ 3 and
µ = o(logn/ log logn) on OneMax is: E[T ] ≤ 3(1+o (1))

c (3+c ) ecn lnn.

The mathematical framework devised for the analysis and lead-
ing to our main result also highlights: (1) why the GA is faster; (2)
that large populations make the GA more efficient; (3) that higher
mutation rates than the standard 1/n are beneficial to the GA.

2.1 Mathematical Framework
The primary shortcoming of the classical artificial fitness level
(AFL) method [3] is that the improvement probability at a fitness
level is determined according to the worst-case configuration of
the population. Crossover, on the other hand, requires a diverse
population to be effective implying that its contribution cannot be
captured by the standard AFL method.

We overcome this obstacle by modeling the population at each
level i with a Markov chain (MCi ) (see Fig. 1). EachMCi has two
transient states representing populationswith andwithout diversity.
Each state has a different transition probability to an absorbing
state where absorption denotes the first improvement to the next
level. The framework reflects that crossover improves with high
probability pc = Θ(1) when diversity is present in the population.
The improvement probability changes to pm = Θ(i/n) when the
population has no diversity, hence the GA behaves exactly like an
SBM-only algorithm since crossover is ineffective.

2.2 Larger population sizes are beneficial
Diversity is more likely to be lost (i.e., pr is greater) for µ = 2 since
each genotype can takeover the population in a single generation
which is not the case for larger µ. Thus, crossover has more chances
to be effective when µ ≥ 3 (we get a worse upper bound for µ = 2).
Fig. 2 provides experimental evidence that µ ≥ 2 performs better.

2.3 Higher mutation rates are beneficial
The mathematical framework highlights that diversity is necessary
for the crossover to be effective. Since diversity in generated via
mutation (with probability pd ), higher mutation rates than the
standard 1/n rate lead to better performances. The best theoretical

Figure 2: Average runtime gain of the (µ+1) GA versus the
(2+1) GA for different population sizes.
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Figure 3: Average runtime gain of the (5+1) GA for various
mutation rates versus the standard 1/n mutation rate.
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upper bound of 0.72en logn + O (n) is achieved for c/n with c =
1
2
�√

13 − 1
�
≈ 1.3. Fig. 3 provides experimental evidence that even

larger mutation rates up to c = 1.6 lead to better performance.
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