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ABSTRACT

Nvidia’s CUDA parallel computation is a good way to reduce com-
putational cost when applying a filter expressed by an equation to
an image. In fact, programs need to be compiled to build GPU ker-
nels. Over the past decade, various implementation methods for
the image filter using Genetic Programming (GP) have been de-
veloped to enhance its performance. By using GP, an appropriate
image filter structure can be obtained through learning algorithms
based on test data. In this case, each solution must be compiled;
therefore, the required computational effort grows significantly.
In this paper, we propose a PyCuda-based GP framework to re-
duce the computational efforts for evaluations. We verify that the
proposed method can implement GPU kernels easily based on a
sequential GP algorithm, thereby reducing the computational cost
significantly.
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1 INTRODUCTION

GPU has a massively parallel architecture consisting of thousands
of CUDA cores, and is widely used in many fields, especially image
processing. Recently, various image processing methods utilizing
GP have been proposed to enhance performance. In GP, each indi-
vidual is expressed by a tree or an equation, so it matches especially
well with developing an image filter. However, GP evaluates many
individuals in order to evolve in each generation. In addition, it
requires large computational efforts when applied to developing
an image filter, because it needs to evaluate every individual I X P
times if an image has P pixels, where I is the number of individ-
uals in a population. The GP methods with CUDA-C have been
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proposed over the past decade to overcome this problem. CUDA-
C can compile and run ordinary C. Therefore, we must generate I
C-code files or generate codes using a stack structure for individu-
als every generation to evaluate them[2]. Therefore, the number of
file I/O increases, and the GP methods with CUDA-C cannot work
with enough efficiency in many cases.

In this paper, we propose a PyCUDA-based framework to over-
come this problem. PyCUDA is a module to access Nvidia’s CUDA
parallel computation and allows us to execute GPU kernels writ-
ten in Python by automatically transferring their Python codes to
CUDA-C[1]. PyCUDA can generate GPU kernels without file I/O
by using source module.

2 PROPOSED METHOD

CUDA C is often used when applying an image filter to target im-
ages, and it helps reduce the computational time dramatically. In
general, the image filter is predefined; however, the structure of
an image filer is different for every individual when applying GP.
We propose an accelerating genetic programming framework us-
ing PyCUDA for which file I/O is not necessary for compilation.
Figure 1 shows the proposed framework.
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Figure 1: PyCuda GPU program compilation for GP.

In GP, each individual is expressed by a tree, so the proposed
method first converts the tree to an infix-expression or an IF-THEN
rule to compile CUDA-C. Then, a source module is called, where
codes for filtering generally are declared directly in the source
module in PyCUDA as follows:

mod = SourceModule(
__global__ void function_name(arguments)

B

However, this ordinary method in PyCUDA cannot change an
equation or an IF-THEN rule for image filtering. Therefore, the
proposed method passes the codes as arguments to enable their
modification. The source model is called as “mod = source mod-
ule(argument)”, where the argument is codes written in CUDA-C.
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By calling the source module, the argument is compiled to generate
GPU kernels.

3 PERFORMANCE EVALUATION

We first evaluated the effects of block or thread sizes on the GPU
compared to the CPU. Table 1 shows the results, where the num-
ber of evaluations indicates the number of pixels and a filter is set
to sin(x) to simplify !. We found that the calculation time rapidly
increases as the number of evaluations increased when using the
CPU, while the GPU was effective in increasing the number of eval-
uations. Specifically, the calculation time was less than 2 s. We also
found that the calculation time of the GPU increased as the block
size increased, but were not obvious differences between them.
Therefore, we set the block size to 1 and the thread size to 1024
for the next experiments where we compared the effectiveness of
the proposed method, as well as GP against the CPU.

Table 1: Calculation time.

#Evalutaions ‘ #Blocks ‘ #Threads ‘ Time(GPU)[sec.] ‘ Time(CPU)[sec.]

25 1 128 0.000917
25 1 1024 0.000907 0.000056
25 128 128 0.000859
25 128 1024 0.000986
213 1 128 0.003017
213 1 1024 0.003485 0.317426
213 128 128 0.003562
213 128 1024 0.020838
219 1 128 0.144891
210 1 1024 0.160954 1392.084
2D 128 128 0.178302
210 128 1024 1.146410

Next, we evaluated the effectiveness of the proposed method by
using a symbolic regression problem. We investigated the symbolic
regression problem for the function space X constructed by the
labeled ordered trees of functional nodes {+, —, X, /, sin, cos, log}
and terminal nodes {s, 0.0, 1.00}, where s denotes a variable. Our
training set was composed of J data points {(sj, x:(sj)) € R%;j=
1,...,J}, where s; = 0.2/J(j — 1) — 1, and x«(s) € X is the true
function to be identified, and J is set to 2% 10, . . ., 2 x 10°. For any
x(s) € X, we define the fitness f(x) by:

J
FG) = Y () = xu(s))l,
j=1

and consider the maximization problem of f(x). In our experi-
ments, we employed three functions as x.(s),

Function: x.(s) =s'-s-s?—s.

We set the following parameters for GP: the number of generations
was 50, the population number was 300, the crossover rate was
0.5, the mutation rate was 0.1, the maximum depth was 17, and the
initial solutions were generated by Ramp-Half-and-Half.

! All of our experimentation was undertaken on a single PC with 6 Intel Xeon E5-1660
3.3 GHz processors, with 24 GB of memory and an NVIDIA Quadro K6000 running

under Linux. NVIDIA Quadro K6000 is capable of around 5.2 TFlops and 2880 CUDA
cores with 15 multiprocessors and 192 microprocessors.
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Figure 2 shows the result of the average of calculation time for
each individual. GPU took 1 to 2 s and there was no change in the
calculation time as the number of loops increased 2. Conversely, for
the CPU, when the number of loops was greater than 2°, it took
a long time to evaluate an individual. The total time to evaluate
individuals for 50 generations was 2362 s for the GPU and 215578
s for the CPU when J = 2 x 10°. Figure 3 shows the history of
the fitness of the best individuals in a population. From this figure,
there are no differences in fitness in terms of GPU and CPU, and we
found that the proposed method works well. From these results,
we verified that the proposed method can reduce computational
efforts significantly.
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Figure 2: PyCuda GPU program compilation for GP.
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Figure 3: History of the fitness of the best solution.

4 CONCLUSIONS

We proposed a PyCUDA framework for GP that eliminates unnec-
essary file I/O by using a source module with parameter passing.
By using a symbolic regression problem, we verified that the pro-
posed method can reduce the computational time to evaluate indi-
viduals. When the number of pixels or the interval of the symbolic
regression problem is greater than 10°, the proposed method out-
performs sequential models that rely on a CPU.
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2we found that it took 1.3 s to load a source module based on the preliminary
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